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Abstract - In this article, we give some insights of a novel ap-
proach to active environment recognition in mobile robotics.
The basic idea consists on utilizing a Physics-like interac-
tion law to fix a relation between sensors and effectors val-
ues at any time. Our main assumption is that the trajectory
of the robot in the phase space, which depends uniquely on
its environment -when the law and the nature of the robot
are fixed- may discriminate environments better than clas-
sical Data Analysis methods. In order to test our assump-
tion, we choose to model an analogical robot which light sen-
sor amplitudes and wheels speed are coupled in a set of dif-
ferential equations. As a result, we show that our method is
tractable and perform well for discriminating simple environ-
ments, comparing to a data analysis strategy.

Keywords— Mobile Robotics, Dynamic Systems, Environe-
ment Recognition, Physics-like interaction

I. INTRODUCTION

A. Framework

According to the traditional point of view in mobile
robotics, sensing is a passive process (i.e. gather data us-
ing sensors) whereas moving in the world is an active one.
Any task of the robot fulfills the following straight forward
schema: sense the world → analyze gathered data → act
in the world (see fig. 1, (a)). Acting as best as possible
(to achieve a precise goal) implies a data analysis process
ruled by an optimal (or suboptimal) decision making policy
that leads to an optimal (or suboptimal) action of the robot
in the world. The (statistical) precision and reliability of
the resulting task depends mainly on the way it has been
modeled and on the data analysis process, because the data
acquisition process is considered to be fixed.

Our general claim supposes that the reliability or the pre-
cision of the former results may be enhanced by consider-
ing active data acquisition processes. In the case of mo-
bile robotics, that involves considering ”small” and ”fast”
movements of the robot performed during the laps of time
the data acquisition is accomplished. The idea that move-
ment is crucial to gather ”good” data is not new. Histor-
ically, it is the key point of the sensorimotor hypothesis
for biological entities [HEL 21],[GIB 79]. Loops includ-
ing motor neurons and neurons associated with senses have
been discovered in the brain. Moreover, it has been shown
that eye saccades are necessary in the human recognition
process and that active movement may help people to dis-

ambiguate artificial scenes [WEX 01]. This precise idea
has been exploited in robotics, in the field of active vision
[BAL 90],[BAJ 88].

Recently, our team have also done some work on the use
of fractal dimension to caracterize the specificity of data
gathered by a moving mobile robot [VIG 02]. This work
has led to the conclusion that a disconnection between the
strategy of movement and the data analysis process may
carry poor results.

B. Main assumption

The general idea implies that the acquisition process is
made of two interconnected modules: sensing and acting.
However, our assumption is much more precise than that.
It relies on the existence of a physics-like interaction law
that links sensors and effectors values (see fig. 1, (b)). This
assumption has immediate consequences: sensory and mo-
tor variables are instantly codetermined, with no possibil-
ity to orientate that link, e.g. to say that if sensor values
are changed by a given amount, then effectors values will
change in a certain way. In the case we depict in this paper,
the sensory motor law is modeled by a set of coupled differ-
ential equations. The solutions (when then exist) are trajec-
tories in the phase space (combining sensors and effectors
variables). The class of solutions may be interpreted as the
set of all possible behaviors of the robot facing all possible
worlds. A particular trajectory in the phase space is deter-
mined during the experiment, when the robot is facing a
particular world. Thus, two different trajectories (given a
certain distance) may be associated to two different envi-
ronments (see fig. 2): this determines the basic principle
for an environment recognition process.

The existence of a physics-like interaction law is a strong
constraint because the relation between sensory motor vari-
ables must be fulfilled at any time. It is based on an ac-
tion/reaction procedure: the world (which is a priori un-
known) acts on the robot by the way of the sensor values
and the movement of the robot and, at the same time, the
machine reacts to adapt its internal parameters (which are
known) in order to follow the interaction law. This ac-
tion/reaction procedure has already been successfully uti-
lized to design a reinforcement learning algorithm onto
which convergence proofs may easily be given [DAV 99],
[DAV 04]. One particular advantage consists on the possi-
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Fig. 1. (a) Classical approach. The Data Acquisition process re-
lies on a set of sensors that transduct and digitize some envi-
ronmental variables. The result is called a set of data. It feeds
in a straightforward manner a Data Analysis stage, which aim
is to make the data set useful to the experimenter, with respect
to a value function that embodies the experimenters’ needs to
understand the physical world. (b) Interactionist approach.
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Fig. 2. Different trajectories associated to different environments.
X1 and X2 are the variables of the phase space. We depict
two planes over the environment axis, representing two dif-
ferent environments. The different trajectories in the same
plane represent different behaviors of the robot placed in dis-
tinct areas of the same environment.

bility to determine the class of solutions before the experi-
ment. In our case, this permits to have and idea about the
similarity of the shapes of the possible trajectories. The
more two shapes are ”different”, the more it is possible to
discriminate the two associated environments.

