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Abstract

Thevisual vocabulary is an intermediate level representation which has been
proven to be very powerful for addressing object categorization problems. It
is generally built by vector quantizing a set of local image descriptors, in-
dependently of the object model used for categorizing images. We propose
here to embed the visual vocabulary creation within the object model con-
struction, allowing to make it more suited for object class discrimination. We
experimentally show that the proposed model outperforms approaches not
learning such an adapted visual vocabulary.

1 Introduction

Object categorization is an important task in computer vision, which has received a lot
of attention over the last three years [3, 4, 6, 9, 10, 14, 15, 16, 18]. This problem is
challenging because of pose and illumination changes, scale variations, occlusions and
intra-class variability, which potentially make two images of the same class very different.

Finding class models that are invariant enough to cope with intra-category variations
and discriminative enough to distinguish between classes is the key issue of object cate-
gorization.

Very efficient statistical models have been used to address this problem, models often
inspired by text analysis. After building a visual vocabulary, images can be processed as
sets of visual words therefore frameworks used for categorizing text become applicable.
One of the most successful models is thebag-of-features model, first applied to image
categorization by [3] and [16], and later extended by many other authors like [10, 18].
Images are simply modeled by measuring frequencies of unordered sets of visual words,
encoded as histograms.

The impressive bag-of-features strategy inspired more complex models, like the prob-
abilist Latent Semantic Analysis (pLSA) [8] or its Bayesian form, the Latent Dirichlet
Allocation (LDA) [2]. These models have recently been applied to object categoriza-
tion [4, 5, 14, 15, 17]. They consider visual words as generated from latent aspects (or
topics). The model expresses images as combinations of specific distributions of topics.

All of these methods require images to be translated into visual words, this inter-
mediate representation linking concepts with image pixels, by a distinct process. Visual
vocabularies generally result from a quantization process: a collection of visual features
(such as patches) are sampled on a set of training images, encoded into a convenient
representation (like the popular SIFT representation [12]), and vector quantized.



Figure 1: Overview of the method, and the corresponding graphical model representation.

Several combination of visual descriptors and clusterers have been proposed in the
past. The most popular way consists in detecting interest points and clustering their
SIFT representation with k-means, as originally proposed by [3, 16]. Agglomerative tech-
niques [11] or mean-shift based approaches [9] have also been used for their capability
of dealing with unbalanced clusters. In both cases, histograms can be built by assigning
each feature vector to its closest centroid.

Whatever algorithm is used, for all of the previously mentioned approaches, building
the visual vocabulary is a distinct preprocessing stage and not a component of the model.
On the other hand, contrary to text, visual vocabulary is an artificial concept, not uniquely
defined, but on which image representation and then classification performances strongly
depend. The efficiency of vocabularies estimated without any regard for the classification
task nor with the image modeling process should be questioned.

In [18], authors cope with this issue and suggest to build a compact and more discrim-
inative vocabulary by pair-wise merging of visual words, from an initial large vocabulary.
However, if two distinct visual words are initially grouped in the same cluster, they can
not be separated later.

This idea of building adapted vocabularies has also been explored very recently by
Perronninet al.. [13]. They address this issues by combining universal vocabularies with
specific vocabularies. The universal vocabulary describes the visual content of all the con-
sidered classes while the class specific vocabularies are obtained by adapting the universal
vocabulary to a class using specific data. This combination of universal and specific ap-
proach constitutes an interesting contribution to the computation of adapted vocabularies.
However, these specialized vocabularies are designed to emphasize differences between
a mean histogram and a class specific histogram, but not to emphasize differences be-
tween classes. Therefore, if two classes are visually close, there is no guarantee to obtain
distinctive visual words.

The approach proposed in this article tries to go one step further in the aim of produc-
ing distinctive visual vocabularies. Inspired by [14, 15], we propose a generative model
based on latent aspects for explaining images at feature descriptors level. Instead of using
a vocabulary computed in a preprocessing stage, the visual vocabulary is a built-in com-
ponent of the model, learned simultaneously with other parameters. Indeed, we consider
images as distributions oftopics, topics as distributions ofwords and words as Gaussian



mixtures of visual descriptors (see Figure 1 for an illustration of the model).
By imposing Dirichlet priors on topic and word distributions the model is incited to

produce a few but specific visual words and more generic words shared between classes.
Interestingly, our model can be learned without any supervision, whereas we argue

later that a little supervision can make the estimation more stable.
The organization of the article is as follows. Section 2 presents the proposed model

and the way to estimate it. Section 3 explains how to use the model parameters to clas-
sify images. Our model can be used with different classification strategies, which are
described in this section. In Section 4 we present our experiments, and finally, the con-
clusions are drawn.

