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Abstrat: We present a family of sale-invariant loal shape features formed by hains
of k onneted, roughly straight ontour segments (kAS), and their use for objet lass
detetion. kAS are able to leanly enode pure fragments of an objet boundary, without
inluding nearby lutter. Moreover, they o�er an attrative ompromise between information
ontent and repeatability, and enompass a wide variety of loal shape strutures. We also
de�ne a translation and sale invariant desriptor enoding the geometri on�guration of
the segments within a kAS, making kAS easy to reuse in other frameworks, for example as
a replaement or addition to interest points.

We demonstrate the high performane of kAS within a simple but powerful sliding-
window objet detetion sheme. Through extensive evaluations, involving eight diverse
objet lasses and more than 1400 images, we 1) study the evolution of performane as
the degree of feature omplexity k varies and determine the best degree; 2) show that kAS
substantially outperform interest points for deteting shape-based lasses; 3) ompare our
objet detetor to the reent, state-of-the-art system by Dalal and Triggs [4℄.
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1 Introdution

In the last few years, the problem of reognizing objet lasses has reeived growing attention,
in both variants of whole image lassi�ation [3, 5, 10, 14, 15℄, and objet loalization [2,
4, 16, 31℄. The majority of existing methods use loal image pathes as basi features.
While these work well for some objet lasses, suh as motorbikes and ars, other lasses are
de�ned by their shape, and are therefore better represented by ontour features (e.g. horses,
or mugs). In spite of their substantial sope, only omparably few works [2, 13, 22, 29℄ have
takled the lass-level loalization problem using ontour features.

In this paper we present a family of loal ontour features, and their appliation for
deteting and loalizing objets. These features are small groups of onneted, approximately
straight ontour segments, alled k adjaent segments, or kAS. The segments in a kAS form
a path of length k through a network of ontour segments overing the image [9℄. Essentially,
two segments are onneted in the network if they are adjaent on the same edgel-hain, or
if one is at the end of an edgel-hain direted towards the other segment (setion 3). The
larger the number k of segments in a kAS, the more omplex the loal shape strutures
it an apture. 1AS are just individual segments, while 2AS inlude L shapes, and 3AS
an form C,F and Z shapes (�gures 2, 3). Along with the kAS features, we propose a
low dimensional, translation+sale invariant desriptor designed to enode the geometri
properties of the segments omposing a kAS, and their relative loations.
kAS have a several attrative properties. First, as both kAS and their desriptors over

solely short hains of onneted segments, they have the ability to over pure portions of
an objet boundary, without inluding lutter edges whih very often lie in the viinity.
Seond, for a sensible range of k, kAS have intermediate omplexity, whih makes them
detetable repeatably while being informative at the same time. Third, onnetedness is a
natural grouping riterion to form kAS. It avoids the need for de�ning a 'grouping sale'
or a 'grouping neighborhood' for a segment, and e�etively onstrains the features to be
hains of segments, whih are more likely of lying entirely on a boundary. Finally, kAS are
omplete loal invariant features: eah has a well de�ned loation and sale, an invariant
desriptor, and is deteted based only on loal properties of a single image. Hene, they
an be reused e�ortlessly in a variety of reognition and image mathing frameworks as a
replaement or addition to interest points (suh as [2, 5, 10, 16, 30℄).

We demonstrate the power and �exibility of kAS within an objet detetion frame-
work whih brings together several suessful ideas presented before. Following the `bag
of features' paradigm [3, 14, 34℄, we onstrut a odebook of kAS types, eah apturing a
di�erent kind of loal shape struture (�gures 2 and 3). An image window is subdivided
into tiles [4, 15℄ and eah is desribed by a separate bag of kAS. In this fashion the window
representation is omposed of several bags of kAS spatially loalized within the window.
Adding this layer of spatial organization improves the disriminative power ompared to a
standard orderless bag of features over the entire window. We �rst train a lassi�er from ex-
ample objet and bakground windows, and then loalize previously unseen instanes in test
images via a multi-sale sliding-window mehanism [4, 31℄ oupled with the lassi�er. Our
method is rendered omputationally e�ient by organizing all image kAS in an Integral His-
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4 Ferrari et al.

togram [24℄, whih is a reently developed datastruture supporting the rapid omputation
of multidimensional histograms.

During an extensive evaluation, involving eight diverse objet lasses and over 1400
images (setion 6), we study several aspets of kAS. First, we analyze the objet detetion
performane while varying k, thereby shedding light on the relation between repeatability
and informativeness as k inreases. Seond, for eah k, we vary the resolution of the window
tiling, allowing to observe the trade-o� between adding loalization information and reduing
tolerane to spatial variations within the lass. Interestingly, we �nd the optimal window
tiling to relate to the omplexity of the features (k), with simpler features preferring �ner
tiling. Moreover, we thoroughly ompare the performane of kAS against interest points, and
against the state-of-the-art objet detetion tehnique by Dalal and Triggs [4℄. Their work
is partiularly relevant beause it follows a similar detetion framework (sliding-windows,
tiles), but it applies di�erent desriptors to the window tiles (simpler histograms of gradient
orientations). Finally, we experiment with the appliation of kAS with di�erent k at the
same time, and with the ombination of interest points and kAS.

2 Related works

In the following we �rst review objet detetion tehniques based on ontour features, for
whih kAS o�er an alternative, and then present works on the pereptual grouping of on-
tours, upon whih kAS build.

Contour features for objet lass detetion Selinger and Nelson [27℄ detet key

urves: long segments of an edgel-hain omprised between two high urvature points. A
key urve's size and orientation de�nes a square image path, whih is then desribed using
all edgels falling within it. These edge pathes attempt to strike a winning trade-o�: be
loal, and hene bring robustness to olusion and lutter, while also omplex enough to
be distintive to some degree, enabling to math individual features, and opening the door
to omputationally e�ient indexing shemes. However, these pathes are likely to inlude
lutter edgels lying near the objet boundary, whih orrupt their desriptors and makes
them di�ult to put in orrespondene.

Selinger and Nelson's reognition system was demonstrated in ontrolled laboratory on-
ditions, with lean images ontaining modest amounts of lutter, and mostly on the task
of reognizing spei� objets. Jurie and Shmid [13℄ were among the �rst to propose loal
ontour features for the detetion of objet lasses, and to test their system on real, luttered
images. Their sale-invariant feature detetor responds to irular ars of edgels, whih are
desribed by the spatial distribution of points in a thin annular neighborhood of the irle.
This attempts to exlude lutter from the desriptor by avoiding enoding points inside the
irle. As one limitation, irular ars only over a fairly restrited lass of shapes.

