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Abstra
t: We present a family of s
ale-invariant lo
al shape features formed by 
hains
of k 
onne
ted, roughly straight 
ontour segments (kAS), and their use for obje
t 
lass
dete
tion. kAS are able to 
leanly en
ode pure fragments of an obje
t boundary, without
in
luding nearby 
lutter. Moreover, they o�er an attra
tive 
ompromise between information

ontent and repeatability, and en
ompass a wide variety of lo
al shape stru
tures. We also
de�ne a translation and s
ale invariant des
riptor en
oding the geometri
 
on�guration of
the segments within a kAS, making kAS easy to reuse in other frameworks, for example as
a repla
ement or addition to interest points.

We demonstrate the high performan
e of kAS within a simple but powerful sliding-
window obje
t dete
tion s
heme. Through extensive evaluations, involving eight diverse
obje
t 
lasses and more than 1400 images, we 1) study the evolution of performan
e as
the degree of feature 
omplexity k varies and determine the best degree; 2) show that kAS
substantially outperform interest points for dete
ting shape-based 
lasses; 3) 
ompare our
obje
t dete
tor to the re
ent, state-of-the-art system by Dalal and Triggs [4℄.

Key-words: lo
al features, shape des
riptors, obje
t dete
tion

A software implementation is available at lear.inrialpes.fr/software
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1 Introdu
tion

In the last few years, the problem of re
ognizing obje
t 
lasses has re
eived growing attention,
in both variants of whole image 
lassi�
ation [3, 5, 10, 14, 15℄, and obje
t lo
alization [2,
4, 16, 31℄. The majority of existing methods use lo
al image pat
hes as basi
 features.
While these work well for some obje
t 
lasses, su
h as motorbikes and 
ars, other 
lasses are
de�ned by their shape, and are therefore better represented by 
ontour features (e.g. horses,
or mugs). In spite of their substantial s
ope, only 
omparably few works [2, 13, 22, 29℄ have
ta
kled the 
lass-level lo
alization problem using 
ontour features.

In this paper we present a family of lo
al 
ontour features, and their appli
ation for
dete
ting and lo
alizing obje
ts. These features are small groups of 
onne
ted, approximately
straight 
ontour segments, 
alled k adja
ent segments, or kAS. The segments in a kAS form
a path of length k through a network of 
ontour segments 
overing the image [9℄. Essentially,
two segments are 
onne
ted in the network if they are adja
ent on the same edgel-
hain, or
if one is at the end of an edgel-
hain dire
ted towards the other segment (se
tion 3). The
larger the number k of segments in a kAS, the more 
omplex the lo
al shape stru
tures
it 
an 
apture. 1AS are just individual segments, while 2AS in
lude L shapes, and 3AS

an form C,F and Z shapes (�gures 2, 3). Along with the kAS features, we propose a
low dimensional, translation+s
ale invariant des
riptor designed to en
ode the geometri

properties of the segments 
omposing a kAS, and their relative lo
ations.
kAS have a several attra
tive properties. First, as both kAS and their des
riptors 
over

solely short 
hains of 
onne
ted segments, they have the ability to 
over pure portions of
an obje
t boundary, without in
luding 
lutter edges whi
h very often lie in the vi
inity.
Se
ond, for a sensible range of k, kAS have intermediate 
omplexity, whi
h makes them
dete
table repeatably while being informative at the same time. Third, 
onne
tedness is a
natural grouping 
riterion to form kAS. It avoids the need for de�ning a 'grouping s
ale'
or a 'grouping neighborhood' for a segment, and e�e
tively 
onstrains the features to be

hains of segments, whi
h are more likely of lying entirely on a boundary. Finally, kAS are

omplete lo
al invariant features: ea
h has a well de�ned lo
ation and s
ale, an invariant
des
riptor, and is dete
ted based only on lo
al properties of a single image. Hen
e, they

an be reused e�ortlessly in a variety of re
ognition and image mat
hing frameworks as a
repla
ement or addition to interest points (su
h as [2, 5, 10, 16, 30℄).

We demonstrate the power and �exibility of kAS within an obje
t dete
tion frame-
work whi
h brings together several su

essful ideas presented before. Following the `bag
of features' paradigm [3, 14, 34℄, we 
onstru
t a 
odebook of kAS types, ea
h 
apturing a
di�erent kind of lo
al shape stru
ture (�gures 2 and 3). An image window is subdivided
into tiles [4, 15℄ and ea
h is des
ribed by a separate bag of kAS. In this fashion the window
representation is 
omposed of several bags of kAS spatially lo
alized within the window.
Adding this layer of spatial organization improves the dis
riminative power 
ompared to a
standard orderless bag of features over the entire window. We �rst train a 
lassi�er from ex-
ample obje
t and ba
kground windows, and then lo
alize previously unseen instan
es in test
images via a multi-s
ale sliding-window me
hanism [4, 31℄ 
oupled with the 
lassi�er. Our
method is rendered 
omputationally e�
ient by organizing all image kAS in an Integral His-
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4 Ferrari et al.

togram [24℄, whi
h is a re
ently developed datastru
ture supporting the rapid 
omputation
of multidimensional histograms.

During an extensive evaluation, involving eight diverse obje
t 
lasses and over 1400
images (se
tion 6), we study several aspe
ts of kAS. First, we analyze the obje
t dete
tion
performan
e while varying k, thereby shedding light on the relation between repeatability
and informativeness as k in
reases. Se
ond, for ea
h k, we vary the resolution of the window
tiling, allowing to observe the trade-o� between adding lo
alization information and redu
ing
toleran
e to spatial variations within the 
lass. Interestingly, we �nd the optimal window
tiling to relate to the 
omplexity of the features (k), with simpler features preferring �ner
tiling. Moreover, we thoroughly 
ompare the performan
e of kAS against interest points, and
against the state-of-the-art obje
t dete
tion te
hnique by Dalal and Triggs [4℄. Their work
is parti
ularly relevant be
ause it follows a similar dete
tion framework (sliding-windows,
tiles), but it applies di�erent des
riptors to the window tiles (simpler histograms of gradient
orientations). Finally, we experiment with the appli
ation of kAS with di�erent k at the
same time, and with the 
ombination of interest points and kAS.

2 Related works

In the following we �rst review obje
t dete
tion te
hniques based on 
ontour features, for
whi
h kAS o�er an alternative, and then present works on the per
eptual grouping of 
on-
tours, upon whi
h kAS build.

Contour features for obje
t 
lass dete
tion Selinger and Nelson [27℄ dete
t key


urves: long segments of an edgel-
hain 
omprised between two high 
urvature points. A
key 
urve's size and orientation de�nes a square image pat
h, whi
h is then des
ribed using
all edgels falling within it. These edge pat
hes attempt to strike a winning trade-o�: be
lo
al, and hen
e bring robustness to o

lusion and 
lutter, while also 
omplex enough to
be distin
tive to some degree, enabling to mat
h individual features, and opening the door
to 
omputationally e�
ient indexing s
hemes. However, these pat
hes are likely to in
lude

lutter edgels lying near the obje
t boundary, whi
h 
orrupt their des
riptors and makes
them di�
ult to put in 
orresponden
e.

Selinger and Nelson's re
ognition system was demonstrated in 
ontrolled laboratory 
on-
ditions, with 
lean images 
ontaining modest amounts of 
lutter, and mostly on the task
of re
ognizing spe
i�
 obje
ts. Jurie and S
hmid [13℄ were among the �rst to propose lo
al

ontour features for the dete
tion of obje
t 
lasses, and to test their system on real, 
luttered
images. Their s
ale-invariant feature dete
tor responds to 
ir
ular ar
s of edgels, whi
h are
des
ribed by the spatial distribution of points in a thin annular neighborhood of the 
ir
le.
This attempts to ex
lude 
lutter from the des
riptor by avoiding en
oding points inside the

ir
le. As one limitation, 
ir
ular ar
s only 
over a fairly restri
ted 
lass of shapes.