C. Environment recognition - interactionist versus classi-
cal approach

In this article we focus on an environment recognition task
in which recognition is made by gathering data over a fixed
laps of time d. In a general sense, that means that the
robot first evolves locally in a given target environment,
following some trajectory we will discuss later in this pa-

per. Then, it is presented to a series of k distractive en-
vironments, that may include the first one, and where it
evolves during d as in the first stage. The aim of this task
consists on identifying the target environment among the
distractive environments on the basis of the data collected
and analyzed during the various experiments.

In the classical approach, so called Data Analysis Approach
(DAA), this implies to put the robot in two given environ-
ments, to execute the same trajectory in both cases and to
compare the corresponding sensor values. The discrimina-
tion between two environments is then given by a distance
between two sensor data vectors.

Whereas in our approach, so called Interactionist Approach
(IA), the robot moves in order to fulfill the interaction law.
And its move during d depends on the sensor values, hence
the environment. So, one cannot force the robot’s trajectory
over d, but one may hope that this trajectory is a signature
of a local robot/environment interaction. The discrimina-
tion between two environments is then given by a distance
between two trajectories in the phase space combining sen-
sor and effector variables.

D. Issues covered by this paper

We have chosen to model the interaction law with a set of
coupled differential equations, which is a particular way
of implementing our assumption. In this paper, we detail
issues arising from this choice and provide simple exam-
ples in which artificial worlds may be discriminated by a
simulated robot after using our approach and compared to
the classical approach. These results are the beginning of a
work leading to an extended comparison, both theoretical
and experimental, between the results obtained by the clas-
sical approach and ours.

II. MODELIZATION OF OUR ASSUMPTION

A. General Principle for discriminating environments in
the IA approach

In IA, we impose a local discrimination criterion on the
Data Acquisition stage. To make it clearer, we choose to
adopt the tools of Dynamical System Theory, and assume
that the Data Acquisition step defines a multidimensional
phase space that includes both motor and sensitive data,
in which a state is called X . The interaction of the robot is
thus represented in this space by a trajectory T : t→ X(t).
We then suppose that the robot can take two simultaneous
different - but “close” - interactive measures, i.e. that it can
follow at the same time two different but close trajectories
T1 and T2 of the phase portrait. We also assume that the in-
teraction is not a completely deterministic process, but that
it has a stochastic component. We may then think of two
realizations of the same stochastic process, represented by



two trajectories T1 and T
′
1.

We state that the robot is able to discriminate locally be-
tween sensorimotor trajectories if we exhibit a distance
function operating on trajectories (T1, T2) → 〈T1, T2〉,
such that the following constraint C1 if fulfilled:

〈T1, T2〉 > 〈T1, T
′
1〉 (1)

Roughly, it means that two trajectories (produced by the
interaction with two environments) must be more different
(in the sense of a distance to be defined) than two realiza-
tions of the same trajectory (produced by the interaction
with one environment). The issue is that the robot have to
interact at the same time along two different trajectories. To
comply with this requirement, while avoiding to interrupt
the interaction, we imagine to make the Data Acquisition
stage both able to:

• apply a discontinuous perturbation at some given instant
of its interaction along trajectory T1.

• predict the lacking semi-trajectories that would have oc-
curred if no perturbation had happened.

Figure 3 illustrates this idea. Note that we thus constrain
the notion of locality, both in the spatial sense (proxim-
ity between sensorimotor trajectories in the phase space,
according to a distance) and temporal sense (time span re-
quired to make two trajectories out of one). Locality ex-
tends to the distance functions, since we don’t define a
global distance, but instead functions that locally verify the
constraint C1.
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Fig. 3. Perturbation and prediction to make two trajectories out of
one. Thick lines are measured interactions, dashed lines are
predicted ones. Zigzag curve marked with δ is the perturba-
tion. Other curves form the phase portrait in the sensorimotor
phase space (X1, X2).