In their very reent works, Shotton et al. [29℄ and Opelt et al. [22℄ independently propose
to onstrut ontour fragments tailored to a spei� lass. The idea is to expliitly onstrut
fragments to our frequently on positive training images of a lass, while seldom in negative
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Groups of Adjaent Contour Segments 5

ones. Both works employ boosting to selet fragments from a large pool of andidates,
but di�er in the way these andidates are onstruted (random retangles sampled from
training segmentation masks in [29℄, whereas [22℄ grows fragments starting from random
ontour points, and optimizes their length so as to maximize Chamfer mathing sore and
auray of objet entroid predition in validation images). Although they an be more
disriminative for the learned lass, this kind of fragments are harder to reuse within other
reognition or image mathing frameworks, ompared to generi features, depending only on
loal properties of individual images. Moreover, the fragments of [29℄ are not sale invariant
and need segmented training images to be produed, whih further limits their appliability.

Berg et al. [2℄ o�er an alternative view on ontour-based objet reognition, asting the
problem as deformable shape mathing. Instead of ounting on sophistiated loal features,
they simply take individual edgels (with a Geometri Blur neighborhood desriptor), and put
them in orrespondene between pairs of images with a powerful non-rigid point mathing
algorithm based on Integer Quadrati Programming. The method obtains impressive results
on the hallenging Calteh101 database. One disadvantage is that it redues reognition to
mathing pairs of training and test images, and doesn't infer from the training images a single
model summarizing ommon properties shared by di�erent instanes of the lass. Besides,
it would be interesting to injet kAS in their framework, as replaeement for individual
edgels, and observe whether this would lead to improved performane.

Dalal and Triggs [4℄ onsiderably advaned the state-of-the art in human detetion, by
designing the Histogram of Oriented Gradients (HoG) desriptor, and arefully optimizing
it over a large dataset ontaining thousands of humans in unonstrained poses. In their
reognition framework image windows are subdivided in tiles and eah one is desribed by a
HoG. A simple sliding-window mehanism then allows to loalize objets. Photometri nor-
malization within multiple overlapping bloks of tiles makes the method partiularly robust
to lighting variations. Notie that HoG desriptors are only de�ned within a given subwin-
dow, they don't have a onept of loation and sale. Hene, they need to be assoiated
to some external feature detetor before being appliable within frameworks not based on
sliding-windows.

Pereptual grouping Pereptual grouping of ontours has a long history in omputer
vision [6, 12, 17, 18, 25, 26, 28, 32℄. The ruial idea behind these works is that piees
of ontour related by some pereptually salient property are more likely to belong to the
same objet. The pereptual properties exploited inlude onvexity [12℄, o-irularity [32℄,
onnetedness [26, 28℄, parallelism [18℄, and proximity[18℄.

One major area of appliation for pereptual grouping is image segmentation, in whih
the task is to group together all elements belonging to individual, unspei�ed objets [6, 12,
32℄. Moreover, pereptual grouping played an important role in the reognition of spei�
objets under varying viewpoint, partiularly in the 80s and 90s. The fous was mainly on
planar objets [26℄ and polyhedra [11, 18℄.

The kAS features are motivated by the same general intuitions of earlier pereptual
grouping works, and are most related the ideas of Rothwell [25, 26℄, who advoated for the
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6 Ferrari et al.

importane of onnetedness and topologial relations. We believe that onnetedness is
a fundamental, powerful driving fore whih is urrently still underexploited in omputer
vision. In this paper, onnetedness is brought to the domain of objet lass detetion, and
is exploited to de�ne modern loal invariant features: image elements with a well de�ned
loation, a sale and an invariant desriptor, ready to be used in many reent mathing and
reognition shemes.

3 k adjaent segments (kAS)

3.1 Contour Segment Network

We summarize here the tehnique of [9℄ to build the ontour segment network (CSN) of the
image, on whih we will detet our kAS features.

Edgels are deteted by the exellent Berkeley natural boundary detetor [20℄, and then
hained. The resulting edgel-hains are linked at their disontinuities, i.e. two edgel-hains
c1 and c2 are linked if c2 passes near an endpoint of c1, and if the ending of c1 is direted
towards c2 (�gure 1a). Informally, if c1 would be extended a bit, it would meet c2. These
links are useful in two ways: they reord that a ontour might ontinue over the gap between
two edgel-hains, and allow to apture juntions (L-juntions, T-juntions, and higher order
juntions involving several edgel-hains).

The edgel-hains are partitioned into roughly straight ontour segments. The idea is
to organize these segments in a network, by onneting them along the edgel-hains, and
aross their links (�gure 1a). Sine every edgel-hain an be linked to several others, the
CSN is a omplex branhing struture. Intuitively, two segments are onneted if the edgels
provide evidene that they might be adjaent along some objet ontour, even when they
are physially separated by a (small) gap, or when forming a juntion. The key property
of the CSN is to inlude paths going along the ontours of the imaged objets [9℄, whih
motivates kAS features.

3.2 Deteting kAS

The prinipal ontribution of this paper is to propose a family of loal features: paths
of length k through the CSN. More formally, a group of k segments is a kAS i� they
an be ordered so that the i-th segment is onneted in the CSN to the (i + 1)-th one,
for i ∈ {1, k − 1}. Hene we all them k adjaent segments, and refer to their length k as
degree. As k grows, kAS an form more and more omplex loal shape strutures: individual
segments for k = 1; L shapes and 2-segment T shapes for k = 2; C, Y, F, Z shapes, 3-segment
T shapes, and triangles for k = 3 (�gures 2, 3). The dimensionality of kAS desriptors also
grows with k (next setion), and we treat kAS of di�erent degrees as di�erent feature types,
all united in one family by a shared ruial property: to be sequenes of onneted segments.

Connetedness provides a natural riterion for grouping segments into kAS. It avoids
arbitrary de�nitions of the neighborhood of a segment, and onstrains kAS to be hains
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Figure 1: a) Three edgel-hains, with �ve segments and their inter-onnetions (arrows) in the
network. b) Two deteted 2AS (B, C) and (D, E). The order of eah segment in the desriptor is
marked next to it. Notie that (A,B), (A,C), (C, E) are also deteted, though not displayed beause
they overlap with (B,C) and (D, E). ) A 3AS (C, A, E). d) A 4AS (E, B,C, D). e) ri vetors
involved in the desriptor for the 4AS in d).

of segments. Compared to the broader lass of groups of `nearby' segments, they have
higher hanes to lie entirely on a portion of the objet boundary. The features of [13℄
instead, inlude disonneted sets of edgels whih happen to be loated along part of a
irle. Besides, the key urves of [27℄ are based on individual edgel-hains, and hene are
less robustly deteted in real images than kAS, whih bridge gaps between edgel-hains.
kAS an be deteted by a depth-�rst searh started from every segment, followed by the

elimination of equivalent paths (two di�erent paths involving the same segments onstitute
the same kAS). This is omputationally heap for the small values of k orresponding to loal
features (about k ≤ 5). We disregard higher values of k beause they result in large sale
strutures, too spei� to a partiular image or objet instane, and in an exessive number
of deteted features (several thousands already for k = 5). More preisely, the number of
kAS in an image ontaining n segments grow quikly with k, as an be understood by the
following observations. On average, eah segment is onneted to two to three other, beause
T and higher orders juntions our less frequently than simple 1-to-1 onnetions. As a
onsequene, as k grows, the number of paths of length k passing through a given branhing
point inreases quikly. In pratie, while the average number of 2AS is only about 1.5n,
the number of 3AS is 4n, that of 4AS is 10n, and there are more than 20n 5AS !
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8 Ferrari et al.