2 Modeling local appearance statistics

2.1 Model description

Images are considered as unordered sets of visual descriptors, found using an interest
point detector or uniformly sampled on images1. In this article, visual descriptors are
SIFT vectors in a 128-dimensional space, but other descriptors could be used. Position
and scale of these descriptors in the image are discarded.

We use a simplified form of Gaussian-Multinomial LDA (GM-LDA) [1], which is a
latent variable model that allows visual descriptors to be allocated repeatedly in images.
Visual descriptors come from two underlying factors, denotedtopics andvisual words.
Images are modeled as combination ofT possible topics which themselves produceN
visual words, and words are Gaussian distributions over the SIFT descriptor space. Topic
distributions over words (φ) are sampled from a Dirichlet distribution of parameterβ .

Modeling imageI with our model assumes it is built according to the following gen-
erative process:

1. sampleθ ∼ Dir(α ), whereDir(α ) is a Dirichlet distribution of hyper-parameterα ,
providing a distribution over the latenttopic factors,

2. For each of the image descriptordi,

(a) sample a topiczi from the multinomial distribution of parameterθ : zi ∼
Mult(θ).

(b) sample a visual wordwi conditional onzi from the multinomial distribution
of parameterφzi , wi ∼ Mult(φzi)

(c) finally, sample a visual descriptordi conditional onwi, di ∼ N (Pwi), where
N (Pwi) denotes the Gaussian distribution of parameterPwi .

The resulting distribution on visual descriptors in imageI is given as follows:

p(di|P,φ,α ,β , I) =

∫
∑

j∈{1,..,N}
∑

k∈{1,..,T}

p(di|w j,P)p(w j|zk,φ)p(zk|θ)p(θ|α )p(φ|β)dθ

(1)

1In practice, according to [9] and [18] we pick patches on a regular grid at multiple scales.



Compared to [4, 5, 14, 15] our model has an extra layer responsible for the generation
of visual descriptors conditional to visual words. This layer is the key part of our model
as it allows to learn the visual vocabulary.

The graphical model representation can be found in Figure 1.

2.2 Model estimation

Learning the model consists in a likelihood maximization and is done by estimating the
optimal parametersα , β , φ et θ for a given set of images. Hyperparametersα andβ
play an important role as they allow, by using particular values, to control how topics and
visual words distribution can be sparse and therefore specialized. This is why, according
to [7] we prefer not to estimate them and use fixed Dirichlet priors.

Since the integral in equation (1) makes the direct optimization of the likelihood in-
tractable, we estimate variables of interest by an approximate iterative technique called
Gibbs Sampling. Our estimation method is very similar to [7]2 which presents an efficient
algorithm for LDA estimation.

The parameters of the model can be estimated without any need for supervision, i.e.
using unlabeled training images. It is expected that if we marginalizeP(θ,φ,P,di) over
φ,P anddi, P(θ) will have modes correlated with true classes, allowing to have class
specific visual words. Unfortunately, we experimentally observed that it was not the case
when images were cluttered and when objects occupied only a small fraction of the image.
In this case, the Gibbs sampler can get stuck in one of these “bad” modes, depending
on initialization. We observed that these unwanted modes can be suppressed by adding
supervision, assuming topics are known3 for a few training images. In all cases, we
experimentally observed that this kind of supervision leads to more accurate estimation
and improves performance a lot.

3 Classifying images

Once the model is learned, image classification can be achieved in different ways.