B. Model of the robot’s interaction with its environment

First, we discuss the formalism in which to express the
interaction of the robot in its environment. Because we

need a balanced representation that takes into account sen-
sitive and motor values at the same time, in a determin-
istic fashion, we favor the Theory of Dynamical Systems
as our main theoretical framework, as we already men-
tioned in subsection II-A. The physical variables that de-
termine the robot’s behavior submit to a system of differ-
ential equations that involve the internal variables of the
robot Xi (value returned by the sensors, current that feeds
the motors, rotation speed of the wheels) and the external
variables Xe (position in the environment). This system is
coupled to another one that links the absolute position of
the robot in the environment to the value returned by its
sensors. As an example, we present the equations resulting
from modelisation of the implementation step:

Ẋi = AXi + f(Xe) (2)
Ẋe = g(Xe, Xi) (3)

The trajectories we’ve introduced in II-A are not the solu-
tions T : t → (Xi(t), Xe(t)) of this system, if they exist.
Indeed, we impose that the robot ignores the value of the
external variables to which it has no access. The internal
variables are the only one it can be aware of. Hence, the
mentioned trajectories are the projections Ti : t → Xi(t)
of the general solutions on the space of internal variables,
and will be used by both DAA and IA.
The data acquisition step generally needs sensors to be cho-
sen -that fit specific physical variables- and placed in such
a way that meaningful measures (in the sense of the ex-
perimenter) can be taken. This may include an appropri-
ate setting of the position and speed of the sensors in the
3D space. For that purpose, the robot is equipped with
effectors that enable it to move across the environment.
The data Analysis step often performs a discretization (i.e.
sampling and quantization) and some projection from the
temporal domain to the frequential one (e.g. Fourier trans-
form, wavelet analysis). Both participate to the creation of
a phase space, associated with some ad hoc function en-
dowed with the properties of a distance. The aim of this
space is to give a “complete description” of the observed
environment; which means that any two environments that
the experimenter can distinguish are separate in the metric
phase space.

Let’s sum up the main steps performed during data acqui-
sition and data analysis:

• choice of physical continuous variables measured by
sensors, including their respective positions and speeds.

• choice of a phase space via discretization, projection and
filtering.

• choice of a distance on the phase space.

The value function evoked in section II, imposed by the
experimenter, has to maintain an analogical link between
the complexity of the Data Analysis step -in an algorithmic
sense- and the discriminability of two environments for the



experimenter. To give an intuitive feeling of this idea, let’s
imagine a couple of environments E1 and E2 that are ob-
viously distinct in the experimenter’s perception, and an-
other couple E3 and E4 that are almost the same in the
same sense. Then the Data Analysis step needed to distin-
guish the two environments of the first couple must be less
complex than in the second case, algorithmically speaking.
Note that DAA and IA share this analogical constraint as a
value function.
Now let’s focus on the instantiation of the Interaction con-
straint acting on the Data Acquisition stage evoked in sub-
section II-A. C1 is verified if and only if there exists
a distance function operating on trajectories (T1, T2) →
〈T1, T2〉, such that 〈T1, T2〉 > 〈T1, T

′
1〉. To be able to

verify it, the robot must compute 〈T1, T
′
1〉 and 〈T1, T2〉.

The first one requires the system to interact twice along the
same sensorimotor trajectory, while the second needs two
neighboring trajectories, with respect to a given distance.
As we already stated, we introduce a twofold procedural
mechanism, named Local Discrimination Criterion that en-
forces these conditions without interrupting the interaction:
on one hand, we apply a cyclic discontinuous perturbation
on the system’s dynamics so as to leap from one trajectory
to another. On the other hand, we assume that the system
is endowed with a model of its own interaction with the
environment that allows it to give predictions on future or
past trajectories. Consequently, after the perturbation has
occurred, the interaction goes on and finally the robot gets
two half-trajectories. At this point, it uses its predictor to
extrapolate the future trajectory, that would have took place
if no perturbation had occurred, as well as the past of the
actual trajectory, if time could reverse. Note first, that this
mechanism can also be used to estimate a realization T