As k inreases, features inrease in omplexity. On the one hand, they beome more
and more informative, while on the other they gradually get less and less repeatable aross
di�erent images and objet instanes. Additionally, the number of non-boundary features (or
mixed features overing partly boundary and partly lutter) also grows with k, atually faster
than pure boundary ones, leaving a lower signal-to-noise ratio. Hene, for rather low values
of k, kAS have an attrative intermediate omplexity, o�ering a onvenient ompromise:
simple enough to be deteted repeatably, yet omplex enough to apture informative loal
objet strutures. In setion 6, we on�rm these intuitions experimentally, and determine
that 2AS perform best.

3.3 Desribing kAS

In order to ompare di�erent kAS, we need a numerial desriptor. As �rst step, it is
important to order the kAS segments {si}i=1..k in a repeatable manner, so that similar
kAS have the same order. We selet as �rst segment the one with midpoint losest to the
entroid of all midpoints {mi = (xi, yi)}i=1..k (when several segments have similar distanes
to the entroid, we pik the �rst one aording to the order de�ned below). As we will see
in the desriptor below, this entermost segment is the natural hoie as referene point
for measuring the relative loation of the other segments. The remaining segments take up
positions 2 through k, and are ordered from left to right, aording to their midpoint. If two
segments si, sj have similar x oordinate, i.e. (xi − xj) ≤ 0.2

√

(xi − xj)2 + (yi − yj)2, then
they are ordered from top to bottom. Note that this order is stable, as no two segments an
have similar loation in both x and y. Example orderings an be seen in �gure 1b-d.

One the order established, a kAS is a list P = (s1, s2, . . . , sk) of segments. Let
ri = (rxi , r

y
i ) be the vetor going from the midpoint of s1 to the midpoint of si. Fur-

thermore, let θi, li = ‖si‖ be the orientation and length of si. The desriptor of P is
omposed of 4k − 2 values 1 (�gure 1e):

(

rx
2

Nd

,
ry
2

Nd

, . . . ,
rx

k

Nd

,
ry

k

Nd

, θ1, . . . , θk,
l1
Nd

, . . . ,
lk
Nd

)

(1)

The distane Nd between the two farthest midpoints is used as normalization fator, making
the desriptor sale-invariant (hene, both the kAS features and their desriptors are sale-
invariant). While segment lengths are known to be often inaurate, and eah is based only
on part of the kAS, the distane between the farthest midpoints makes a better hoie for
a reliable estimate of the kAS sale. In addition to a kAS sale, we also de�ne its loation

to be the geometri enter of the midpoints of its segments. Exat de�nitions of sale and
loation are useful when using kAS in higher level algorithms, suh as in our sliding-window
objet detetion sheme (next setions).

The proposed desriptor onsiders the segments as ompletely straight, so as to apture
only the relevant information of the geometri on�guration they form, and not the varying

1The ase k = 1 makes exeption. The desriptor is omposed only of θ1, and the sale of 1AS is de�ned
as l1.
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Groups of Adjaent Contour Segments 9

details of the weak urvature along them. Moreover, we stress that only the k segments are
desribed, and not other nearby edgels. In this fashion, we an leanly enode a portion of
an objet boundary, without inluding inner/outer lutter (unlike [27℄).

With its 4k − 2 dimensions, the desriptor is also very ompat. Indeed, sine the
intrinsi dimensionality of k straight segments is 4k, and the dimensionality of the desired
sale+translation invariane spae is 3, the lowest dimensionality of a omplete desriptor
is 4k− 3. The only redundant degree of freedom we enode is embedded within the relative
loation vetors {ri}i=2..k, and fatoring it out would require representing them in a more
ompliated way.

Interestingly, the kAS desriptor is of di�erent nature than onventional loal textured
feature desriptors. While the latter enode the appearane of the pixel path overed by the
feature, the kAS desriptor enodes the geometri properties of the segments (orientation
and length), and of their spatial arrangement ({ri}i=2..k).

If desired, the desriptor an be easily made rotation-invariant, at the ost of some dis-
tintiveness, by measuring {θi}i=2..k relative to θ1, rotating {ri}i=2..k by θ1, and removing
θ1 from the desriptor. In addition, for k ≥ 3 one an design desriptors with even higher de-
grees of invariane (a�ne, projetive) to be used, e.g. for wide-baseline stereo [30℄, although
we do not investigate this possibility further in this paper.

3.4 Comparing kAS

We de�ne here a measure D(a, b) of the dissimilarity between two kAS P a, P b

D(a, b) = wr

k
∑

i=2

‖ra
i − r

b
i‖ + wθ

k
∑

i=1

Dθ

(

θa
i , θb

i

)

+

k
∑

i=1

∣

∣log
(

lai /lbi
)
∣

∣ (2)

where the �rst term is the di�erene in the relative loations of the segments, Dθ ∈ [0, 1]
measures the di�erene between segment orientations, normalized by π, and the last two
terms aount for the di�erene in lengths. As segment lengths are often inaurate, we
give higher weight to the two other terms of the omparison measure: in all our experiments
wr = 4, wθ = 2. All ri and all lengths are normalized as in equation (1).

4 Construting the kAS odebook

In the previous setion we have introdued the kAS features. Before using them for objet
lass detetion (next setion), we onstrut a odebook (or `visual voabulary' [3℄) of feature
types by lustering a set of training kAS aording to their desriptors (a di�erent odebook
is generated for eah k). In addition to revealing the frequeny at whih feature types our,
the odebook is onvenient beause it relieves the need for expliitly omparing every test
image features to every feature from the the training images. Instead, omparison to muh
fewer feature types su�e. Codebook representations have beome popular through several
reent works [3, 5, 14, 15, 16℄,
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10 Ferrari et al.

Figure 2: The 35 most frequent 2AS types from the odebook we use in all experiments, onstruted
from 10 outdoor images (5 positive and 5 negative images from the INRIA horses dataset, setion 6)

Let G be a omplete graph whose nodes are the training kAS, and ars are weighed by
d−D(a, b). We partition G into liques so as to maximize the sum of intra-lique weights,
using the lique-partitioning (CP) approximation algorithm of [8℄. Eah resulting lique is
a luster of similar kAS.

The hoie of CP instead of K-means, ommonly used for building visual odebooks, is
appropriate in our ontext where the dissimilarity measure D makes the desriptor spae
irular (Dθ terms). Moreover, the parameter d is easy to set, beause it represents a rough
indiation of the aeptable intra-luster dissimilarity (akin to the kernel-width in mean-
shift lustering [14℄). K-means instead requires the number of lusters as input, whih is
unknown apriori and varies from dataset to dataset. Several experiments indiate that the
exat hoie of d has little impat on the overall system performane (setion 6).