In their very re
ent works, Shotton et al. [29℄ and Opelt et al. [22℄ independently propose
to 
onstru
t 
ontour fragments tailored to a spe
i�
 
lass. The idea is to expli
itly 
onstru
t
fragments to o

ur frequently on positive training images of a 
lass, while seldom in negative

INRIA
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ones. Both works employ boosting to sele
t fragments from a large pool of 
andidates,
but di�er in the way these 
andidates are 
onstru
ted (random re
tangles sampled from
training segmentation masks in [29℄, whereas [22℄ grows fragments starting from random

ontour points, and optimizes their length so as to maximize Chamfer mat
hing s
ore and
a

ura
y of obje
t 
entroid predi
tion in validation images). Although they 
an be more
dis
riminative for the learned 
lass, this kind of fragments are harder to reuse within other
re
ognition or image mat
hing frameworks, 
ompared to generi
 features, depending only on
lo
al properties of individual images. Moreover, the fragments of [29℄ are not s
ale invariant
and need segmented training images to be produ
ed, whi
h further limits their appli
ability.

Berg et al. [2℄ o�er an alternative view on 
ontour-based obje
t re
ognition, 
asting the
problem as deformable shape mat
hing. Instead of 
ounting on sophisti
ated lo
al features,
they simply take individual edgels (with a Geometri
 Blur neighborhood des
riptor), and put
them in 
orresponden
e between pairs of images with a powerful non-rigid point mat
hing
algorithm based on Integer Quadrati
 Programming. The method obtains impressive results
on the 
hallenging Calte
h101 database. One disadvantage is that it redu
es re
ognition to
mat
hing pairs of training and test images, and doesn't infer from the training images a single
model summarizing 
ommon properties shared by di�erent instan
es of the 
lass. Besides,
it would be interesting to inje
t kAS in their framework, as repla
e
ement for individual
edgels, and observe whether this would lead to improved performan
e.

Dalal and Triggs [4℄ 
onsiderably advan
ed the state-of-the art in human dete
tion, by
designing the Histogram of Oriented Gradients (HoG) des
riptor, and 
arefully optimizing
it over a large dataset 
ontaining thousands of humans in un
onstrained poses. In their
re
ognition framework image windows are subdivided in tiles and ea
h one is des
ribed by a
HoG. A simple sliding-window me
hanism then allows to lo
alize obje
ts. Photometri
 nor-
malization within multiple overlapping blo
ks of tiles makes the method parti
ularly robust
to lighting variations. Noti
e that HoG des
riptors are only de�ned within a given subwin-
dow, they don't have a 
on
ept of lo
ation and s
ale. Hen
e, they need to be asso
iated
to some external feature dete
tor before being appli
able within frameworks not based on
sliding-windows.

Per
eptual grouping Per
eptual grouping of 
ontours has a long history in 
omputer
vision [6, 12, 17, 18, 25, 26, 28, 32℄. The 
ru
ial idea behind these works is that pie
es
of 
ontour related by some per
eptually salient property are more likely to belong to the
same obje
t. The per
eptual properties exploited in
lude 
onvexity [12℄, 
o-
ir
ularity [32℄,

onne
tedness [26, 28℄, parallelism [18℄, and proximity[18℄.

One major area of appli
ation for per
eptual grouping is image segmentation, in whi
h
the task is to group together all elements belonging to individual, unspe
i�ed obje
ts [6, 12,
32℄. Moreover, per
eptual grouping played an important role in the re
ognition of spe
i�

obje
ts under varying viewpoint, parti
ularly in the 80s and 90s. The fo
us was mainly on
planar obje
ts [26℄ and polyhedra [11, 18℄.

The kAS features are motivated by the same general intuitions of earlier per
eptual
grouping works, and are most related the ideas of Rothwell [25, 26℄, who advo
ated for the
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importan
e of 
onne
tedness and topologi
al relations. We believe that 
onne
tedness is
a fundamental, powerful driving for
e whi
h is 
urrently still underexploited in 
omputer
vision. In this paper, 
onne
tedness is brought to the domain of obje
t 
lass dete
tion, and
is exploited to de�ne modern lo
al invariant features: image elements with a well de�ned
lo
ation, a s
ale and an invariant des
riptor, ready to be used in many re
ent mat
hing and
re
ognition s
hemes.

3 k adja
ent segments (kAS)

3.1 Contour Segment Network

We summarize here the te
hnique of [9℄ to build the 
ontour segment network (CSN) of the
image, on whi
h we will dete
t our kAS features.

Edgels are dete
ted by the ex
ellent Berkeley natural boundary dete
tor [20℄, and then

hained. The resulting edgel-
hains are linked at their dis
ontinuities, i.e. two edgel-
hains
c1 and c2 are linked if c2 passes near an endpoint of c1, and if the ending of c1 is dire
ted
towards c2 (�gure 1a). Informally, if c1 would be extended a bit, it would meet c2. These
links are useful in two ways: they re
ord that a 
ontour might 
ontinue over the gap between
two edgel-
hains, and allow to 
apture jun
tions (L-jun
tions, T-jun
tions, and higher order
jun
tions involving several edgel-
hains).

The edgel-
hains are partitioned into roughly straight 
ontour segments. The idea is
to organize these segments in a network, by 
onne
ting them along the edgel-
hains, and
a
ross their links (�gure 1a). Sin
e every edgel-
hain 
an be linked to several others, the
CSN is a 
omplex bran
hing stru
ture. Intuitively, two segments are 
onne
ted if the edgels
provide eviden
e that they might be adja
ent along some obje
t 
ontour, even when they
are physi
ally separated by a (small) gap, or when forming a jun
tion. The key property
of the CSN is to in
lude paths going along the 
ontours of the imaged obje
ts [9℄, whi
h
motivates kAS features.

3.2 Dete
ting kAS

The prin
ipal 
ontribution of this paper is to propose a family of lo
al features: paths
of length k through the CSN. More formally, a group of k segments is a kAS i� they

an be ordered so that the i-th segment is 
onne
ted in the CSN to the (i + 1)-th one,
for i ∈ {1, k − 1}. Hen
e we 
all them k adja
ent segments, and refer to their length k as
degree. As k grows, kAS 
an form more and more 
omplex lo
al shape stru
tures: individual
segments for k = 1; L shapes and 2-segment T shapes for k = 2; C, Y, F, Z shapes, 3-segment
T shapes, and triangles for k = 3 (�gures 2, 3). The dimensionality of kAS des
riptors also
grows with k (next se
tion), and we treat kAS of di�erent degrees as di�erent feature types,
all united in one family by a shared 
ru
ial property: to be sequen
es of 
onne
ted segments.