′
1

of an ongoing trajectory, given its initial condition. Fig-
ure 4 summarizes these ideas. Secondly we remark that
unlike the robot/environment interaction where each part
influences instantly the other in a symmetric way, the na-
ture of the influence of the perturbating mechanism on the
dynamics is sequential: first, the perturbation takes places
while the robot/environment interaction goes on, then the
corresponding recorded data is processed to check the va-
lidity of C1.
Finally, we suggest that the perturbation δX itself may be
applied incrementally: if, once triggered, it doesn’t allow
criterion C1 to be verified, then the intensity of the pertur-
bation is increased next time, and so on until either C1 is
verified, or a threshold is reached, which allows the robot
to conclude that C1 can’t be verified in that configuration
(both of the robot, the environment, and the system of dif-
ferential equations modeling the interaction).

C. Implementation

In this part we discuss more technically a possible imple-
mentation of the mobile robot that illustrates the measure-
ment process seen in the beginning of this section, and ap-

Two realisations
of a trajectory

Xi=....
Xe=.... Model

Internal

Half−trajectory
Measure

Xi=....
Xe=....

Half trajectory
Completion
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Fig. 4. Inner structure of the machine, where the local discrimi-
nation criterion (C1) influences the machine/environment in-
teraction.

plied to the context of robotics as in section II-B, before in-
stantiating the recognition algorithm in the compared cases.

C.1 Analogical modelization of the robot

All the experiments conducted in this article are simulated
because, mainly, we consider an analogical robot which ac-
tive sensors do not exist in reality. The manipulated differ-
ential equation systems, they will be solved numerically.

The environment is assimilated to a light-emitting curve
whose shape is a circle. In every pointM(x, y) of the phys-
ical space, one can then measure the intensity of incoming
light radiations. The function I(x, y) plotted in figure 5
depicts that intensity landscape.
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Fig. 5. Tension returned by light sensors as a function of (x, y).

The robot is equipped with two continuous current motors
on the left and right, fed by currents il and ir. Two light
sensitive diodes (FLEDs) are connected to an intermedi-
ary level that couples the two sides of the robot in a way



such that the tensions and currents feeding both motors de-
pend on the tension produced by both diodes. Figure 6
summarizes those facts. The motors are linked to wheels
whose angular velocity are noted (ωl, ωr), and that enable
the robot to move on a planar surface.
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Fig. 6. Electrical circuit governing the robot’s behavior

We do not exhibit precisely the modeling process lead-
ing to the equations 2 and 3 that account for the
robot/environment interaction. We will develop them be-
low. First notice than Xi = [wl, il, wr, ir]

T while Xe =
[x, y, θ]T , where x and y stand for the absolute position of
the center of the robot, while θ stands for its orientation
with respect to some fixed direction. Now equations 2 in a
developed form may be written as follows:





Ẋi =AXi + f(Xe)
f(Xe)=[0 ul 0 ur ]T

ul =U0 + αvl + βvr
ur =U0 + βvr + αvl

vl/r =V0

(
e−
( rl/r−ro

σ

)2)

rl/r =
√
x2
l/r + y2

l/r

xl/r =x+ e cos(θ ∓ π/2)
yl/r =y + e sin(θ ∓ π/2)

Similarly, we develop equation 3





ẋ=d/2 (ωl cos θ + ωr cos θ)
ẏ=d/2 (ωl sin θ + ωr sin θ)

θ̇= d
2e (−ωl + ωr)

Note that both f and g in equations 2 and 3 are highly non-
linear, what makes it hard to find an analytic solution to the
system.
We then focus on the predictor we proposed in subsec-
tion II-B. Remember it is necessary to extrapolate inter-
rupted trajectories in the future and in the past. We could

choose a classical time-series method relying for example
on Kalman filtering but instead we endow the machine with
an inner numerical integration method, as well as an ap-
proximate differential equation system. Doing so, giving
the initial condition XO

i allows the system to predict a full
trajectory in the future of in the past.

C.2 Recognition Algorithm

So far we’ve described the robot, the environment, and their
interaction law. However we lack a precise formalization
of the environment recognition algorithm itself. Whether it
be in a classical or in an interactive perspective, each com-
parison needs two experiments, with the same mobile robot
but different environments, and an identity operator.