For eah luster, we selet as a representative the kAS with the lowest sum of dissimi-
larities to all others (i.e. the one losest to the luster enter). The �nal odebook C is the
olletion of these representative kAS, the kAS types.

When onstruting odebooks from di�erent image sets, we observed that the kAS types
ourring with a signi�ant frequeny were very similar. This on�rms the intuition that
kAS are generi features (ertainly for the low values of k we onsider). Hene, for eah k we
build a single odebook from 10 images and use it for all objet lasses in our experiments
(setion 6).

INRIA



Groups of Adjaent Contour Segments 11

Figure 3: The 35 most frequent 3AS from our odebook.

Figure 2 show the 35 most frequent types in the 2AS odebook. As we an see, they have
quite natural shapes: two ollinear segments, L strutures, and small T-juntions. Figure 3
displays the 35 most frequent 3AS types. They form more omplex strutures than 2AS:
C, Y, F, Z shapes, larger T shapes, and triangles.

5 Objet lass detetion

In this setion we present a sheme for deteting objets based on kAS. We �rst train a
lassi�er to distinguish windows overing objets of a ertain lass from any other window,
and then apply it for loalizing novel instanes in previously unseen test images, based on a
sliding window mehanism. As in the large majority of modern works, we build a detetor
for a single viewpoint.

5.1 Training

The training data inludes positive images, ontaining instanes of the lass annotated by a
bounding-box (�gure 4), and negative images.
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12 Ferrari et al.

Figure 4: a positive training example, with bounding-box, tiling, and a few kAS superimposed
(k = 2, T = 4).

Window desriptor. To produe a useful lassi�er, we need a numerial window de-
sriptor whih is aurate enough to separate positive examples from negative, yet �exible
enough to aommodate for lass variability. When these goals are met, test windows on
novel objet instanes will have desriptors loser to the positive training set than to the
negative, and the lassi�er an sueed.

A straightforward option would be the kAS histogram, ounting how many kAS of eah
type there are inside the window, whih is a simple bag of features representation. However,
we an obtain better disriminative power by also enoding the spatial layout of the kAS
in the window desriptor. We subdivide eah window into a set of tiles B, and ompute a
separate kAS histogram for eah tile (�gure 4). The onatenation of all histograms yields
the |B| · |C| - dimensional window desriptor.

The tiling pattern B automatially adapts to the training data as follows. First, the
system omputes the mean dimensions of the positive training windows (width Mw and
height Mh). Next, it alloates a total of T tiles, hoosing the number of tiles along eah
dimension so as to make them as square as possible: round(

√

TMw/Mh) along the width,

and round(
√

TMh/Mw) along the height. The parameter T = |B| ontrols the resolution of
the tiling. Mw,Mh will later be used again when searhing for objets in new test images,
to set the aspet-ratio of the sliding window to the one best �tting the training examples.

When omputing the kAS histograms, rather than assigning eah kAS to the single
losest type, it is soft-assigned to all types within dissimilarity d. More preisely, eah kAS
P distributes a total sum Ps among the types it is assigned to, in inverse proportions to the
dissimilarity to the types' representative kAS. This makes the representation of a window
less sensitive to the exat shape of the kAS it ontains, and to the exat odebook types.
This leads to smoother models, whih better generalize to novel objet instanes, and to a
more aurate, stable evaluation of test image windows (next subsetion). In addition to a
kAS' shape, we also onsider its relevane: the total ontribution of kAS P to a histogram
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is the average strength of its edgels Ps ∈ [0, 1]. We experimentally observed a onsiderable
improvement over treating edgels as binary features (as also notied by [4, 9℄).

Our window desriptor is a valuable hoie for objet lass detetion. It is distintive,
beause it reords whih loal shape strutures (kAS) it ontains, and roughly where they
appear. At the same time, it is �exible thanks to the oarse tiling, and the ontinuous
assignment of kAS to types. Muh of the power of our representation omes from organizing
the image edges over two levels of spatial arrangements: ontour segments within the kAS,
and then the kAS within the overall objet.

As the tiling resolution T inreases, the spatial loalization of kAS grows stronger, re-
sulting in a more informative desriptor, but also a more rigid one, aommodating for less
spatial variability of the lass. Hene, there should be some optimal T , bringing the best
trade-o� between auray of loalization information and tolerane to intra-lass variation.
Interestingly, our experiments show the optimal T to derease with inreasing k (setion 6).
With k = 1 the features are so uninformative that the window desriptor needs to be aug-
mented with �ne-grained loalization to be distintive. While k grows, kAS beome more
omplex, and the added value of loalization gradually diminishes. In addition, we found
the optimal T for interest points desribed by SIFT to be lower than that of any kAS we
explored (k ≤ 4). Sine SIFT desriptors of an image path are riher features (and have
a desriptor of muh higher dimensionality), this further on�rms the above subtle relation
between feature omplexity and loalization resolution.

SVM lassi�er training. The window desriptor is omputed for eah positive training
example, and for a number of negative examples olleted by sampling windows of size
Mw×Mh over eah negative training image. In our experiments, windows are sampled every
50 pixels horizontally and vertially, typially resulting in thousands of negative windows.

All window desriptors are �nally used to train a two-lass linear SVM. Sine negative
windows are muh more numerous, the positive window desriptors are repliated to orret
the imbalane.

Figures 5 and 6 show a few kAS automatially seleted by the SVM for a few lasses (i.e.
the 'kAS type + tile' ombinations orresponding to the highest weighed window desriptor
dimensions). Among the large number of KAS omposing eah example, several lie on
the objet boundary, and are piked up by the SVM as loal shape strutures ommon to
multiple training examples.

Using multiple kAS degrees at one. Our framework inludes the possibility to use
multiple degrees of kAS at the same time (e.g. 2AS and 3AS). In this ase the di�erent sets
of kAS are treated separately: there is a odebook and tiling resolution for eah value of k.
Window desriptors obtained for di�erent k are then onatenated to give a large desriptor
whih is fed to the SVM.

Using kAS of di�erent degrees at the same time is an interesting option. Some harater-
isti objet elements might be extremely simple (like the straight line on top of a omb, for
whih k = 1 is good), while others might be more sophistiated loal strutures (like a C-

RR n° 5980



14 Ferrari et al.

Figure 5: one of the top dimensions seleted by the SVM for three lasses (k = 2)

shaped mug handle, for whih k = 3 is good). Hene, using multiple degrees simultaneously
o�ers the SVM a larger, more diverse pool of parts to hoose from.

