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Abstract— We propose to classify the behaviors of a mobile
robot thanks to topological methods as an alternative to metric
ones. To do so, we adapt an analysis scheme from Physics
of nonlinear systems in chaotic regime, assuming a dissipative
dynamics that relaxes on a low-dimensional manifold. Sensor data
recorded from a mobile robot during a wall-following experiment
allows to compute topological invariants that give a standardized
representation of the structure of the set of trajectories, and
enable us to discriminate among similar behaviors in a systematic
and quantitative way.

I. DESCRIBING THE BEHAVIOR OF A MOBILE ROBOT

In this article we address the problem of classifying the
behavior of a mobile robot, where by behavior, we mean how
the robot interacts with its environment, not only where the
robot is located. Whether they favor a deterministic or random
treatment, most works addressing this topic in the literature
adopt a metric stand, we shall see in what sense.

On one hand, when the phenomenon is modeled as a
random process, as in [22] and [15], the first step consists
in digitizing the signal so that the transition between a finite
set of symbols can approximate the initial time series. Then,
the time series is considered as a Markov Chain, i.e. the
transition probability from one state z(n) to another z(n+ 1)
depends only on the step z(n). Under this assumption, one
can estimate the transition probability from the transition
frequence. Finally, the Markov Chains undergo a classification
stage under some optimality constraint. An important detail is
that this clustering is made on the basis of a similarity measure
between probability distributions, e.g. the Kullback-Leibler
distance in the case of [22]. Some works, such as [25], make
no assumption on the nature -deterministic or random- of the
underlying phenomenon, and apply data analysis techniques
such as Self Organizing Maps to recorded sensor data, in order
to classify different trajectories on a metric basis. In all cases
those attempts to characterize the behavior of a robot rely on
the knowledge of a distance.

On the other hand, when the phenomenon is modeled as a
deterministic one, as in [3] and [23] in the cybernetic tradition
dating back to Ashby, a functional relation links sensory and
motor variables, in the form & = F(x,t,q), where x is the
state variable, t the time, and ¢ a control parameter such as the
nature of the environment. In that case, time series recorded
from the robot are processed to compute metric and dynamical

invariants such as Lyapunov exponents, correlation or fractal
dimension as in [24], [20], [21] and [12]. Again, in that case,
it is necessary to define a distance on the state space. In the
next section we will argue that another standpoint, based on
topological arguments, allows a sharp characterization of the
set of trajectories.

II. DYNAMICAL ANALYSIS

The nature of the studied system strongly orients the tools
used to describe it: when dealing with linear systems, one
merely needs to estimate the Fourier spectrum of a phe-
nomenon, since it is preserved by changes in time or in
excitation strength. When the system is no longer linear, and
happens to display chaotic behavior, the Fourier spectrum is no
longer sufficient to characterize the dynamics. As proved by
experiments in section IV (see also [20]) even a simple wall-
following robot acts in a chaotic way, that’s why we focus on
tools able to cope both with regular and chaotic phenomena.

A. Classical use of Nonlinear Dynamics tools

Nonlinear Dynamics mixes the theory of Dynamical Sys-
tems, Control theory and Time series analysis and provides us
with valuable tools to characterize the behavior of a system.
Four types of invariance are sought by researcher when dealing
with a means to characterize a system. The tool must be
insensitive to:

1) evolution operator (i.e. it mustn’t depend on the time
interval for which the “invariants” are computed).

2) coordinate change, be it nonlinear (though smooth
enough).

3) initial condition change.

4) noise.

Fractal dimensions and Lyapunov exponents show such
invariance to points 1 to 3 (see [1], chapter 5, for a discussion),
and suffer several numerical limitations including sensitivity to
noise contamination (see [7] for example). Furthermore, they
are not invariant to control parameter changes (robot speed,
environment, command law), even when the overall dynamics
keeps the same properties.

Still, to the best of our knowledge, when a roboticist intends
to characterize the behavior of a system with the help of
such tools, he solely computes those metric invariants without



questioning their pertinence, and neglects other valuable tools
available in the field of nonlinear dynamical analysis.