Topic based maximum Likelihood A natural decision rule is the Maximum Likelihood
rule (ML)4. The most straightforward way to implement this rule is to set the number of
topic equals to the number of object classes and to assume that the class probability is
equivalent to the topic probability, given an image. For example, if classCi is represented
by topicθi in imageI, we havep(Ci|I) = p(θi|I). In practice, instead of using equation (1)
and integrating overθ, we use the output of the Gibbs sampler and approximate the
integral by a sum of discrete values. We denote this rule the TOPIC-BAYES classifier.

Topic based SVM classifier However, if we want more topics than object classes the
TOPIC-BAYES rule cannot be applied anymore. We adapted the more general classifi-
cation scheme proposed by [14] to our model. This scheme consists in training a clas-
sifier on the latent variables associated with each image. This cannot be directly used

2justification and implementation details of topic estimation process can be found in this reference
3derived from class labels
4as prior on classes are generally not available, we do not consider here the Maximum A Posteriori criterion



Figure 2: ETH-80 (top) and birds dataset (bottom): 2 illustrative images per category.

with our Gaussian-LDA model which does not explicitly estimates numerical values for
latent variables but probability densities. We experimentally observed that the Markov
chain generated by the Gibbs sampler tends to converge quickly towards sharp and stable
modes. We assign the values corresponding to these modes to each image, and we train
an SVM classifier on these values. We call this classifier the TOPIC-SVM classifier.

Bag-of-features based SVM classifier Instead of classifying images from their topic
distribution, image can also be classified according to their visual words statistics, as
it was done in the original bag-of-features approach. Comparing bag-of-features with
classification from topics for the same model is an interesting issue. We denote this
classification rule as the LDA-VOC-SVM rule.

4 Experimental results

The section assesses the superiority of the vocabularies built by the proposed method.
Experiments are divided into two separate problems: image categorization based on latent
topics and image categorization using visual features in a bag-of-features framework. The
same model is used in both cases, but different parameters are used by the classifier.

As a secondary issue, we also compare the performance of the topic based classifica-
tion scheme versus the bag-of-features one, for different amounts of supervision.

Two baseline methods have also been implemented for comparison purposes: the
standard bag-of-features approach (using k-means to build the visual vocabulary), and the
standard LDA model (also using k-means to build the vocabulary).

4.1 Datasets

Experiments have been carried out on two datasets, illustrated Figure 2. The first one
is a subset of the ETH-80 [11], in which 4 categories have been selected (Apple, Car,
Cow and Cup). Each category contains from 10 to 14 objects, from different viewpoints
(there are 820 images in total, 205 per category). Despite the fact that these images have
not been taken in real conditions (blue background) they are interesting for two reasons.
First, the absence of background guarantees that the information used to classify images
is not coming from the background and therefore actually comes from objects themselves



(the presence of contextual information can sometimes make the classification task eas-
ier). The second interest for using this database is the viewpoints diversity. Building an
algorithm able of assigning a top view and a front view of the same object to the same
category in an open and interesting issue.

The second database is a bird dataset [10]. It contains 6 categories and 100 images per
category. The large intraclass variability, the scale and viewpoint changes and the highly
cluttered backgrounds make this dataset interesting. Finding statistical properties of these
images is typically one of the problems addressed by our method.

For both datasets, color information has been discarded and images are considered as
grey level images.

4.2 Experimental settings

For all of the presented experiments local descriptors are extracted on a dense grid, at
different scales. We do not report here results obtained using interest points detectors
which gave worse performances. The setting we used give approximately 800 patches
per image for the ETH dataset and 1500 patches for the birds dataset. Each patch is
represented by a 128 dimensional SIFT descriptor [12].

We assumed that the Dirichlet priors are symmetric,α andβ having a fixed scalar
value. This prior knowledge on multinomial distributions controls the mixing of the multi-
nomial weights. Using low hyper-parameters encourages the distributions to be sparser.
Images will then more probably choose having a small number of topics, and topics a few
number of words. We used for these experimentsαi = βi = 0.5,∀i ∈ {1, ..,T}.

We observed that the Gibbs sampler converges after less than 50 iterations, which is
the number used for these experiments. It takes about 12 hours to process each of our
databases. It is also important to note that, in order to reduce the amount of memory
required to store visual descriptors, we vector quantized them.

All reported results are multiclass performances obtained by combining 1 vs. 1 SVM
classifiers. We report both means and variances of 5 runs with different random initial-
izations. Except when specified, we used a visual vocabulary of 1000 words.