5.2 Testing

Having trained a linear SVM window lassi�er, we an detet and loalize novel objet
instanes in a test image using a simple sliding-window mehanism [31, 4℄. We slide a
window of aspet-ratio Mw/Mh over the image at multiple sales 2 , ompute the window
desriptor at eah loation/sale and evaluate it with the SVM. This provides a 3D response
map, whose loal maxima give andidate objet detetions. The �nal set of detetions are
obtained after a last polishing: if two andidate detetions overlap onsiderably, we �lter
out the weaker one.

This sliding window tehnique requires omputing the histogram of kAS types within
a large number of image windows (tiles). We ahieve this e�iently by using an Integral
Histogram [24℄ representation (IH). After building an IH where eah dimension orrespond

2This is implemented simply by resizing the window to ontain a varying portion of the image. It is not
neessary to resale the image, beause the kAS features themselves automatially adapt to image strutures
of di�erent sales. In all our experiments the sliding step is 10 pixels is eah diretion, while the sale step

is 2
1

4 . We onsider all sale levels where the window's longer side is more than 50 pixels and still �ts in the
image.
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Figure 6: one of the top dimensions seleted by the SVM for three lasses (k = 3)

to a kAS type, it is possible to ompute the histogram of kAS types in any window in 3|C|
operations, independently of the total number of kAS in the image and of the number of
kAS in the window. The ost of building the kAS IH is low, and it is done only one for
an image (as we adpot a single odebook for eah k). The main share of the ost is the
omputation of the soft-assignments the image kAS to types, whih must be done anyway.

Our objet detetion proedure is very fast. After preproessing (from edge detetion to
the kAS IH), it takes about 1 seond to detet all instanes in our C++ implementation on a
standard workstation. Preproessing takes longer, due the aurate, but slow, Berkeley edge
detetor (a few minutes). However, it only needs to be done one, so the ost is amortized
when searhing for several lasses, or when using kAS of multiple degrees at the same time.

6 Experimental evaluations

6.1 Datasets and protool

We present extensive experimental evaluations, involving several existing datasets, over 8
diverse shape-based objet lasses, for a total of more than 1400 test images. Here we brie�y
introdue these datasets, while the following setions report the experiments.
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INRIA horses [13℄ This hallenging dataset onsists of 170 images ontaining one or
more horses, seen from the side, and 170 images without horses. Horses appear at several
sales, and against luttered bakgrounds. We employ the �rst 50 positive and 50 negative
images for training, and the remaining 120 + 120 images for testing.

This dataset plays a speial role in our evaluations, as we optimize the two free parameters
of our detetion system on it (the window tiling resolution T and the lustering threshold
d). The optimal setting established on this dataset is then used on all others. No tuning is
applied to any other dataset, so the exat same system is run on all datasets.

Weizmann-Shotton horses [29℄ Shotton et al. [29℄ propose another horse detetion
dataset, omposed of 327 positive images ontaining exatly one horse eah, and 327 neg-
ative images. The positive images are derived from a dataset previously released by the
Weizmann institute for evaluating image segmentation algorithms. In order to arry out
proper omparisons, we follow the protool of [29℄ stritly by using their sale-normalized
images, and running our system at a single sale 3. As in [29℄, the �rst 50 positive and 50
negative images are used for training, the other 277 + 277 for testing (�gure 8).

ETHZ shape lasses [9℄ This dataset features �ve diverse lasses (bottles, swans, mugs,
gira�es, apple logos), over a total 255 images olleted from the web by Ferrari et al. [9℄. It
is the most hallenging one we report on, as the objets appear in a wide range of sales,
there are onsiderable intra-lass shape variations, and many images are severely luttered,
with the objets omprising only a fration of it (�gure 10).

We train one detetor per lass, using the �rst half of the available positive images
(there are 40 for apple-logos, 48 for bottles, 87 for gira�es, 48 for mugs, and 32 for swans).
As negative training images, an equal number is taken, with eah of the other 4 lasses
ontributing 1/4 of them. For example, the training images for the bottle detetor are 24
bottle images, plus 6 images from eah of the other lasses, totaling 24 negative training
images. All other images are used for testing, so eah lass is searhed for in images from
every lass.

Calteh 101 [7℄ The last soure of data we onsider are three shape-based lasses from
the well-known Calteh-101 database [7℄: anhors, hairs, and ups (42, 62, 57 positive im-
ages respetively). Although most images ontain only limited lutter, the dataset o�ers
substantial intra-lass variation (�gure 10). As for the ETHZ Shape Classes, we evaluate
one lass at the time. We use the �rst half of the positive images for training, as well as an
equal number of negative images from the Calteh-101 bakground set. The test set onsists
of the remaining positive images, plus the same number of negative ones.

Evaluation riterion Performane is evaluated by plotting detetion-rate (DR) versus
the inidene of false-positives (false-positives per image, FPPI) while varying the detetion

3sliding a window of �xed dimensions Mw ×Mh. In all other experiments the system is run at multiple
sales as detailed in setion 5.2.
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threshold. We prefer these DR/FPPI plots over preision/reall ones for several reasons.
FPPI has a learer interpretation than preision, whih is entangled with detetion-rate.
Moreover, FPPI is independent of the number of negative test images, and DR/FPPI plots
are easier to read, beause they inrease monotonously.

Comparisons between di�erent methods is mainly based on two points on the DR/FPPI
plot, at 0.3 and 0.4 FPPI. These are espeially relevant beause they orrespond to a rather
low, but not extremely low, FP rate (around 1 FP every 3 images). Only on the Shotton
horses dataset we report preision/reall plots, and ompare methods based on equal-error
rates, beause [29℄ published their results in that form. Hene, average detetion-rates at a
partiular FPPI rate refer to means omputed over 9 datasets, exluding Shotton horses.

For all datasets and methods, a detetion is ounted as orret if its bounding-box
overlaps more than 20% with the ground-truth bounding-box, and vie-versa. Any other
detetion is ounted as a false-positive.

6.2 Degree of omplexity of kAS
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Figure 7: Impat of window tiling resolution T at the optimal lustering threshold d. The optimal
T is T = 90 for 1AS, T = 30 for 2AS, and T = 20 for 3AS and 4AS.

Impat of tiling and lustering threshold Before omparing the performane of kAS of
di�erent degrees of omplexity on all 10 datasets, we �rst optimize T, d for eah k separately
on the INRIA horses dataset (k ∈ {1, 2, 3, 4}). For several pairs of T, d, we reproess the
dataset and obtain a DR/FPPI urve. Figure 7 shows the impat of the tiling resolution,

RR n° 5980



18 Ferrari et al.

Figure 8: Top row: detetions at 0.4 FPPI for the INRIA horses dataset. Rightmost image shows
a missed detetion and a false-positive. Bottom: detetions at the equal-error rate for the Shotton
horses dataset.

while keeping d �xed at the optimum. From the plots it learly appears that subdividing
the window into tiles makes a substantial di�erene for all k. Compared to a single bag-of-
feature representation (no tiles), at 0.3 FPPI the optimal tiling brings improvements ranging
from 20% (k = 1) to 13% (k = 4) detetion-rate.