In the classical case, the robot is placed in the environment
and moves in it. For the sake of comparison, we use the
position curve t → (x(t), y(t)) obtained with the interac-
tionist method. The outputs thus produced are two matri-
ces O1 and O2. One has to build a distance 〈., .〉 on the
space of such matrices, as well as a threshold ε. Classically
any couple of environments which corresponding matrices
verify 〈O1, O2〉 ≤ ε will be considered identical. This al-
gorithm is summarized in figure 7 (a).

The output returned by the corresponding set of experi-
ments in the interactionist case is a little more intricate. It
first includes the internal trajectories T : t → Xi(t), most
likely discretized. Remind that we perturbate the interac-
tion in a cyclic manner. This process naturally delimitates
segments of the internal variables trajectories. Also remind
that each segment comes with a -possibly empty- set of
distances {〈., .〉i}i=1..n that verify the Local Discrimina-
tion Criterion. We then focus on this segment level: for
each of them, we compare the sets of C1-complying dis-
tance functions, corresponding respectively to the first and
second experiments. If for a given couple of correspond-
ing 1 segments (S1,k, S2,k), the C1-complying distance set
is non-empty, we can compare those distances. If we can
find the same distance in both sets, we call this distance
a compatible one. If, according to that distance, the C1

criterion is verified (i.e. 〈S1,k, S2,k〉 > 〈S1,k, S
′
1,k〉), then

the segments are distinct, and so are the two global trajecto-
ries. If for all segments k, we find a non empty distance set,
among which we exhibit a compatible distance, according
to which the segments are undiscriminable, then the trajec-
tories are identical. This is summarized in figure 7 (b).

III. RESULTS

In the previous section, we’ve detailed the comparison pro-
tocol between DAA and IA. Now we present some re-
sults for the environment recognition process. As we al-

1 that notion of correspondence -in a discrete framework- implies that the
perturbation frequency as well as the sampling frequency are identical in
both experiments
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ready said, we place the robot in a target environment
E0 where it obeys the aforementioned interaction process.
Then we place it in three other environments E1, E2, E3

whereE2 = E0 are the same, and all the others are distinct.
Figure 8 presents the associated trajectories in a projection
space made of internal variables only (we note that T2 T0

are not superposed, because of the stochastic nature of the
interaction).

A. The IA case

In that case, we obtain both a trajectory T0 in the space of
internal variables Xi, and a set of distances {〈., .〉}0 that
verify criterion C1. Then we start again in k distractive en-
vironments and we similarly obtain k trajectories Ti=1...k.
Each trajectory also comes with a potentially empty set of
distance functions {〈., .〉}i. Here, if we note Ti and Tj two
trajectory matrices, the possible distances we use are asso-
ciated with the built-in norms in Octave:

• 〈Ti, Tj〉1: the largest column sum of the absolute values

TABLE I
C1-COMPLYING DISTANCES FOR EACH ENVIRONMENT

Environment Distance index
1 2 3 4

E0 x x x x
E1

E2 x x x x
E3 x x x x

TABLE II
TRAJECTORY COMPARISON

Trajectory Distance index
1 2 3 4

(T0, T2) 93/104 4/3 O.3/O.9 4/8
(T0, T3) 5381/104 284/3 29/0.9 284/8

of Ti − Tj .
• 〈Ti, Tj〉2: largest singular value of Ti − Tj .
• 〈Ti, Tj〉3: infinity norm, the largest row sum of the abso-
lute values of Ti − Tj .
• 〈Ti, Tj〉4: Frobenius norm of Ti − Tj , i.e.

√
(
∑

(diag((Ti − Tj)′ ∗ (Ti − Tj)))).

Then, according to the method previously exposed , we be-
gin by verifying that all trajectory come with a nonempty
set of C1-complying distance functions. Table III-A shows
that trajectories T0, T2, T3 meet that constraint. Further-
more, we remark that the concerned distances are all com-
patible. Hence, we can compare T0 with T2 and T3 with
distances 1, 2, 3, 4. The last step is to verify -only for envi-
ronments that passed the previous test- the C1 criterion, i.e.
〈Ti, Tj〉k < 〈Ti, T ′i 〉k, which means that Ti and Tj can’t
be distinguished from the point of view of 〈., .〉k. Table
III-A gives, for each couple Ei, Ej and for each distance
〈., .〉k, the result under the form a/b where a = 〈Ti, Tj〉k
and b = 〈Ti, T ′i 〉k. The result is highlighted when a < b
i.e. when the corresponding environments can’t be distin-
guished with the associated distance. We observe that T0

and T3 are distinct for all distances, consequently E0 and
E3 are different from an interactionist point of view. How-
ever, T0 and T2 are equal for distances 1, 3 and 4. As a
result we can state that this method has succeeded in iden-
tifying E0 and E2, while the others were discarded.

