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Abstract 
 
The current trend in increasing microcantilever resonant frequencies leads to relatively low quality 
factors for microcantilevers resonating in a gas medium. In order to increase the quality factor of such 
high-frequency microcantilevers, an approach that takes into account the different types of losses is 
provided to specify appropriate values of microcantilever aspect ratios (length-to-thickness, width-to-
thickness). Conventional values of aspect ratios result in low quality factors, while those proposed 
here lead to slightly higher values of quality factor. 
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1. Introduction 
 
In order to design a very sensitive microcantilever-based chemical sensor, it is required to use high-
frequency devices. Indeed, the sensitivity of such sensors is proportional to the resonant frequency. 
Moreover, to achieve a minimal limit of detection, high quality factors are preferable because they (a) 
increase the sharpness of the resonance peak and, thus, the frequency shift measurement accuracy, 
and (b) result in lower short-term noise in oscillator configurations. 
A theoretical approach is proposed to show the importance of taking into account different losses 
when designing a microcantilever-based sensor. The importance of increasing the resonant frequency 
is first presented and the four dominant losses that occur in a viscous medium are then detailed and 
analytical forms of equivalent quality factors are given. The relevance of taking into account each loss 
is detailed and illustrated. Then, the existence of an optimum quality factor for a given microcantilever 
length is illustrated and optimum aspect ratios (length to width, length to thickness) are presented. A 
discussion then follows which compares conventional aspect ratios with fully optimum and nearly 
optimum aspect ratios. A conclusion is then made about the proposed aspect ratio expressions. 
 

2. Theoretical study 
 

2.1. Assumptions 
 
This study is limited to uniform parallelepiped shaped microcantilevers with a negligible sensitive 
coating Young’s modulus. 
The microcantilever vibration amplitude is considered far smaller than any dimension to neglect non 
linear effects. 
 

2.2. Sensor sensitivity 
 
The resonant frequency nf  of a parallelepiped shaped microcantilever with a sensitive coating 

deposited on its top (Figure 1) is given by [1]: 

  
  
     

2 3
1 1

1 1 1 2 2

ˆ1

4 3
n

n

E h
f

L h h
 (1) 

where n  is a parameter depending on the mode order, 1L  is the microcantilever length, 1Ê  is the 

effective microcantilever Young’s modulus, 1h  and 2h  are the microcantilever and sensitive coating 

thicknesses respectively, and 1  and 2  are the microcantilever and sensitive coating mass densities 

respectively. 
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From equation (1) it can be seen that the resonant frequency is inversely proportional to the 
dimensions if we do a geometric contraction by keeping constant the aspect ratios (length to 
thickness: 1 1L h , length to width 1 1L b , coating thickness to cantilever thickness 2 1h h ). 

 
The sensitivity S of a sensor exposed to a gas concentration gC  is given by: 
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where nf  is the frequency shift due to gas sorption, K  the partition coefficient of the sensitive coating 

– gas couple and 2 1r h h . 

 
Thus, high resonant frequency devices will have high sensitivity. But in order to have a low limit of 
detection, a high sensitivity is not sufficient: the noise has to be taken into account. 
 

2.3. About losses 
 
The quality factor, a key parameter for the accuracy of the measurement, expresses the losses 
influence: low-loss microcantilevers will have a high quality factor. 
 
For most microcantilevers resonating in vacuum, the quality factor is determined by thermoelastic 
losses and support losses. But when used in air, these cantilevers can have a much lower quality 
factor because of the viscous losses due to the surrounding fluid and because an acoustic radiation 
may occur for wide cantilevers [2]. 
 
To evaluate the global quality factor, each loss is first studied separately. Then the global quality factor 
is calculated using: 
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This approach is fully valid for low loss microcantilevers and thus it can be applied to determine how to 
minimize losses. 
 

2.4. Viscous losses 
 
When vibrating in a fluid, a microcantilever is perturbed by viscosity and mass density of the 
environment. A general theoretical model describing viscous losses has been established by Sader 
[3]. 
For microcantilevers with a rectangular cross section, the equivalent quality factor associated with 
viscous losses can be analytically expressed: 
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where n  is the resonant pulsation, 0  is the density of the fluid, and r  and i  are the real and 

imaginary components of the hydrodynamic function ( )n  of the microcantilever. 