It is intriguing to observe that the optimal value of T dereases with inreasing k. This
on�rms experimentally the subtle relation disussed in setion 5.1: as the features grow
more omplex and hene informative, a oarser spatial loalization is su�ient, while at
the same time a lower T yields better tolerane to intra-lass variations. Individual seg-
ments bene�t most from a very �ne subdivision of 90 tiles, whereas the saturation point
for loalization information is already reahed at 20 tiles for 3AS. Moreover, also the gain
brought by tiling redues as the features beome more omplex, beause the added value of
loalization gradually diminishes (at 0.3 FPPI, it is of 20%,16%,16%,13% detetion-rate for
k=1,2,3,4 respetively).

Varying the lustering threshold d has a smaller impat. Nevertheless, we observe the
number of lusters orresponding to the optimal d to inrease with k (4, 127, 255, 397 for
k = 1, 2, 3, 4 respetively). This makes sense, beause as the features beomes more omplex,
they an assume a wider variety of shapes. In partiular, just 4 lusters are neessary for
k = 1, orresponding roughly to four orientations separated by 90 degrees.

Following these observations, all further experiments are performed with the optimal
parameters T, d for every k.

Degree k We applied our objet detetion sheme to all 10 datasets, for the four degrees of
kAS omplexity we explore (k ∈ {1, 2, 3, 4}). Although there is no single degree produing
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Figure 9: Performane of kAS, for varying degrees of omplexity k. Top row: the two horses
datasets we onsider: INRIA horses, and Shotton horses. Seond row: the three lasses from
Calteh 101. Third row: the �ve ETHZ Shape Classes. All performane omparison �gures in the
paper follow this layout.

the best results on all datasets, 2AS perform best overall (�gure 9). The 2AS plot is
above all others on 5 datasets, and its average detetion-rate at 0.3 FPPI is 76.7%, versus
69.4%,64.1%,56.5% of 1AS,3AS,4AS respetively (table 3). Hene, we onluder that 2AS
are the kAS with the best intermediate omplexity, o�ering the optimal ompromise between
being informative, repeatable, and generating a good ratio of pure boundary features versus
mixed/lutter features (as disussed in subsetion 3.2). In the remainder of the paper, 2AS
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is the referene kAS for omparison to other methods, and will be referred to as PAS (pairs
of adjaent segments).

As inspeting table 3 reveals, ranking kAS aording to average detetion-rate at 0.3, or
0.4 FPPI, the following order appears: 2AS > 1AS > 3AS > 4AS. This ranking is well on-
�rmed by the overall relative heights of the DR/FPPI plots (learest on mugs, applelogos).
Surprisingly, the seond best kAS are individual segments. Muh of the reason is in the great
impat of tiling on 1AS, where very �ne-grained loalization ompensates for the feature's
lak of distintiveness (�gure 7). Nevertheless, PAS do better, on�rming it's advantageous
to onsider groups of onneted segments as features for objet detetion. Moreover, PAS,
as well as kAS of higher degrees, are more reusable in other systems, where the disrimina-
tive power of individual features is more important, or where a feature orrespondene must
generate a higher order transformation than just translation (e.g. reognition systems using
feature transformations [16, 10℄, or for mathing features between two images [21, 30℄).

In absolute performane terms, PAS work onsistently well on all lasses (detetion-
rates between 79% and 88% at 0.4 FPPI), with the exeption of swans. This is espeially
remarkable when onsidering the low number of positive training images used in many
datasets (e.g. 24 for bottles, see table 1). PAS ahieve partiularly high performane on
Shotton-horses, with 91.7% preision-reall equal error-rate, in line with the state-of-the-art
approah [29℄ (92.1%), while 1AS do even better, with 93.5%. Moreover, in ontrast to their
work, our method doesn't need any segmented training image (only bounding-boxes), and
an detet objets at multiple sales. The striking performane of 1AS on this dataset (the
only one where they beat PAS) might be explained by the very low resolution of the images
(horses are about 100 pixel wide), whih favors simpler features.

We an also draw a loose omparison to [13℄, on the INRIA horses datasets. Numerially,
PAS' performane is lose to their work (e.g. PAS do 70.0% at 0.066 FPPI, whih orre-
sponds to 86.1% preision, while [13℄ reports 70.3% reall at 87.7% preision). However,
an exat omparison is not possible, as the authors of [13℄ have lost details of the partiular
test set on whih results were reported. We adopt here the o�ial release of the dataset,
whih should ome quite lose. As a referene, we also mention that [9℄ obtains a similar
level of performane as PAS on the ETHZ Shape Classes, although the two methods are not
diretly omparable sine [9℄ inputs hand-drawings as models.

In order to further strengthen our understanding of PAS' performane, and properly set
it in the ontext of alternative methods, in the following we perform in-depth omparisons
to interest points, used within our objet detetion framework, and to the system of Dalal
and Triggs [4℄.

6.3 Comparison to interest points

Interest point (IP) detetors respond to loal pixel patterns with ertain speial properties
(e.g. ornerness) and produe loal features widely used for objet lass detetion [10, 16, 5℄.
IP desriptors apture the appearane of the image pathes surrounding them. In order to
support the laim that kAS are better suited to represent shape-based lasses, we replae
them by IPs in our objet detetion framework, and reproess all 10 datasets. We experiment
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Figure 10: All detetions at 0.4 FPPI on some example images. Top 3 rows: ETHZ shape lasses.
Bottom row: Calteh 101.

with three of the most widespread sale-invariant IPs: Harris-Laplae [21℄, LoG [19℄, and
DoG [19℄. All IPs are desribed by the extremely popular 128-dimensional SIFT [19℄.

Codebooks, tiling, and number of lusters The number of IP per image is about
1000 to 2000, larger than that of kAS (for k ≤ 4). In addition, we want to experiment with
IP odebooks built from more than the 10 images used for kAS (details below). As a result,
the total number of IPs to be lustered an grow beyond what CP an handle. Sine CP
builds a pairwise dissimilarity matrix, memory onsumption limits the number of features
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Figure 11: Optimizing T , keeping the number of lusters �xed at 140 (whih is the optimum in the
tested range 100 − 300).

to about 15000, while in several ases there are more than 50000 IPs. Hene, we build IP
odebooks using k-means. Notie how the CP parameter d is now replaed by expliitly
providing the number of lusters.

As done before for kAS, we optimize the number of tiles and of odebook lusters on
INRIA horses (�gure 11). The seleted optimal T is 10, whih on�rms the trend observed
on kAS: the riher the feature, the lower the value. Figure 11 shows the evaluation on
Harris-Laplae, but similar optimal values are obtained for DoG or LoG.