B. The DAA case

In this case, we only obtain a trajectory T0 in the inter-
nal variables space, as well as k trajectories Ti=1...k cor-
responding to the distractive environments. Table III-B
presents values of 〈Ti, Tj〉k for the different distances de-
picted above. Unless we fix a threshold for each distance
this table is useless. Once is it fixed, one may state that, for
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TABLE III
TRAJECTORY COMPARISON IN A CLASSICAL FRAMEWORK

Trajectory Distance index
1 2 3 4

(T0, T1) 389 22 3 22

(T0, T2) 93 4 0.3 4

(T0, T3) 5381 284 29 284

a given distance, Ti and Tj are equivalent and consequently
Ei and Ej are equivalent too.
For example, if we impose the same threshold ε = 3.5 for
all distances, T0 and T1 are equal according to distance 3
-although they were generated by interactions in different
places- as well as T0 and T2, while T0 and T3 are differ-
ent for all distances. We could also impose a distance-
depending threshold ε = [ε1 ε2 ε3 ε4], but the arbitrary
nature of this choice remains the same.

C. Conclusion

In DAA, one may compute several distances between tra-
jectories, but has to fix a threshold in order to conclude
to the indiscriminability of two environments given a per-
formed trajectory. As we saw, the mere choice of this
threshold, be it differentiated with respect to the considered
distance, yields the recognition result.
On the opposite, the interactionist approach returns a set
of C1 relevant distances for every trajectory. If none is
provided, no comparison is possible, thus discrimination
is impossible. If not, two trajectories may be compared
with respect to that distance that has a local discrimination

capability.
We can’t deny that the IA approach makes specific assump-
tions, namely that discrimination is conditionned by the
compliance towards criterion C1. Furthermore, we creat a
priori the set of possible distance functions, the trajectory
duration, the sampling frequency as well as the composi-
tion of the phase space, but these are not distinctive features
of the IA method and are characteristics drawbacks of sim-
ulating a physical phneomenon on a digital computer. All
things considered, it seems to us that criterion C1 is less
arbitrary than imposing both the distance and the thresh-
old.

IV. CONCLUSION AND FUTURE WORK

In this article, our aim was to confront a balanced con-
ception of robot/environment interaction, with the passive
way in which a robot classically performs discrimination
and recognition tasks. To ensure a Physics-like interaction
between sensors and effectors values at any time, we’ve
adopted the theoretical framework of the Dynamical Sys-
tems Theory so as to model an analogical robot which sen-
sors and motors values are coupled via a set of differential
equations. Furthermore, adding a discrimination constraint
on the robot/environment interaction, and focusing on sen-
sorimotor trajectories rather on sensory data only, we show
that our method makes it possible both to know whether
the robot can discriminate or not, then to actually discrim-
inate several types on interaction if discrimination has a
sense. Finally we show that this can be used to recognize
an environment if the interaction is performed in the same
conditions, in a way comparable to the classical approach,
where one can discriminate sensory or motor trajectories,
given some metric constraints and the choice of a thresh-
old.
Let us now consider the perspectives opened by this work.

1) developping this framework could be achieved in sev-
eral ways:

• verifying the invariance of recognition towards spatial
transformation.

• implementing a real analog robot instead of simulating
it.

• implementing an analog architecture of the Local Di-
crimination Criterion since the current version is based
on a discrete method. Reasons for this choice are dis-
cussed in the field of epistemology by [BAI 04].

2) criticizing this framework draws the following topics to
be questionned:

• why describing the discrimination capability in a metric
framework, even if the distance can be changed during
the experiment ?

• why keeping the robot, its interaction law and the
environnement unchangeable ? Exploring their pos-
sible codetermination needs to make them deformable



(e.g. non-rigid robot morphology, non-rigid environ-
ment, “deformable” differential equation system).

• why choosing the Dynamical Systems Theory frame-
wok that lacks that idea of deformable phase space ?
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