 
Sader has also proposed an approximate analytical expression of the hydrodynamic function for a 
wide range of Reynolds number [3]. 
 
Using equation (4), it can be seen that viscous losses are important for high values of 1 1L h  or for very 

narrow microcantilevers. 
 

2.5. Support losses 
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To obtain equation (1), it has been supposed an infinitely rigid support. In fact, the vibration of the 
microcantilever produces a mechanical work on the support. This mechanical work generates an 
elastic wave into the support. The generated wave power is lost by propagation. 
 
Hao et al. have proposed an analytical approach to quantify these losses [4]. The associated 
equivalent quality factor for a silicon based microcantilever is given by: 
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with: 
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It can be seen from equation (5) that support losses are important for low values of 1 1L h . 

 
2.6. Acoustic losses 

 
The vibration of the microcantilever in the fluid creates an acoustic pressure which propagates into the 
fluid. The evaluation of this acoustic radiation in the case of a microcantilever with a rectangular cross 
section is not trivial. By approximating the rectangular cross section with an elliptical cross section, 
Blake has obtained an approximate expression for the radiated power [5]: 

 
4 2

30 0 0 1
0

0

( )
sin ( cos )

512

c k b
P U k d





   


   (7) 

where 0c  is the speed of sound in the fluid, 0 0k c  is the wavenumber in the fluid and ( )U   is 

given by: 
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with ( )U x  the microcantilever velocity along the z axis at pulsation  . 

 
To calculate the microcantilever velocity we can approximate the microcantilever mode shape in 
presence of low losses to the microcantilever mode shape without losses. It then comes: 

  ,
n n nU j w x    (9) 

with: 

  ( , )n vacw x A x    (10) 

where A  is the oscillation amplitude and  vac x  the mode shape of the microcantilever given by: 
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Using (7) and (8) it then comes: 
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with: 
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The radiated energy during one period is given by: 
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The equivalent quality factor associated with acoustic radiation can be calculated using [4]: 
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where  12 1 1 1 2 2b h h     is the linear mass of the microcantilever with the sensitive coating. 

 
Using equations (9) to (16), it then comes: 
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By using numerical calculations of (17) it can be seen that acoustic radiation becomes important for 
wide microcantilevers and for “acoustically long microcantilevers”. The term “acoustically long 
microcantilevers” refers to cantilevers for which the structural wavelength (L1/n) is comparable to the 
acoustic wavelength ( 02 k  ) in the fluid. 

 
2.7. Thermoelastic losses 

 
Thermoelastic losses are caused by the microcantilever material heating due to vibration. Lifshitz et al. 
have expressed analytically the equivalent quality factor associated with thermoelastic losses [6]: 
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with: 
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where 
1pC , 1 , T ,  , are the heat capacity, the thermal expansion coefficient, the temperature, and 

the thermal conductivity of the microcantilever material, respectively, and n  is the microcantilever 

resonant pulsation. 
 
From equation (18) it can be seen that thermoelastic losses are maximum for 2.2246  . At this 

maximum loss, the thermoelastic quality factor for a silicon made microcantilever at room temperature 
is bigger than 104. 
 

3. Discussion on the total quality factor 
 
The combination of all the losses shows that no general trend can be given to minimize all losses at 
the same time: an optimum value should exists. In fact, when combining the losses, it comes that 
optimal aspect ratios can be found for a given length (Figure 2). 
 
Indeed, the thickness can be adjusted to equilibrate viscous losses and support losses (Figure 3), 
while the width can be adjusted to equilibrate viscous losses and acoustic losses (Figure 4). 
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Because of the approximations in the evaluation of the quality factor associated with acoustic losses 
and because of the analytical expression forms, no exact analytical equations can be given to choose 
the aspect ratios ( 1 1L h , 1 1L b ). However, by determining the optimal width and thickness for a given 

microcantilever length, it is possible to observe that using 1 1 20L h   and 1 1 3L b   is a simple rule to 

obtain an almost optimal quality factor. 
 