Conne
tedness provides a natural 
riterion for grouping segments into kAS. It avoids
arbitrary de�nitions of the neighborhood of a segment, and 
onstrains kAS to be 
hains

INRIA
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Figure 1: a) Three edgel-
hains, with �ve segments and their inter-
onne
tions (arrows) in the
network. b) Two dete
ted 2AS (B, C) and (D, E). The order of ea
h segment in the des
riptor is
marked next to it. Noti
e that (A,B), (A,C), (C, E) are also dete
ted, though not displayed be
ause
they overlap with (B,C) and (D, E). 
) A 3AS (C, A, E). d) A 4AS (E, B,C, D). e) ri ve
tors
involved in the des
riptor for the 4AS in d).

of segments. Compared to the broader 
lass of groups of `nearby' segments, they have
higher 
han
es to lie entirely on a portion of the obje
t boundary. The features of [13℄
instead, in
lude dis
onne
ted sets of edgels whi
h happen to be lo
ated along part of a

ir
le. Besides, the key 
urves of [27℄ are based on individual edgel-
hains, and hen
e are
less robustly dete
ted in real images than kAS, whi
h bridge gaps between edgel-
hains.
kAS 
an be dete
ted by a depth-�rst sear
h started from every segment, followed by the

elimination of equivalent paths (two di�erent paths involving the same segments 
onstitute
the same kAS). This is 
omputationally 
heap for the small values of k 
orresponding to lo
al
features (about k ≤ 5). We disregard higher values of k be
ause they result in large s
ale
stru
tures, too spe
i�
 to a parti
ular image or obje
t instan
e, and in an ex
essive number
of dete
ted features (several thousands already for k = 5). More pre
isely, the number of
kAS in an image 
ontaining n segments grow qui
kly with k, as 
an be understood by the
following observations. On average, ea
h segment is 
onne
ted to two to three other, be
ause
T and higher orders jun
tions o

ur less frequently than simple 1-to-1 
onne
tions. As a

onsequen
e, as k grows, the number of paths of length k passing through a given bran
hing
point in
reases qui
kly. In pra
ti
e, while the average number of 2AS is only about 1.5n,
the number of 3AS is 4n, that of 4AS is 10n, and there are more than 20n 5AS !
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As k in
reases, features in
rease in 
omplexity. On the one hand, they be
ome more
and more informative, while on the other they gradually get less and less repeatable a
ross
di�erent images and obje
t instan
es. Additionally, the number of non-boundary features (or
mixed features 
overing partly boundary and partly 
lutter) also grows with k, a
tually faster
than pure boundary ones, leaving a lower signal-to-noise ratio. Hen
e, for rather low values
of k, kAS have an attra
tive intermediate 
omplexity, o�ering a 
onvenient 
ompromise:
simple enough to be dete
ted repeatably, yet 
omplex enough to 
apture informative lo
al
obje
t stru
tures. In se
tion 6, we 
on�rm these intuitions experimentally, and determine
that 2AS perform best.

3.3 Des
ribing kAS

In order to 
ompare di�erent kAS, we need a numeri
al des
riptor. As �rst step, it is
important to order the kAS segments {si}i=1..k in a repeatable manner, so that similar
kAS have the same order. We sele
t as �rst segment the one with midpoint 
losest to the

entroid of all midpoints {mi = (xi, yi)}i=1..k (when several segments have similar distan
es
to the 
entroid, we pi
k the �rst one a

ording to the order de�ned below). As we will see
in the des
riptor below, this 
entermost segment is the natural 
hoi
e as referen
e point
for measuring the relative lo
ation of the other segments. The remaining segments take up
positions 2 through k, and are ordered from left to right, a

ording to their midpoint. If two
segments si, sj have similar x 
oordinate, i.e. (xi − xj) ≤ 0.2

√

(xi − xj)2 + (yi − yj)2, then
they are ordered from top to bottom. Note that this order is stable, as no two segments 
an
have similar lo
ation in both x and y. Example orderings 
an be seen in �gure 1b-d.

On
e the order established, a kAS is a list P = (s1, s2, . . . , sk) of segments. Let
ri = (rxi , r

y
i ) be the ve
tor going from the midpoint of s1 to the midpoint of si. Fur-

thermore, let θi, li = ‖si‖ be the orientation and length of si. The des
riptor of P is

omposed of 4k − 2 values 1 (�gure 1e):

(

rx
2

Nd

,
ry
2

Nd

, . . . ,
rx

k

Nd

,
ry

k

Nd

, θ1, . . . , θk,
l1
Nd

, . . . ,
lk
Nd

)

(1)

The distan
e Nd between the two farthest midpoints is used as normalization fa
tor, making
the des
riptor s
ale-invariant (hen
e, both the kAS features and their des
riptors are s
ale-
invariant). While segment lengths are known to be often ina

urate, and ea
h is based only
on part of the kAS, the distan
e between the farthest midpoints makes a better 
hoi
e for
a reliable estimate of the kAS s
ale. In addition to a kAS s
ale, we also de�ne its lo
ation

to be the geometri
 
enter of the midpoints of its segments. Exa
t de�nitions of s
ale and
lo
ation are useful when using kAS in higher level algorithms, su
h as in our sliding-window
obje
t dete
tion s
heme (next se
tions).

The proposed des
riptor 
onsiders the segments as 
ompletely straight, so as to 
apture
only the relevant information of the geometri
 
on�guration they form, and not the varying

1The 
ase k = 1 makes ex
eption. The des
riptor is 
omposed only of θ1, and the s
ale of 1AS is de�ned
as l1.
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details of the weak 
urvature along them. Moreover, we stress that only the k segments are
des
ribed, and not other nearby edgels. In this fashion, we 
an 
leanly en
ode a portion of
an obje
t boundary, without in
luding inner/outer 
lutter (unlike [27℄).

With its 4k − 2 dimensions, the des
riptor is also very 
ompa
t. Indeed, sin
e the
intrinsi
 dimensionality of k straight segments is 4k, and the dimensionality of the desired
s
ale+translation invarian
e spa
e is 3, the lowest dimensionality of a 
omplete des
riptor
is 4k− 3. The only redundant degree of freedom we en
ode is embedded within the relative
lo
ation ve
tors {ri}i=2..k, and fa
toring it out would require representing them in a more

ompli
ated way.

Interestingly, the kAS des
riptor is of di�erent nature than 
onventional lo
al textured
feature des
riptors. While the latter en
ode the appearan
e of the pixel pat
h 
overed by the
feature, the kAS des
riptor en
odes the geometri
 properties of the segments (orientation
and length), and of their spatial arrangement ({ri}i=2..k).

If desired, the des
riptor 
an be easily made rotation-invariant, at the 
ost of some dis-
tin
tiveness, by measuring {θi}i=2..k relative to θ1, rotating {ri}i=2..k by θ1, and removing
θ1 from the des
riptor. In addition, for k ≥ 3 one 
an design des
riptors with even higher de-
grees of invarian
e (a�ne, proje
tive) to be used, e.g. for wide-baseline stereo [30℄, although
we do not investigate this possibility further in this paper.

3.4 Comparing kAS

We de�ne here a measure D(a, b) of the dissimilarity between two kAS P a, P b

D(a, b) = wr

k
∑

i=2

‖ra
i − r

b
i‖ + wθ

k
∑

i=1

Dθ

(

θa
i , θb

i

)

+

k
∑

i=1

∣

∣log
(

lai /lbi
)
∣

∣ (2)

where the �rst term is the di�eren
e in the relative lo
ations of the segments, Dθ ∈ [0, 1]
measures the di�eren
e between segment orientations, normalized by π, and the last two
terms a

ount for the di�eren
e in lengths. As segment lengths are often ina

urate, we
give higher weight to the two other terms of the 
omparison measure: in all our experiments
wr = 4, wθ = 2. All ri and all lengths are normalized as in equation (1).

4 Constru
ting the kAS 
odebook

In the previous se
tion we have introdu
ed the kAS features. Before using them for obje
t

lass dete
tion (next se
tion), we 
onstru
t a 
odebook (or `visual vo
abulary' [3℄) of feature
types by 
lustering a set of training kAS a

ording to their des
riptors (a di�erent 
odebook
is generated for ea
h k). In addition to revealing the frequen
y at whi
h feature types o

ur,
the 
odebook is 
onvenient be
ause it relieves the need for expli
itly 
omparing every test
image features to every feature from the the training images. Instead, 
omparison to mu
h
fewer feature types su�
e. Codebook representations have be
ome popular through several
re
ent works [3, 5, 14, 15, 16℄,
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Figure 2: The 35 most frequent 2AS types from the 
odebook we use in all experiments, 
onstru
ted
from 10 outdoor images (5 positive and 5 negative images from the INRIA horses dataset, se
tion 6)

Let G be a 
omplete graph whose nodes are the training kAS, and ar
s are weighed by
d−D(a, b). We partition G into 
liques so as to maximize the sum of intra-
lique weights,
using the 
lique-partitioning (CP) approximation algorithm of [8℄. Ea
h resulting 
lique is
a 
luster of similar kAS.