B. Topological approach

Dating back to Poincaré, physicists have urged that an
explanation of a dynamical phenomena be carried on focusing
on unstable periodic orbits. Until now, scientists keep that
aim in mind and come up with efficient tools for analy-
sis (see [2], [18], [6], [9] for a recent example applied to
many systems including lasers, chemistry and neural activity).
First, the non-wandering set -composed of the points whose
asymptotic position remains bounded- is being approximated.
Then, the unstable periodic orbits are isolated -most probably
surrogate periodic orbits, since true periodic orbits are very
hard to localize experimentally. Then a symbolic coding of
the continuous signal is proposed: at this point, this theory
meets the preoccupations of many researcher in behavioral and
adaptive robotics concerned with the anchoring of symbols in
measurements. Indeed those symbols result from the dynamics
itself, though the observer may fail to isolate them while
building an inappropriate state space or mispartitioning that
space (see [13]). Some theorems ensure the existence of
partitions that completely captures the dynamics, which allows
one to work directly on symbolic sequences. Finally, from the
symbolic coding of periodic orbits, topological invariants that
form the fingerprint of the phenomena are computed, and show
invariance to a set of perturbations broader than metric and
dynamical invariants such as Lyapunov exponents or fractal
dimension discussed in II-A (see [9], chap. 9 for a discussion).

III. EXTRACTING TOPOLOGICAL CUES FROM
EXPERIMENTS

Our goal here is to associate a unique fingerprint to the
behavior of a robot from recorded data, with no model or
equation available before the experiment. As we saw in II, such
preoccupations have existed for a long time in physics, where
general theoretical results from Dynamical System Theory,
Time Series Analysis were melt with particular experiments
in order to classify phenomena. In this section we enumerate
briefly the different tools necessary to the study conducted in
section IV.

First we build an embedding with several possible di-
mensions, in three classical coordinate systems (time delay,
differential-integral and SVD embeddings) in order to estimate
the fittest embedding dimension dg. By fittest we mean
both lowest (in spite of what the embedding theorems could
state since we need not a necessary but a sufficient result),
and false-nearest-neighbor-free (see [16], [8]). For a general
discussion on embedding and reconstruction of attractors in
chaotic regime, see the classical work of Abarbanel in [1].
When these requirements are met, dg is frozen and no longer
moves.

Secondly, we extract unstable periodic orbits thanks to a
close return plot, that allows to isolate an interval of instants
in time, and a period p such that the distance between x(t)

Fig. 1. Computation of topological invariants. (Top) Convention for counting
signed crossings in projection on a 2D plane. (Bottom Left) Self-linking
number of a periodic orbit, (Bottom Right) Linking Number of two periodic
orbits.

and x(t+p) remains lower than a threshold ¢ typically smaller
than 1 % of the largest diameter of the attractor (see [19]).

Then, we need a symbolic encoding of the state-space,
obtained for example by intersecting the flow with a well-
chosen Poincaré section transverse to it (for precisions see for
example [4]). Then, several cases can occur, the simplest being
if the set of points is disposed along a line, for example the
coordinate x that represents the scalar recorded data. One can
build a return map that maps z(n) onto x(n + 1), the next
intersection of the flow with the section. From that return map,
one may identify a set of symbols using classical techniques
such as identifying critical points (see [9]).

Even if the unstable periodic orbits have not been given
a symbolic name, it is possible to classify them: one can
compute topological invariants that depicts the properties of
crossings and relative rotation between the isolated periodic
orbits. To do so, one counts the signed number of crossings of
a periodic orbit with itself, and the signed number of crossings
for all couples of available low-period orbits that have been
identified thanks to the close return plot. After Gilmore and
Lefranc in [9] we note SL(A) the self linking number or
periodic orbit A, defined as the sum of all signed crossings o;
of the orbit with itself: SL(A) = ", 0;(A). Similarly we note
L(A, B) half the sum of the signed crossings o;(A, B) be-
tween periodic orbits A and B: L(A,B) =1/2%",.0,(A, B).
See Fig. 1 for more explanation on how to compute the
invariants.

Finally the combination of symbolic names and topological
invariants provides us with a unique fingerprint of the set or
periodic orbits that form the skeleton of the whole attractor,
and hence of the behavior of the system.



IV. EXPERIMENTS

In the following sections, we successively depict the sim-
ulator, the selected robot, its control algorithm and the envi-
ronment in which the simulation takes place. Then we present
the result when applying the method presented in III.

A. Simulator

Player is an open source device server initially developed
at USC Robotics Research Lab in 1999 that allows, when
connected to a series of sensors and actuators, to control them
over a TCP socket with a request/reply mechanism. User-
designed clients then connect to the server from the network
to communicate with the controlled set of device (see [11],
[10]), allowing multiple simultaneous connections. Player was
initially programmed to control real robots, but comes with
two simulators that replace the real robot as the last link of
the client — device server — real device chain, Stage and
Gazebo. The former copes with large population of simulated
2D robots, while the latter aims at simulating accurately small
populations of 3D robots. It relies on the ODE physics engine
that simulates the kinetics and dynamics of a set of articulated
bodies in the presence of gravity and friction forces. As Player,
Gazebo is a server to which clients send control requests and
that sends back the current state of the system. For a detailed
presentation, see [17].