From figure 2, it can be seen that using conventional aspect ratios ( 1 1 50L h , 1 1 10L b ) implies 

that viscous losses are dominant and thus sufficient to calculate the quality factor. But in that case, the 
quality factor can be much lower while the resonant frequency remains low because of a high 1 1L h  

ratio. A comparison between different aspect ratios is made in table 1. 
 
It can be seen that, even if the proposed aspect ratios are not fully optimal, they allow to increase 
significantly both the quality factor and the resonant frequency compared to conventional aspect 
ratios. 
 
Moreover, approximate relationships between the length and optimal width and thickness can be 
found in order to have even higher quality factors and resonant frequencies. With a numerical 
resolution (as presented in Figure 2 for one length), the optimum width (Figure 5) and thickness 
(Figure 6) have been obtained for microcantilever lengths between 10 µm and 1 mm. 
 
Using these optimum dimensions, two fitted expressions are proposed to obtain more precise ratios. 
The fitted expressions for the ratio length to optimum width (20) and length to optimum thickness (21), 
plotted on figures 5 and 6, are given by: 
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with 410 mbL
  and 3.910 mhL

 . 

 
The fitted expressions (20) and (21) should be used with care because they have been established for 
lengths only from 10 µm to 1 mm. Moreover, as said previously, the actual quality factor may be 
different due to approximations in the calculation of the acoustic losses. 
 

4. Conclusion 
 
The method, which takes into account all loses in microcantilever, presented here can help choosing 
microcantilever dimensions to increase the sensitivity, because of a frequency increase, and to reduce 
the limit of detection, because of a quality factor optimization. The aspect ratios can be chosen by 
using a simple rule ( 1 1 20L h  , 1 1 3L b  ), to obtain a nearly optimum quality factor, or by using the 

fitted expressions (20) and (21), to obtain a fully optimum quality factor. In both the nearly optimum 
and fully optimum cases, the resonant frequency, which is linked to the sensitivity, the quality factor, 
which impacts the limit of detection, and the top surface ( 1 1,L b ), which is usually used for coating 

deposition and/or movement detection, are all increased. Such optimized microcantilever could be 
very interesting in terms of performance. 
 
This work has not taken into account losses that can occur in the sensitive coating (for example 
viscoelastic losses when using polymers as sensitive coatings). These aspect ratios can be 
significantly modified when using high loss sensitive coating (thick viscoelastic materials). However, if 
analytical expressions can be found for these losses, a similar work may be conducted to possibly find 
new aspect ratios. 
 
These proposed aspect ratios are no longer valid in water, but similar work can be done since the 
equations can be applied on any fluid as long as viscosity and mass density are known. 
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Table 1: Comparison between different aspect ratios for 3 microcantilever lengths 

Length 
(µm) 

Aspect ratio 
type 

Width 
(µm) 

Thickness 
(µm) 

Ratio length 
to width 

Ratio length 
to thickness

Quality 
factor 

Resonant 
frequency (kHz)

 Optimum 6.6 1 1.515 10 641 12000 
10 Proposed 3.33 0.5 3 20 300 6100 

 Conventional 1 0.2 10 50 44.9 2400 
 Optimum 37 7.7 2.703 12.99 1290 960 

100 Proposed 33.33 5 3 20 968 620 

 Conventional 10 2 10 50 219 240 
 Optimum 260 65 3.846 15.38 2460 78 

1000 Proposed 333.33 50 3 20 2160 62 

 Conventional 100 20 10 50 813 24 
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Figure 1: Geometry of the microcantilever and its sensitive coating 
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Figure 2: Total quality factor and dominant losses for a 100 µm long microcantilever as a function of the 
microcantilever width and thickness 
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Figure 3: Quality factors (log scale) at the optimal width (37 µm) for a 100 µm long microcantilever as a function 
of the thickness (log scale) 
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Figure 4: Quality factors (log scale) at the optimal thickness (7.7 µm) for a 100 µm long microcantilever as a 
function of the width (log scale) 
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Figure 5: Ratio length to optimum width for different microcantilever lengths (calculated values and fitted model) 
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Figure 6: Ratio length to optimum thickness for different microcantilever lengths (calculated values and fitted 
model) 

 