The 
hoi
e of CP instead of K-means, 
ommonly used for building visual 
odebooks, is
appropriate in our 
ontext where the dissimilarity measure D makes the des
riptor spa
e

ir
ular (Dθ terms). Moreover, the parameter d is easy to set, be
ause it represents a rough
indi
ation of the a

eptable intra-
luster dissimilarity (akin to the kernel-width in mean-
shift 
lustering [14℄). K-means instead requires the number of 
lusters as input, whi
h is
unknown apriori and varies from dataset to dataset. Several experiments indi
ate that the
exa
t 
hoi
e of d has little impa
t on the overall system performan
e (se
tion 6).

For ea
h 
luster, we sele
t as a representative the kAS with the lowest sum of dissimi-
larities to all others (i.e. the one 
losest to the 
luster 
enter). The �nal 
odebook C is the

olle
tion of these representative kAS, the kAS types.

When 
onstru
ting 
odebooks from di�erent image sets, we observed that the kAS types
o

urring with a signi�
ant frequen
y were very similar. This 
on�rms the intuition that
kAS are generi
 features (
ertainly for the low values of k we 
onsider). Hen
e, for ea
h k we
build a single 
odebook from 10 images and use it for all obje
t 
lasses in our experiments
(se
tion 6).

INRIA
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Figure 3: The 35 most frequent 3AS from our 
odebook.

Figure 2 show the 35 most frequent types in the 2AS 
odebook. As we 
an see, they have
quite natural shapes: two 
ollinear segments, L stru
tures, and small T-jun
tions. Figure 3
displays the 35 most frequent 3AS types. They form more 
omplex stru
tures than 2AS:
C, Y, F, Z shapes, larger T shapes, and triangles.

5 Obje
t 
lass dete
tion

In this se
tion we present a s
heme for dete
ting obje
ts based on kAS. We �rst train a

lassi�er to distinguish windows 
overing obje
ts of a 
ertain 
lass from any other window,
and then apply it for lo
alizing novel instan
es in previously unseen test images, based on a
sliding window me
hanism. As in the large majority of modern works, we build a dete
tor
for a single viewpoint.

5.1 Training

The training data in
ludes positive images, 
ontaining instan
es of the 
lass annotated by a
bounding-box (�gure 4), and negative images.
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Figure 4: a positive training example, with bounding-box, tiling, and a few kAS superimposed
(k = 2, T = 4).

Window des
riptor. To produ
e a useful 
lassi�er, we need a numeri
al window de-
s
riptor whi
h is a

urate enough to separate positive examples from negative, yet �exible
enough to a

ommodate for 
lass variability. When these goals are met, test windows on
novel obje
t instan
es will have des
riptors 
loser to the positive training set than to the
negative, and the 
lassi�er 
an su

eed.

A straightforward option would be the kAS histogram, 
ounting how many kAS of ea
h
type there are inside the window, whi
h is a simple bag of features representation. However,
we 
an obtain better dis
riminative power by also en
oding the spatial layout of the kAS
in the window des
riptor. We subdivide ea
h window into a set of tiles B, and 
ompute a
separate kAS histogram for ea
h tile (�gure 4). The 
on
atenation of all histograms yields
the |B| · |C| - dimensional window des
riptor.

The tiling pattern B automati
ally adapts to the training data as follows. First, the
system 
omputes the mean dimensions of the positive training windows (width Mw and
height Mh). Next, it allo
ates a total of T tiles, 
hoosing the number of tiles along ea
h
dimension so as to make them as square as possible: round(

√

TMw/Mh) along the width,

and round(
√

TMh/Mw) along the height. The parameter T = |B| 
ontrols the resolution of
the tiling. Mw,Mh will later be used again when sear
hing for obje
ts in new test images,
to set the aspe
t-ratio of the sliding window to the one best �tting the training examples.

When 
omputing the kAS histograms, rather than assigning ea
h kAS to the single

losest type, it is soft-assigned to all types within dissimilarity d. More pre
isely, ea
h kAS
P distributes a total sum Ps among the types it is assigned to, in inverse proportions to the
dissimilarity to the types' representative kAS. This makes the representation of a window
less sensitive to the exa
t shape of the kAS it 
ontains, and to the exa
t 
odebook types.
This leads to smoother models, whi
h better generalize to novel obje
t instan
es, and to a
more a

urate, stable evaluation of test image windows (next subse
tion). In addition to a
kAS' shape, we also 
onsider its relevan
e: the total 
ontribution of kAS P to a histogram

INRIA
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is the average strength of its edgels Ps ∈ [0, 1]. We experimentally observed a 
onsiderable
improvement over treating edgels as binary features (as also noti
ed by [4, 9℄).

Our window des
riptor is a valuable 
hoi
e for obje
t 
lass dete
tion. It is distin
tive,
be
ause it re
ords whi
h lo
al shape stru
tures (kAS) it 
ontains, and roughly where they
appear. At the same time, it is �exible thanks to the 
oarse tiling, and the 
ontinuous
assignment of kAS to types. Mu
h of the power of our representation 
omes from organizing
the image edges over two levels of spatial arrangements: 
ontour segments within the kAS,
and then the kAS within the overall obje
t.

As the tiling resolution T in
reases, the spatial lo
alization of kAS grows stronger, re-
sulting in a more informative des
riptor, but also a more rigid one, a

ommodating for less
spatial variability of the 
lass. Hen
e, there should be some optimal T , bringing the best
trade-o� between a

ura
y of lo
alization information and toleran
e to intra-
lass variation.
Interestingly, our experiments show the optimal T to de
rease with in
reasing k (se
tion 6).
With k = 1 the features are so uninformative that the window des
riptor needs to be aug-
mented with �ne-grained lo
alization to be distin
tive. While k grows, kAS be
ome more

omplex, and the added value of lo
alization gradually diminishes. In addition, we found
the optimal T for interest points des
ribed by SIFT to be lower than that of any kAS we
explored (k ≤ 4). Sin
e SIFT des
riptors of an image pat
h are ri
her features (and have
a des
riptor of mu
h higher dimensionality), this further 
on�rms the above subtle relation
between feature 
omplexity and lo
alization resolution.

SVM 
lassi�er training. The window des
riptor is 
omputed for ea
h positive training
example, and for a number of negative examples 
olle
ted by sampling windows of size
Mw×Mh over ea
h negative training image. In our experiments, windows are sampled every
50 pixels horizontally and verti
ally, typi
ally resulting in thousands of negative windows.

All window des
riptors are �nally used to train a two-
lass linear SVM. Sin
e negative
windows are mu
h more numerous, the positive window des
riptors are repli
ated to 
orre
t
the imbalan
e.

Figures 5 and 6 show a few kAS automati
ally sele
ted by the SVM for a few 
lasses (i.e.
the 'kAS type + tile' 
ombinations 
orresponding to the highest weighed window des
riptor
dimensions). Among the large number of KAS 
omposing ea
h example, several lie on
the obje
t boundary, and are pi
ked up by the SVM as lo
al shape stru
tures 
ommon to
multiple training examples.

Using multiple kAS degrees at on
e. Our framework in
ludes the possibility to use
multiple degrees of kAS at the same time (e.g. 2AS and 3AS). In this 
ase the di�erent sets
of kAS are treated separately: there is a 
odebook and tiling resolution for ea
h value of k.
Window des
riptors obtained for di�erent k are then 
on
atenated to give a large des
riptor
whi
h is fed to the SVM.