4.3 Topic based image categorization

Ideally, latent based methods can completely be unsupervised as it has been shown by
[15]. The number of topics can be fixed as being the number of actual categories and each
category is then represented by only one topic.

However we argue that classes are a highly semantic concept and rely more in human
knowledge than visual characteristics. Indeed, we observed during these experiments that
except in very simple cases, estimated topics rarely coincide with true classes. More pre-
cisely, there are many local minima making the outcome of the process very depended on
initialization; topics match with categories for only a few of these modes. One solution
can be to use topics in a more supervised framework, as described in section 3. In this
case, class labels were used to reduce the number of parameters of the model, making its
estimation a more convex problem. Then we can use a simple Bayesian Classifier assign-
ing the label of the most probable topic (TOPIC-BAYES) or use a classifier considering
topic vectors as feature vectors. The classifier is trained on images which were labeled
for learning. We denote this classification scheme TOPIC-SVM.



Using these two topic-based strategies, topics produced by our model (denoted LDA-
VOC) were compared to a baseline LDA model which does not learn the vocabulary
(denoted STD-LDA, for standard LDA).

Figure 3 summarizes these experiments on the two datasets. Each line corresponds to
a different amount of supervision, from 0 labeled images (fully unsupervised case, which
is not applicable with TOPIC-SVM which requires at least 1 labeled images per class)
up to a larger number. Without any supervision the variance is very high in best cases
(ETH-80) while in worst cases (birds datasets) the classification is not possible as topics
are not related to categories at all. The supervision helps the system to produce better and
more stable (low variance) results and should not be considered as optional.

It is important to note that with both datasets and under all of the different settings
LDA-VOC performs much better than STD-LDA. We also note that TOPIC-BAYES and
TOPIC-SVM performs equally.

Results on the ETH-80 dataset are impressive; despite the large number of viewpoints,
giving only 2 labeled images per category is enough for grouping all of the viewpoints
of the same category. The bird dataset is much harder and even with a large amount of
supervision the performances are rather low. It gave us the feeling that topics could not be
the best information for classifying images, especially if only a few topics are considered
and if images present a highly cluttered background.

4.4 Bag-of-features image classification

In these experiments we estimate the model exactly as it has been done in the previous
section. However, instead of classifying images using their topic distributions we trained
a bag-of-features classifier using the vocabulary produced by our model. We focussed
our experiments on comparing the standard bag-of-features approach (using k-means to
quantize the feature space and a linear SVM classifier), denoted KMEANS-BOF, with the
bag-of-features which use the vocabulary produced by our model, denoted LDA-VOC-
BOF (see section 3) and the same SVM classifier.

For this purpose we split the datasets in two parts (training and testing). The training
part, which is labeled, is the supervised part in the model learning and is used to train

ETH-80 TOPIC-BAYES TOPIC-SVM
nb labeled LDA-VOC STD-LDA LDA-VOC STD-LDA

img Av var Av var Av var Av var
0 88.92%12.43 - -
8 96.42% 1.53 94.62%0.05 96.8% 1.12 94.6% 0.18

176 98.73% 0.08 97.16%0.03 98.72%0.2597.19%0.15

BIRDS TOPIC-BAYES TOPIC-SVM
nb labeled LDA-VOC STD-LDA LDA-VOC STD-LDA

img Av var Av var Av var Av var
0 - - - -
66 44.01% 0.21 - - 43.6 %0.26 39.1% 0.46
198 55.97% 0.2 50.3% 1.01 55.6% 0.22 50.3% 1.02
300 60.68% 0.72 54.5% 0.6 60.67%0.75 54.4% 0.75

Figure 3: TOPIC-BAYES and TOPIC-SVM results for
the ETH-80 (top) and birds (bottom) datasets. Each line
represents a different level of supervision (labeled im-
ages). We report average performance as well as vari-
ance. “-” means that topics can not be assigned to classes.

Figure 4: As an illustra-
tion, the most discriminative
patches used for classification
are shown for one of the birds
classes on few images.