The rationale behind using a single kAS odebook from a small set of 10 images is that
the features are simple and generi enough. However, this might not hold for IPs. Sine they
are based on texture, and the SIFT desriptor aptures an entire image path, quite di�erent
odebooks might result from di�erent image sets (e.g. gira�es versus horses). Therefore,
we experimented with three kinds of odebooks, on the �ve ETHZ Shape Classes. The �rst
is omputed from the same 10 images used for kAS, the seond is spei� to a single lass
(omputed from the same images used to train the SVM), and the last is based on images
from all �ve lasses (omputed from all images used to train all 5 SVMs). From the results
we obtained, it indeed appears that lass-spei� IP odebooks perform moderately better
on average. Hene, all experiments below are performed with lass-spei� odebooks.

Performane The plots in �gure 12 and the average detetion-rates in table 3 learly
show that PAS substantially outperform all tested IPs. Only on two datasets IPs ahieve
a moderately better performane than PAS (Harris-Laplae on swans, and DoG on up).
Besides, we notie IP's uneven performane aross di�erent lasses (ompare DoG on up
and bottles). PAS' performane instead, is quite stable. Finally, it's worth noting that on
gira�es, for whih both shape and texture are harateristi, the results of PAS and the best
IP are very lose (espeially in the range 0.3-0.4 FPPI).

Beyond PAS, one an ompare kAS in general to IPs. In terms of average detetion-
rate at 0.3 − 0.4 FPPI, all explored kAS do onsiderably better than any of the tested IPs
(table 3). Only the performane levels of 4AS and Harris-Laplae are similar.
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Figure 12: Performane of IPs, ompared against PAS.

Inspeting the data, it is also possible to rank features among IPs. Although no single
one works best on all datasets, on average Harris-Laplae stands out, followed by DoG and
LoG, whih are at about the same level (table 3).

In onlusion, these experiments on�rm that kAS are more appropriate features than
IPs for shape-based lasses.
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6.4 Combining multiple kAS degrees

Even though PAS are better than kAS of other degrees on most datasets, 1AS and 3AS win
on Shotton horses and anhors respetively. This suggests that using all three 1AS/2AS/3AS
simultaneously might give an even better detetor.

As explained in setion 5, we integrate kAS of multiple degrees by onatenating window
desriptors omputed separately for eah k, and then training a single SVM from them. Eah
degree uses its own odebook and optimal tiling resolution. In this fashion, the SVM an
hoose from a very large pool of di�erent loal shape strutures and tile ombinations.

The results an be seen in table 2. For most datasets, performane is very similar to
PAS. On Shotton horses instead, {123}AS ahieves an exellent 94.2% preision-reall equal-
error rate, whih is signi�antly better than any of 1AS, 2AS, or 3AS. On swans however,
we register a onsiderable performane drop wrt to PAS (from 64.7% down to 47.1% at
0.3 FPPI). Moreover, the high performane of 3AS on anhors (90.5% at 0.3 FPPI) is not
reprodued by {123}AS (76.2% at 0.3 FPPI).

Although it seems surprising that adding features an lower performane, this ould
be due to over�t. Indeed, the dimensionality of the ombined window desriptor is muh
higher than that of a single kAS degree, while the number of training examples remains the
same. To orroborate this, notie how the performane drops our on the datasets with
fewest training examples (swans, 2x16 training examples, and anhor, 2x21 examples), while
the largest improvement happens on the dataset with most examples (Shotton horses, 2x50
examples, see table 1). Hene, although in our experiment {123}AS performs on average
slightly below PAS (table 3), they remain a promising option for datasets with many training
images.

Finally, we have tried to redue the dimensionality of the window desriptor with a simple
feature seletion sheme. We sort the SVM hyperplane oe�ient and keep the �rst N, so
that they sum up to a ertain perentage of the total mass. Remarkably, when keeping as
few as 50% of the total mass, detetion-rate only dereases of 2.5% at 0.3 FPPI on INRIA
horses. This orresponds to retaining only 18% dimensions, therefore omputing a fration
of all 'kAS type + tile' ombinations, yielding a speedup of fator 5.

6.5 Combining PAS and Harris-Laplae

Following the same approah as in the previous subsetion, we have ombined PAS and
Harris-Laplae, as they are the best members of their respetive feature families. This
seems an exiting possibility, beause PAS and Harris-Laplae exploit omplementary image
properties (ontour and texture). Hene, the hope is to obtain a more generi objet detetor,
whih might autonomously determine whih kind of feature is more appropriate for (part
of) a given objet.

The PAS+Harris detetor does better than either omponent alone on gira�es and Shot-
ton horses (table 2). This is partiularly meaningful sine gira�es are de�ned by both shape
and texture, so we expet their ombination to reinfore the detetor. Moreover, gira�es
and Shotton horses are the only two lasses on whih PAS and Harris-Laplae work about
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equally well. PAS+Harris now ahieves an impressive 95.7% preision-reall equal-error-rate
on Shotton horses, onsiderably above the 92.1% of [29℄. Furthermore, on INRIA horses,
hair, and swans, PAS+Harris exhibit the desired behavior: its performane aligns with the
better of either PAS or Harris-Laplae. However, on the remaining 5 lasses PAS+Harris
only performs somewhere inbetween PAS and Harris-Laplae. Again, a probable reason is
over�t, and we observe a lear orrelation between the performane improvement/loss of
PAS+Harris and the number of training images in a lass (table 1). To on�rm this further,
we run tests with several randomized splits of the images in training and test subsets, and
observed that the performane variations of PAS+Harris are far greater than those of either
feature alone.

6.6 Comparison to Dalal and Triggs [4℄

We onlude our series of evaluations by omparing against the objet detetion tehnique
by Dalal and Triggs [4℄, whih is urrently the state-of-the-art in human detetion, and has
proven very ompetitive on other lasses as well [33℄. Like ours, their objet detetor is
based on sliding a window subdivided into tiles, but uses histograms of gradient orientations
as desriptors.

In an e�ort to perform a fair omparison, we disussed with the authors of [4℄, who
reommended the following operations. First of all, we used the o�ial software released
by the authors. Moreover, we resaled all training windows to make the longest side 100
pixels, whih is about the resolution their system is tuned on [4℄. Finally, following the pro-
tool applied for PAS, we optimized the two most important parameters on INRIA horses.
These are the preproessing applied before omputing gradients, and the blok normaliza-
tion sheme applied after olleting HoG desriptors. The di�erene between the best and
the worst ombination of preproessing and normalization turned out to be moderate: 4.5%
detetion-rate at 0.3 FPPI. Nevertheless, we proessed all datasets with the best ombina-
tion: onverting to Lab olor spae as preproessing, and normalizing desriptors by the
square root of the L1 norm (see [4℄ for details).

The results are displayed in �gure 13 (the system of [4℄ is marked as HoG). Our detetor
ahieves a substantially higher performane on 6 of the 10 datasets, while on mugs and
applelogos the two methods are about equally good, and HoG obtains better results on
applelogos and swans. In terms of average detetion-rate at 0.3 FPPI, PAS leads with a
onsiderable margin of 20% (table 3).