Using kAS of di�erent degrees at the same time is an interesting option. Some 
hara
ter-
isti
 obje
t elements might be extremely simple (like the straight line on top of a 
omb, for
whi
h k = 1 is good), while others might be more sophisti
ated lo
al stru
tures (like a C-
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Figure 5: one of the top dimensions sele
ted by the SVM for three 
lasses (k = 2)

shaped mug handle, for whi
h k = 3 is good). Hen
e, using multiple degrees simultaneously
o�ers the SVM a larger, more diverse pool of parts to 
hoose from.

5.2 Testing

Having trained a linear SVM window 
lassi�er, we 
an dete
t and lo
alize novel obje
t
instan
es in a test image using a simple sliding-window me
hanism [31, 4℄. We slide a
window of aspe
t-ratio Mw/Mh over the image at multiple s
ales 2 , 
ompute the window
des
riptor at ea
h lo
ation/s
ale and evaluate it with the SVM. This provides a 3D response
map, whose lo
al maxima give 
andidate obje
t dete
tions. The �nal set of dete
tions are
obtained after a last polishing: if two 
andidate dete
tions overlap 
onsiderably, we �lter
out the weaker one.

This sliding window te
hnique requires 
omputing the histogram of kAS types within
a large number of image windows (tiles). We a
hieve this e�
iently by using an Integral
Histogram [24℄ representation (IH). After building an IH where ea
h dimension 
orrespond

2This is implemented simply by resizing the window to 
ontain a varying portion of the image. It is not
ne
essary to res
ale the image, be
ause the kAS features themselves automati
ally adapt to image stru
tures
of di�erent s
ales. In all our experiments the sliding step is 10 pixels is ea
h dire
tion, while the s
ale step

is 2
1

4 . We 
onsider all s
ale levels where the window's longer side is more than 50 pixels and still �ts in the
image.

INRIA
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Figure 6: one of the top dimensions sele
ted by the SVM for three 
lasses (k = 3)

to a kAS type, it is possible to 
ompute the histogram of kAS types in any window in 3|C|
operations, independently of the total number of kAS in the image and of the number of
kAS in the window. The 
ost of building the kAS IH is low, and it is done only on
e for
an image (as we adpot a single 
odebook for ea
h k). The main share of the 
ost is the

omputation of the soft-assignments the image kAS to types, whi
h must be done anyway.

Our obje
t dete
tion pro
edure is very fast. After prepro
essing (from edge dete
tion to
the kAS IH), it takes about 1 se
ond to dete
t all instan
es in our C++ implementation on a
standard workstation. Prepro
essing takes longer, due the a

urate, but slow, Berkeley edge
dete
tor (a few minutes). However, it only needs to be done on
e, so the 
ost is amortized
when sear
hing for several 
lasses, or when using kAS of multiple degrees at the same time.

6 Experimental evaluations

6.1 Datasets and proto
ol

We present extensive experimental evaluations, involving several existing datasets, over 8
diverse shape-based obje
t 
lasses, for a total of more than 1400 test images. Here we brie�y
introdu
e these datasets, while the following se
tions report the experiments.
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INRIA horses [13℄ This 
hallenging dataset 
onsists of 170 images 
ontaining one or
more horses, seen from the side, and 170 images without horses. Horses appear at several
s
ales, and against 
luttered ba
kgrounds. We employ the �rst 50 positive and 50 negative
images for training, and the remaining 120 + 120 images for testing.

This dataset plays a spe
ial role in our evaluations, as we optimize the two free parameters
of our dete
tion system on it (the window tiling resolution T and the 
lustering threshold
d). The optimal setting established on this dataset is then used on all others. No tuning is
applied to any other dataset, so the exa
t same system is run on all datasets.

Weizmann-Shotton horses [29℄ Shotton et al. [29℄ propose another horse dete
tion
dataset, 
omposed of 327 positive images 
ontaining exa
tly one horse ea
h, and 327 neg-
ative images. The positive images are derived from a dataset previously released by the
Weizmann institute for evaluating image segmentation algorithms. In order to 
arry out
proper 
omparisons, we follow the proto
ol of [29℄ stri
tly by using their s
ale-normalized
images, and running our system at a single s
ale 3. As in [29℄, the �rst 50 positive and 50
negative images are used for training, the other 277 + 277 for testing (�gure 8).

ETHZ shape 
lasses [9℄ This dataset features �ve diverse 
lasses (bottles, swans, mugs,
gira�es, apple logos), over a total 255 images 
olle
ted from the web by Ferrari et al. [9℄. It
is the most 
hallenging one we report on, as the obje
ts appear in a wide range of s
ales,
there are 
onsiderable intra-
lass shape variations, and many images are severely 
luttered,
with the obje
ts 
omprising only a fra
tion of it (�gure 10).

We train one dete
tor per 
lass, using the �rst half of the available positive images
(there are 40 for apple-logos, 48 for bottles, 87 for gira�es, 48 for mugs, and 32 for swans).
As negative training images, an equal number is taken, with ea
h of the other 4 
lasses

ontributing 1/4 of them. For example, the training images for the bottle dete
tor are 24
bottle images, plus 6 images from ea
h of the other 
lasses, totaling 24 negative training
images. All other images are used for testing, so ea
h 
lass is sear
hed for in images from
every 
lass.

Calte
h 101 [7℄ The last sour
e of data we 
onsider are three shape-based 
lasses from
the well-known Calte
h-101 database [7℄: an
hors, 
hairs, and 
ups (42, 62, 57 positive im-
ages respe
tively). Although most images 
ontain only limited 
lutter, the dataset o�ers
substantial intra-
lass variation (�gure 10). As for the ETHZ Shape Classes, we evaluate
one 
lass at the time. We use the �rst half of the positive images for training, as well as an
equal number of negative images from the Calte
h-101 ba
kground set. The test set 
onsists
of the remaining positive images, plus the same number of negative ones.

Evaluation 
riterion Performan
e is evaluated by plotting dete
tion-rate (DR) versus
the in
iden
e of false-positives (false-positives per image, FPPI) while varying the dete
tion

3sliding a window of �xed dimensions Mw ×Mh. In all other experiments the system is run at multiple
s
ales as detailed in se
tion 5.2.
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threshold. We prefer these DR/FPPI plots over pre
ision/re
all ones for several reasons.
FPPI has a 
learer interpretation than pre
ision, whi
h is entangled with dete
tion-rate.
Moreover, FPPI is independent of the number of negative test images, and DR/FPPI plots
are easier to read, be
ause they in
rease monotonously.

Comparisons between di�erent methods is mainly based on two points on the DR/FPPI
plot, at 0.3 and 0.4 FPPI. These are espe
ially relevant be
ause they 
orrespond to a rather
low, but not extremely low, FP rate (around 1 FP every 3 images). Only on the Shotton
horses dataset we report pre
ision/re
all plots, and 
ompare methods based on equal-error
rates, be
ause [29℄ published their results in that form. Hen
e, average dete
tion-rates at a
parti
ular FPPI rate refer to means 
omputed over 9 datasets, ex
luding Shotton horses.

For all datasets and methods, a dete
tion is 
ounted as 
orre
t if its bounding-box
overlaps more than 20% with the ground-truth bounding-box, and vi
e-versa. Any other
dete
tion is 
ounted as a false-positive.

6.2 Degree of 
omplexity of kAS
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Figure 7: Impa
t of window tiling resolution T at the optimal 
lustering threshold d. The optimal
T is T = 90 for 1AS, T = 30 for 2AS, and T = 20 for 3AS and 4AS.