ETH-80 BIRDS
LDA-VOC-BOF KMEANS-BOF LDA-VOC-BOF KMEANS-BOF

200 words 87.7 % 87.5 % 74.6 % 65.33 %
500 words 87.4 % 86.9 % 85.1 % 76.58 %
1000 words 84.9 % 85.1 % 89.0 % 83.33 %
2000 words 90.9 % 86.17 %

Table 1: Comparing the vocabulary produced by our model (LDA-VOC-BOF) with a vocab-
ulary obtained by a k-means quantization of the feature space (KMEANS-BOF).

the classifiers. For the birds dataset we defined the training and testing sets as specified
by [10] (300 images per set). For the ETH dataset, which is a much easier dataset, the
training set includes only 12 images, the remaining ones being kept for testing. We report
in Table 1 the mean of classification results obtained for different vocabulary sizes.

From these results we can draw three remarks. First, we note that the vocabulary
given by our model is better: the overall classification rate can be increased by nearly
10%. Second, using bag-of-features instead of topic based classification leads to better
results (a gain of more than 30% for Birds), which can be explained by the coarseness of
the model. Third, the overall performance of our system is very similar to the best results
reported on the Birds dataset [10], although we do not use any geometric information.

These experiments also confirm our feeling that, in some situations, classifying im-
ages using words statistics can be better than using topic distributions. We wished to
go further and tried to outline the limitations of these methods for different number of
training images. Our feelings was that the bag-of-feature approach can reach higher per-
formances but requires more training images, because of the higher dimensionality of the
vector space. Our experiments, illustrated by Figure 5, confirmed these feelings. In order
to obtain these results, we used a model learned with 12 labeled images, considered both
at topic and word levels. We added a variable number of labeled images to train the classi-
fier : when enough training images are available, the bag-of-features performs better than
the topic based classifier.

We also tried to increase the number of topics, in a range from the number of category
to larger number and we noticed the behavior of the system moved from the behavior of
the topic based classifier to the behavior of the bag-of-features classifier.
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C 1C 2C 3C 4C 5C 6
C 1 43 3 1 1 2 0 86%
C 2 3 45 0 1 1 0 90%
C 3 1 0 49 0 0 0 98%
C 4 0 0 1 49 0 0 98%
C 5 1 1 0 1 47 0 94%
C 6 0 3 0 1 0 46 92%

Av 93%

Figure 6: Confusion matrix of
the best run on the birds dataset.
Number of images and percent-
ages are presented.
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Figure 7: Top row: (left) density of class probabilities conditional to the words, (right) density
of information between words and classes. Bottom row: best 5 visual words per topic.

4.5 Analyzing the vocabulary

Our main motivation for learning the vocabulary simultaneously with other parameters
was to produce visual words that should be more adapted to visual categories. Two dif-
ferent criteria have been taken into account to evaluate this adaptation.

First, we computedp(C|w) which is the probability of having the classC when the
word w is detected. We histogrammed these values for each class, for all visual words.
The top-left part of Figure 7 shows the histogram corresponding to the first category
of the birds dataset (similar results have been obtained with other categories). We can
see that our model has been able to find more than 20 words for whichp(C|w) > 0.9,
being therefore class specific words whereas a k-means quantization gives only 1 of these
discriminative visual words.

We also computed the mutual information between classes and visual words and show
the corresponding histogram on the top-right part of Figure 7. Words with low entropy,
which are those well correlated with classes, are almost twice as numerous as those ob-
tained with k-means.

As an illustration the bottom part of Figure 7 shows the 5 most discriminative words
per topic. We can see the vocabulary ability to catch useful class specific information.

5 Conclusion

In this paper we presented a new framework for visual vocabulary creation in object cat-
egorization context. The core of this framework is an object model embedding visual
words as a component of the learning process.

It was experimentally shown on two different datasets that this model outperforms
methods for which the vocabulary is built separately. The number of words used for
getting good performances is lower than standard bag-of-features approaches. It is due



to the model ability to quantize the descriptor space in a smarter way than a standard
clustering method. The words are more adapted to the task and more focused on class
discriminative information.

As every observation is explained by our model, its estimation is much more time
consuming than a standard LDA or a basic clustering method.

Another conclusion of our work is that the bag-of-features approach outperforms the
topic based classifiers, especially if a large amount of training data is available.
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