The HoG urves abruptly stop growing after a rather low FPPI rate, due to the system
returning no detetion on several images. We tried to ounter this by altering a parameter
ontrolling the minimal sore for windows to enter the non-maxima suppression stage, but
it only resulted in lower urves (as also expeted by Dr. Dalal). Besides, we point out
that expliitly omparing performane at the point where HoG stops growing only makes a
di�erene for up. PAS still leads on 6 datasets, and draws on mugs. Finally, even if fully
growing urves ould be produed, the trend in DR/FPPI plots is for the slope to derease
with inreasing FPPI. Hene, even in an optimisti extrapolation, the HoG urves would
still remain below PAS' ones for 6 datasets.
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Figure 13: Comparison between our PAS-based detetor and Dalal and Triggs [4℄ HoG-based ones.

In onlusion, our detetion system ompares favorably to [4℄ in our experiments, whih
further onsolidates PAS as exellent features for objet detetion.

7 Conlusions

We have introdued the kAS family of loal ontour features and their appliation for objet
detetion. kAS are designed to be apable of overing pure portions of an objet boundary,
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Table 1: Number of positive+negative training and testing images for all datasets.

INRIA Anhor Chair Cup Applelogo Bottle Gira�e Mug Swan Shotton

Train 50+50 21+21 31+31 29+29 20+20 24+24 44+44 24+24 16+16 50+50
Test 120+120 21+21 31+31 28+28 20+215 24+207 43+167 24+207 16+223 277+277

Table 2: Detetion rates at 0.3 and 0.4 FPPI for all features we tested, as well as for the objet
detetion system of [4℄ (marked as HoG). The 'Shotton' olumn reports reall at equal error-rate for
the Shotton horses dataset. It is inluded here for homogeneity of presentation.

Detetion rate INRIA Anhor Chair Cup Applelogo Bottle Gira�e Mug Swan Shotton

PAS (0.3 FPPI) 85.4 76.2 78.1 78.6 65.0 89.3 72.3 80.6 64.7 91.7
1AS (0.3 FPPI) 86.2 85.7 81.2 75.0 55.0 78.6 59.6 67.7 35.3 93.5
3AS (0.3 FPPI) 79.2 90.5 75.0 71.4 35.0 67.9 61.7 54.8 41.2 90.3
4AS (0.3 FPPI) 76.9 57.1 71 71.4 30.0 60.7 63.8 41.9 35.3 90.3
Harris (0.3 FPPI) 63.1 47.6 50.0 42.9 60.0 39.3 70.2 45.2 76.5 91.0
Dog (0.3 FPPI) 42.3 23.8 53.1 78.6 45.0 17.9 55.3 22.6 47.1 89.2
Log (0.3 FPPI) 50.8 23.8 31.2 57.1 30.0 25.0 72.3 38.7 58.8 90.3
{1,2,3}AS (0.3 FPPI) 86.2 76.2 77.4 82.1 70.0 85.7 68.1 80.6 47.1 94.2
PAS + Harris (0.3 FPPI) 84.6 61.9 83.9 67.9 60.0 57.1 80.9 51.6 82.4 95.7
HoG (0.3 FPPI) 74.6 9.5 32.3 78.6 85.0 17.9 48.9 80.6 82.4 70.1

PAS (0.4 FPPI) 87.7 81.0 87.5 82.1 85.0 89.3 78.7 80.6 64.7 91.7
1AS (0.4 FPPI) 86.9 90.5 84.4 82.1 65.0 85.7 61.7 71.0 58.8 93.5
3AS (0.4 FPPI) 85.4 90.5 84.4 75.0 40.0 78.6 72.3 64.5 41.2 90.3
4AS (0.4 FPPI) 80.8 71.4 90.3 78.6 30.0 64.3 68.1 51.6 41.2 90.3
Harris (0.4 FPPI) 73.8 47.6 62.5 53.6 70.0 39.3 72.3 45.2 82.4 91.0
Dog (0.4 FPPI) 49.2 28.6 71.9 92.9 45.0 17.9 59.6 29.0 58.8 89.2
Log (0.4 FPPI) 56.2 38.1 34.4 60.7 35.0 25.0 74.5 48.4 58.8 90.3
{1,2,3}AS (0.4 FPPI) 87.7 85.7 87.1 82.1 80.0 85.7 74.5 83.9 58.8 94.2
PAS + Harris (0.4 FPPI) 87.7 71.4 90.3 75.0 75.0 64.3 80.9 64.5 82.4 95.7
HoG (0.4 FPPI) 74.6 9.5 32.3 78.6 85.0 17.9 53.2 83.9 82.4 70.1
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Table 3: All features and ombinations tested, ranked aording to their detetion rates at 0.3 and
0.4 FPPI, averaged over all datasets but Shotton (for whih we evaluate in terms of preision/reall).

Method Average DR at 0.3 FPPI Avearge DR at 0.4 FPPI

PAS 76.7 81.8

{1,2,3}AS 74.8 80.6

PAS + Harris 70.0 76.8

1AS 69.4 76.2

3AS 64.1 70.2

4AS 56.5 64.0

HoG 56.6 57.5

Harris 55.0 60.7

Dog 42.9 50.3

Log 43.1 47.9

without inluding nearby spurious edgels. Moreover, they an form a wide variety of loal
shape strutures, ombine informativeness and repeatability, and onstitute omplete, sale-
invariant loal features ready to be used in many reognition or image mathing frameworks
4 .

We have demonstrated kAS within a sliding-window objet detetor, where windows
are subdivided into tiles, eah desribed by a bag of kAS. Extensive evaluations brought
several interesting onlusions. First, the optimal number of tiles dereases with inreasing
omplexity k, as a result of the shifting trade-o� between the resolution of loalization
information versus the rigidity of the representation. Seond, PAS perform better than other
kAS, as they bring the best ompromise between distintiveness and repeatability, while also
yielding a good proportion of pure boundary features. Third, kAS work substantially better
than interest points for shape-based lasses, and, �nally, our PAS-based objet detetion
system ompares favorably to the state-of-the-art method [4℄.

The use of kAS in this paper is limited to a rather simple detetion framework, through
whih we analysed their properties and performane. However, we expet kAS to be useful
in other systems and tasks, with possibly other behaviors. For example, although in our
analysis 2AS worked best, kAS of higher omplexity are attrative when the loalization
onstraints are weaker or absent and hene the disriminative power of individual features
might beome more important [16, 5, 2℄, or when higher degrees of geometri invariane are
required (e.g. image mathing [30, 21℄). Besides, sine our objet detetor is restrited to
a single viewpoint, it is unlear how well kAS would work in a multi-view setting. Finally,
e�etive ways to ombine appearane features with kAS remain to be investigated. One
option would be to integrate both tightly, by augmenting kAS with appearane information
(e.g. by desribing olor or texture properites on either side of a L-shaped PAS).

4 We have released an exeutable to detet and desribe kAS on lear.inrialpes.fr/software
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