Impa
t of tiling and 
lustering threshold Before 
omparing the performan
e of kAS of
di�erent degrees of 
omplexity on all 10 datasets, we �rst optimize T, d for ea
h k separately
on the INRIA horses dataset (k ∈ {1, 2, 3, 4}). For several pairs of T, d, we repro
ess the
dataset and obtain a DR/FPPI 
urve. Figure 7 shows the impa
t of the tiling resolution,
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Figure 8: Top row: dete
tions at 0.4 FPPI for the INRIA horses dataset. Rightmost image shows
a missed dete
tion and a false-positive. Bottom: dete
tions at the equal-error rate for the Shotton
horses dataset.

while keeping d �xed at the optimum. From the plots it 
learly appears that subdividing
the window into tiles makes a substantial di�eren
e for all k. Compared to a single bag-of-
feature representation (no tiles), at 0.3 FPPI the optimal tiling brings improvements ranging
from 20% (k = 1) to 13% (k = 4) dete
tion-rate.

It is intriguing to observe that the optimal value of T de
reases with in
reasing k. This

on�rms experimentally the subtle relation dis
ussed in se
tion 5.1: as the features grow
more 
omplex and hen
e informative, a 
oarser spatial lo
alization is su�
ient, while at
the same time a lower T yields better toleran
e to intra-
lass variations. Individual seg-
ments bene�t most from a very �ne subdivision of 90 tiles, whereas the saturation point
for lo
alization information is already rea
hed at 20 tiles for 3AS. Moreover, also the gain
brought by tiling redu
es as the features be
ome more 
omplex, be
ause the added value of
lo
alization gradually diminishes (at 0.3 FPPI, it is of 20%,16%,16%,13% dete
tion-rate for
k=1,2,3,4 respe
tively).

Varying the 
lustering threshold d has a smaller impa
t. Nevertheless, we observe the
number of 
lusters 
orresponding to the optimal d to in
rease with k (4, 127, 255, 397 for
k = 1, 2, 3, 4 respe
tively). This makes sense, be
ause as the features be
omes more 
omplex,
they 
an assume a wider variety of shapes. In parti
ular, just 4 
lusters are ne
essary for
k = 1, 
orresponding roughly to four orientations separated by 90 degrees.

Following these observations, all further experiments are performed with the optimal
parameters T, d for every k.

Degree k We applied our obje
t dete
tion s
heme to all 10 datasets, for the four degrees of
kAS 
omplexity we explore (k ∈ {1, 2, 3, 4}). Although there is no single degree produ
ing
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Figure 9: Performan
e of kAS, for varying degrees of 
omplexity k. Top row: the two horses
datasets we 
onsider: INRIA horses, and Shotton horses. Se
ond row: the three 
lasses from
Calte
h 101. Third row: the �ve ETHZ Shape Classes. All performan
e 
omparison �gures in the
paper follow this layout.

the best results on all datasets, 2AS perform best overall (�gure 9). The 2AS plot is
above all others on 5 datasets, and its average dete
tion-rate at 0.3 FPPI is 76.7%, versus
69.4%,64.1%,56.5% of 1AS,3AS,4AS respe
tively (table 3). Hen
e, we 
on
luder that 2AS
are the kAS with the best intermediate 
omplexity, o�ering the optimal 
ompromise between
being informative, repeatable, and generating a good ratio of pure boundary features versus
mixed/
lutter features (as dis
ussed in subse
tion 3.2). In the remainder of the paper, 2AS
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is the referen
e kAS for 
omparison to other methods, and will be referred to as PAS (pairs
of adja
ent segments).

As inspe
ting table 3 reveals, ranking kAS a

ording to average dete
tion-rate at 0.3, or
0.4 FPPI, the following order appears: 2AS > 1AS > 3AS > 4AS. This ranking is well 
on-
�rmed by the overall relative heights of the DR/FPPI plots (
learest on mugs, applelogos).
Surprisingly, the se
ond best kAS are individual segments. Mu
h of the reason is in the great
impa
t of tiling on 1AS, where very �ne-grained lo
alization 
ompensates for the feature's
la
k of distin
tiveness (�gure 7). Nevertheless, PAS do better, 
on�rming it's advantageous
to 
onsider groups of 
onne
ted segments as features for obje
t dete
tion. Moreover, PAS,
as well as kAS of higher degrees, are more reusable in other systems, where the dis
rimina-
tive power of individual features is more important, or where a feature 
orresponden
e must
generate a higher order transformation than just translation (e.g. re
ognition systems using
feature transformations [16, 10℄, or for mat
hing features between two images [21, 30℄).

In absolute performan
e terms, PAS work 
onsistently well on all 
lasses (dete
tion-
rates between 79% and 88% at 0.4 FPPI), with the ex
eption of swans. This is espe
ially
remarkable when 
onsidering the low number of positive training images used in many
datasets (e.g. 24 for bottles, see table 1). PAS a
hieve parti
ularly high performan
e on
Shotton-horses, with 91.7% pre
ision-re
all equal error-rate, in line with the state-of-the-art
approa
h [29℄ (92.1%), while 1AS do even better, with 93.5%. Moreover, in 
ontrast to their
work, our method doesn't need any segmented training image (only bounding-boxes), and

an dete
t obje
ts at multiple s
ales. The striking performan
e of 1AS on this dataset (the
only one where they beat PAS) might be explained by the very low resolution of the images
(horses are about 100 pixel wide), whi
h favors simpler features.

We 
an also draw a loose 
omparison to [13℄, on the INRIA horses datasets. Numeri
ally,
PAS' performan
e is 
lose to their work (e.g. PAS do 70.0% at 0.066 FPPI, whi
h 
orre-
sponds to 86.1% pre
ision, while [13℄ reports 70.3% re
all at 87.7% pre
ision). However,
an exa
t 
omparison is not possible, as the authors of [13℄ have lost details of the parti
ular
test set on whi
h results were reported. We adopt here the o�
ial release of the dataset,
whi
h should 
ome quite 
lose. As a referen
e, we also mention that [9℄ obtains a similar
level of performan
e as PAS on the ETHZ Shape Classes, although the two methods are not
dire
tly 
omparable sin
e [9℄ inputs hand-drawings as models.

In order to further strengthen our understanding of PAS' performan
e, and properly set
it in the 
ontext of alternative methods, in the following we perform in-depth 
omparisons
to interest points, used within our obje
t dete
tion framework, and to the system of Dalal
and Triggs [4℄.

6.3 Comparison to interest points

Interest point (IP) dete
tors respond to lo
al pixel patterns with 
ertain spe
ial properties
(e.g. 
ornerness) and produ
e lo
al features widely used for obje
t 
lass dete
tion [10, 16, 5℄.
IP des
riptors 
apture the appearan
e of the image pat
hes surrounding them. In order to
support the 
laim that kAS are better suited to represent shape-based 
lasses, we repla
e
them by IPs in our obje
t dete
tion framework, and repro
ess all 10 datasets. We experiment
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Figure 10: All dete
tions at 0.4 FPPI on some example images. Top 3 rows: ETHZ shape 
lasses.
Bottom row: Calte
h 101.

with three of the most widespread s
ale-invariant IPs: Harris-Lapla
e [21℄, LoG [19℄, and
DoG [19℄. All IPs are des
ribed by the extremely popular 128-dimensional SIFT [19℄.

Codebooks, tiling, and number of 
lusters The number of IP per image is about
1000 to 2000, larger than that of kAS (for k ≤ 4). In addition, we want to experiment with
IP 
odebooks built from more than the 10 images used for kAS (details below). As a result,
the total number of IPs to be 
lustered 
an grow beyond what CP 
an handle. Sin
e CP
builds a pairwise dissimilarity matrix, memory 
onsumption limits the number of features
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Figure 11: Optimizing T , keeping the number of 
lusters �xed at 140 (whi
h is the optimum in the
tested range 100 − 300).

to about 15000, while in several 
ases there are more than 50000 IPs. Hen
e, we build IP

odebooks using k-means. Noti
e how the CP parameter d is now repla
ed by expli
itly
providing the number of 
lusters.

As done before for kAS, we optimize the number of tiles and of 
odebook 
lusters on
INRIA horses (�gure 11). The sele
ted optimal T is 10, whi
h 
on�rms the trend observed
on kAS: the ri
her the feature, the lower the value. Figure 11 shows the evaluation on
Harris-Lapla
e, but similar optimal values are obtained for DoG or LoG.

The rationale behind using a single kAS 
odebook from a small set of 10 images is that
the features are simple and generi
 enough. However, this might not hold for IPs. Sin
e they
are based on texture, and the SIFT des
riptor 
aptures an entire image pat
h, quite di�erent

odebooks might result from di�erent image sets (e.g. gira�es versus horses). Therefore,
we experimented with three kinds of 
odebooks, on the �ve ETHZ Shape Classes. The �rst
is 
omputed from the same 10 images used for kAS, the se
ond is spe
i�
 to a single 
lass
(
omputed from the same images used to train the SVM), and the last is based on images
from all �ve 
lasses (
omputed from all images used to train all 5 SVMs). From the results
we obtained, it indeed appears that 
lass-spe
i�
 IP 
odebooks perform moderately better
on average. Hen
e, all experiments below are performed with 
lass-spe
i�
 
odebooks.

Performan
e The plots in �gure 12 and the average dete
tion-rates in table 3 
learly
show that PAS substantially outperform all tested IPs. Only on two datasets IPs a
hieve
a moderately better performan
e than PAS (Harris-Lapla
e on swans, and DoG on 
up).
Besides, we noti
e IP's uneven performan
e a
ross di�erent 
lasses (
ompare DoG on 
up
and bottles). PAS' performan
e instead, is quite stable. Finally, it's worth noting that on
gira�es, for whi
h both shape and texture are 
hara
teristi
, the results of PAS and the best
IP are very 
lose (espe
ially in the range 0.3-0.4 FPPI).

Beyond PAS, one 
an 
ompare kAS in general to IPs. In terms of average dete
tion-
rate at 0.3 − 0.4 FPPI, all explored kAS do 
onsiderably better than any of the tested IPs
(table 3). Only the performan
e levels of 4AS and Harris-Lapla
e are similar.
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Figure 12: Performan
e of IPs, 
ompared against PAS.

Inspe
ting the data, it is also possible to rank features among IPs. Although no single
one works best on all datasets, on average Harris-Lapla
e stands out, followed by DoG and
LoG, whi
h are at about the same level (table 3).

In 
on
lusion, these experiments 
on�rm that kAS are more appropriate features than
IPs for shape-based 
lasses.
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6.4 Combining multiple kAS degrees

Even though PAS are better than kAS of other degrees on most datasets, 1AS and 3AS win
on Shotton horses and an
hors respe
tively. This suggests that using all three 1AS/2AS/3AS
simultaneously might give an even better dete
tor.

As explained in se
tion 5, we integrate kAS of multiple degrees by 
on
atenating window
des
riptors 
omputed separately for ea
h k, and then training a single SVM from them. Ea
h
degree uses its own 
odebook and optimal tiling resolution. In this fashion, the SVM 
an

hoose from a very large pool of di�erent lo
al shape stru
tures and tile 
ombinations.

The results 
an be seen in table 2. For most datasets, performan
e is very similar to
PAS. On Shotton horses instead, {123}AS a
hieves an ex
ellent 94.2% pre
ision-re
all equal-
error rate, whi
h is signi�
antly better than any of 1AS, 2AS, or 3AS. On swans however,
we register a 
onsiderable performan
e drop wrt to PAS (from 64.7% down to 47.1% at
0.3 FPPI). Moreover, the high performan
e of 3AS on an
hors (90.5% at 0.3 FPPI) is not
reprodu
ed by {123}AS (76.2% at 0.3 FPPI).

Although it seems surprising that adding features 
an lower performan
e, this 
ould
be due to over�t. Indeed, the dimensionality of the 
ombined window des
riptor is mu
h
higher than that of a single kAS degree, while the number of training examples remains the
same. To 
orroborate this, noti
e how the performan
e drops o

ur on the datasets with
fewest training examples (swans, 2x16 training examples, and an
hor, 2x21 examples), while
the largest improvement happens on the dataset with most examples (Shotton horses, 2x50
examples, see table 1). Hen
e, although in our experiment {123}AS performs on average
slightly below PAS (table 3), they remain a promising option for datasets with many training
images.

Finally, we have tried to redu
e the dimensionality of the window des
riptor with a simple
feature sele
tion s
heme. We sort the SVM hyperplane 
oe�
ient and keep the �rst N, so
that they sum up to a 
ertain per
entage of the total mass. Remarkably, when keeping as
few as 50% of the total mass, dete
tion-rate only de
reases of 2.5% at 0.3 FPPI on INRIA
horses. This 
orresponds to retaining only 18% dimensions, therefore 
omputing a fra
tion
of all 'kAS type + tile' 
ombinations, yielding a speedup of fa
tor 5.

6.5 Combining PAS and Harris-Lapla
e

Following the same approa
h as in the previous subse
tion, we have 
ombined PAS and
Harris-Lapla
e, as they are the best members of their respe
tive feature families. This
seems an ex
iting possibility, be
ause PAS and Harris-Lapla
e exploit 
omplementary image
properties (
ontour and texture). Hen
e, the hope is to obtain a more generi
 obje
t dete
tor,
whi
h might autonomously determine whi
h kind of feature is more appropriate for (part
of) a given obje
t.

The PAS+Harris dete
tor does better than either 
omponent alone on gira�es and Shot-
ton horses (table 2). This is parti
ularly meaningful sin
e gira�es are de�ned by both shape
and texture, so we expe
t their 
ombination to reinfor
e the dete
tor. Moreover, gira�es
and Shotton horses are the only two 
lasses on whi
h PAS and Harris-Lapla
e work about
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equally well. PAS+Harris now a
hieves an impressive 95.7% pre
ision-re
all equal-error-rate
on Shotton horses, 
onsiderably above the 92.1% of [29℄. Furthermore, on INRIA horses,

hair, and swans, PAS+Harris exhibit the desired behavior: its performan
e aligns with the
better of either PAS or Harris-Lapla
e. However, on the remaining 5 
lasses PAS+Harris
only performs somewhere inbetween PAS and Harris-Lapla
e. Again, a probable reason is
over�t, and we observe a 
lear 
orrelation between the performan
e improvement/loss of
PAS+Harris and the number of training images in a 
lass (table 1). To 
on�rm this further,
we run tests with several randomized splits of the images in training and test subsets, and
observed that the performan
e variations of PAS+Harris are far greater than those of either
feature alone.

6.6 Comparison to Dalal and Triggs [4℄

We 
on
lude our series of evaluations by 
omparing against the obje
t dete
tion te
hnique
by Dalal and Triggs [4℄, whi
h is 
urrently the state-of-the-art in human dete
tion, and has
proven very 
ompetitive on other 
lasses as well [33℄. Like ours, their obje
t dete
tor is
based on sliding a window subdivided into tiles, but uses histograms of gradient orientations
as des
riptors.

In an e�ort to perform a fair 
omparison, we dis
ussed with the authors of [4℄, who
re
ommended the following operations. First of all, we used the o�
ial software released
by the authors. Moreover, we res
aled all training windows to make the longest side 100
pixels, whi
h is about the resolution their system is tuned on [4℄. Finally, following the pro-
to
ol applied for PAS, we optimized the two most important parameters on INRIA horses.
These are the prepro
essing applied before 
omputing gradients, and the blo
k normaliza-
tion s
heme applied after 
olle
ting HoG des
riptors. The di�eren
e between the best and
the worst 
ombination of prepro
essing and normalization turned out to be moderate: 4.5%
dete
tion-rate at 0.3 FPPI. Nevertheless, we pro
essed all datasets with the best 
ombina-
tion: 
onverting to Lab 
olor spa
e as prepro
essing, and normalizing des
riptors by the
square root of the L1 norm (see [4℄ for details).

The results are displayed in �gure 13 (the system of [4℄ is marked as HoG). Our dete
tor
a
hieves a substantially higher performan
e on 6 of the 10 datasets, while on mugs and
applelogos the two methods are about equally good, and HoG obtains better results on
applelogos and swans. In terms of average dete
tion-rate at 0.3 FPPI, PAS leads with a

onsiderable margin of 20% (table 3).

The HoG 
urves abruptly stop growing after a rather low FPPI rate, due to the system
returning no dete
tion on several images. We tried to 
ounter this by altering a parameter

ontrolling the minimal s
ore for windows to enter the non-maxima suppression stage, but
it only resulted in lower 
urves (as also expe
ted by Dr. Dalal). Besides, we point out
that expli
itly 
omparing performan
e at the point where HoG stops growing only makes a
di�eren
e for 
up. PAS still leads on 6 datasets, and draws on mugs. Finally, even if fully
growing 
urves 
ould be produ
ed, the trend in DR/FPPI plots is for the slope to de
rease
with in
reasing FPPI. Hen
e, even in an optimisti
 extrapolation, the HoG 
urves would
still remain below PAS' ones for 6 datasets.
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Figure 13: Comparison between our PAS-based dete
tor and Dalal and Triggs [4℄ HoG-based ones.

In 
on
lusion, our dete
tion system 
ompares favorably to [4℄ in our experiments, whi
h
further 
onsolidates PAS as ex
ellent features for obje
t dete
tion.

7 Con
lusions

We have introdu
ed the kAS family of lo
al 
ontour features and their appli
ation for obje
t
dete
tion. kAS are designed to be 
apable of 
overing pure portions of an obje
t boundary,
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Table 1: Number of positive+negative training and testing images for all datasets.

INRIA An
hor Chair Cup Applelogo Bottle Gira�e Mug Swan Shotton

Train 50+50 21+21 31+31 29+29 20+20 24+24 44+44 24+24 16+16 50+50
Test 120+120 21+21 31+31 28+28 20+215 24+207 43+167 24+207 16+223 277+277

Table 2: Dete
tion rates at 0.3 and 0.4 FPPI for all features we tested, as well as for the obje
t
dete
tion system of [4℄ (marked as HoG). The 'Shotton' 
olumn reports re
all at equal error-rate for
the Shotton horses dataset. It is in
luded here for homogeneity of presentation.

Dete
tion rate INRIA An
hor Chair Cup Applelogo Bottle Gira�e Mug Swan Shotton

PAS (0.3 FPPI) 85.4 76.2 78.1 78.6 65.0 89.3 72.3 80.6 64.7 91.7
1AS (0.3 FPPI) 86.2 85.7 81.2 75.0 55.0 78.6 59.6 67.7 35.3 93.5
3AS (0.3 FPPI) 79.2 90.5 75.0 71.4 35.0 67.9 61.7 54.8 41.2 90.3
4AS (0.3 FPPI) 76.9 57.1 71 71.4 30.0 60.7 63.8 41.9 35.3 90.3
Harris (0.3 FPPI) 63.1 47.6 50.0 42.9 60.0 39.3 70.2 45.2 76.5 91.0
Dog (0.3 FPPI) 42.3 23.8 53.1 78.6 45.0 17.9 55.3 22.6 47.1 89.2
Log (0.3 FPPI) 50.8 23.8 31.2 57.1 30.0 25.0 72.3 38.7 58.8 90.3
{1,2,3}AS (0.3 FPPI) 86.2 76.2 77.4 82.1 70.0 85.7 68.1 80.6 47.1 94.2
PAS + Harris (0.3 FPPI) 84.6 61.9 83.9 67.9 60.0 57.1 80.9 51.6 82.4 95.7
HoG (0.3 FPPI) 74.6 9.5 32.3 78.6 85.0 17.9 48.9 80.6 82.4 70.1

PAS (0.4 FPPI) 87.7 81.0 87.5 82.1 85.0 89.3 78.7 80.6 64.7 91.7
1AS (0.4 FPPI) 86.9 90.5 84.4 82.1 65.0 85.7 61.7 71.0 58.8 93.5
3AS (0.4 FPPI) 85.4 90.5 84.4 75.0 40.0 78.6 72.3 64.5 41.2 90.3
4AS (0.4 FPPI) 80.8 71.4 90.3 78.6 30.0 64.3 68.1 51.6 41.2 90.3
Harris (0.4 FPPI) 73.8 47.6 62.5 53.6 70.0 39.3 72.3 45.2 82.4 91.0
Dog (0.4 FPPI) 49.2 28.6 71.9 92.9 45.0 17.9 59.6 29.0 58.8 89.2
Log (0.4 FPPI) 56.2 38.1 34.4 60.7 35.0 25.0 74.5 48.4 58.8 90.3
{1,2,3}AS (0.4 FPPI) 87.7 85.7 87.1 82.1 80.0 85.7 74.5 83.9 58.8 94.2
PAS + Harris (0.4 FPPI) 87.7 71.4 90.3 75.0 75.0 64.3 80.9 64.5 82.4 95.7
HoG (0.4 FPPI) 74.6 9.5 32.3 78.6 85.0 17.9 53.2 83.9 82.4 70.1
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Table 3: All features and 
ombinations tested, ranked a

ording to their dete
tion rates at 0.3 and
0.4 FPPI, averaged over all datasets but Shotton (for whi
h we evaluate in terms of pre
ision/re
all).

Method Average DR at 0.3 FPPI Avearge DR at 0.4 FPPI

PAS 76.7 81.8

{1,2,3}AS 74.8 80.6

PAS + Harris 70.0 76.8

1AS 69.4 76.2

3AS 64.1 70.2

4AS 56.5 64.0

HoG 56.6 57.5

Harris 55.0 60.7

Dog 42.9 50.3

Log 43.1 47.9

without in
luding nearby spurious edgels. Moreover, they 
an form a wide variety of lo
al
shape stru
tures, 
ombine informativeness and repeatability, and 
onstitute 
omplete, s
ale-
invariant lo
al features ready to be used in many re
ognition or image mat
hing frameworks
4 .

We have demonstrated kAS within a sliding-window obje
t dete
tor, where windows
are subdivided into tiles, ea
h des
ribed by a bag of kAS. Extensive evaluations brought
several interesting 
on
lusions. First, the optimal number of tiles de
reases with in
reasing

omplexity k, as a result of the shifting trade-o� between the resolution of lo
alization
information versus the rigidity of the representation. Se
ond, PAS perform better than other
kAS, as they bring the best 
ompromise between distin
tiveness and repeatability, while also
yielding a good proportion of pure boundary features. Third, kAS work substantially better
than interest points for shape-based 
lasses, and, �nally, our PAS-based obje
t dete
tion
system 
ompares favorably to the state-of-the-art method [4℄.

The use of kAS in this paper is limited to a rather simple dete
tion framework, through
whi
h we analysed their properties and performan
e. However, we expe
t kAS to be useful
in other systems and tasks, with possibly other behaviors. For example, although in our
analysis 2AS worked best, kAS of higher 
omplexity are attra
tive when the lo
alization

onstraints are weaker or absent and hen
e the dis
riminative power of individual features
might be
ome more important [16, 5, 2℄, or when higher degrees of geometri
 invarian
e are
required (e.g. image mat
hing [30, 21℄). Besides, sin
e our obje
t dete
tor is restri
ted to
a single viewpoint, it is un
lear how well kAS would work in a multi-view setting. Finally,
e�e
tive ways to 
ombine appearan
e features with kAS remain to be investigated. One
option would be to integrate both tightly, by augmenting kAS with appearan
e information
(e.g. by des
ribing 
olor or texture properites on either side of a L-shaped PAS).

4 We have released an exe
utable to dete
t and des
ribe kAS on lear.inrialpes.fr/software
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