Player/Stage/Gazebo is actively maintained by a large open
source community, its use being widespread in universities
and research labs in the USA and Canada. However, the
validity of simulation is assessed by few, empirical articles
(see [11] section 2.2.2, which provides a bibliography). Fur-
thermore, the question of the observation of chaos on a
computer deserves careful attention that exceeds the limits
of this short article (section 2.13 of the nonlinear FAQ at
http://www.fags.org/faqs/sci/nonlinear-fag/ includes some use-
ful references).

B. Robot, Command, Environment

Simulated experiments involved a Pioneer 2-AT robot
equipped with a laser range finder, controlled by the VFH
algorithm so as to follow right walls, in the environment
depicted by Fig 2, taken from [12].

As it comes implemented in Player, we used VFH (vector
field histogram), an obstacle avoidance algorithm that continu-
ously builds a two-dimensional Cartesian histogram grid based
on range sensors data. First, that histogram is projected in a
polar coordinate system and stands for the obstacle density of
presence in a given direction. Then, the region with lowest
density is selected, and the robot is aimed at it. Since this
algorithm is classical, we detail it no longer and refer the
reader to [5].

C. Results in the low speed case

In this section we set the maximum robot speed to vV, g, =
0.2 m.s~! and record the activity of the sensors as displayed
by Fig. 3(a). The system seems to be in periodic regime,
its period being enclosed between arrows. In this section

Fig. 2. Pioneer robot equipped with laser range-finder in maze environment.

and in the following, we study the signal recorded by one
range sensor only, and after checking that the attractor was
embeddable in dimension dg = 3 thanks to the false nearest
neighbors algorithm, we embed it with the differential-integral
coordinate system as can be seen in Fig. 3(b). Although the
regime looked periodic, a careful examination reveals stretch
or squeeze between branches, as evidenced by the squared
area in Fig. 3(b), that are typical of chaotic regimes (see [9]).
However, we prefer to study more carefully a case where the
chaotic behavior is made even clearer in the recorded time
series itself, which will be done in the next section.

D. Results in the high speed case

In this section we set the maximum robot speed to V40 =
0.4 m.s~!, and record the activity of the sensors (see Fig.
4(a)). From just one scalar data taken from a particular sensor,
we first evaluate in Fig. 4(b) the embedding dimension for
time-delay embedding thanks to the false nearest neighbors
algorithm, and establish that dimension dg = 3 will be
convenient, despite a residual percentage of false neighbors
due to noise. However, this embedding concentrates the orbits
too tightly in some part of the phase space, which may
hinder the computation of topological invariants. Instead, we
embed the data in differential-integral coordinates as shown
by Fig. 5(a). Since the important features of this reconstructed
attractor, such as the number of branches, or the stretch and
squeeze between branches are hard to perceive, we examine
the intersection between the flow and a Poincaré section placed
as shown by Fig. 5(b). From the computed section one can
define a return map that maps each intersection with the
next intersection after one cycle around the attractor. More
specifically, we compute a one-dimensional return map that
maps the z coordinate of an intersection and the next xz
coordinate. Fig. 5(c) displays the result, for the plane drawn
on Fig. 5(b). We added the grid that separates arbitrarily the
different branches composing the attractor in the region of the
Poincaré section, so as to establish the allowed and forbidden
sequences among branches. Here we meet the problem of
partitioning the state space into symbols, as evoked earlier
in sections I and II-B. Five symbols numbered from O to 4 are
identified from the return map and from the study of patterns
of the time series recorded in Fig. 4(a), their incidence matrix
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Fig. 3. Low-speed case. (a) Recorded activity of the third sensor -a period
lies between two arrows. (b) Reconstructed attractor in differential-integral
embedding.

being given by Table I. It reads as follows: orbit number ¢ in
the first row can be followed by the orbit j whose transition
value (¢;;) in the matrix is 1. In some cases, it is not clear
whether or not the transition is really allowed, since only
one or two points belong to the box, among more than 400
extracted from the initial 65536. In those limit cases, we take
the stand to neglect those points that might come from a
mispartitioning of space or from outliers, and use bold font
to remind of that choice.

Until now, the information gathered fails to be a 1:1
representation of the attractor, because it lacks its topological
properties. They can be revealed by observing the unstable pe-
riodic orbits of the dynamics, more specifically their crossings,
possibly quantified by the linking number and self-linking
numbers between two trajectories. We isolate two periodic
orbits, for example 0 — 2 — 3, and 0 — 1 — 4 and
compute their topological invariants such as self-linking num-
bers for a single periodic orbit, or linking numbers between
two orbits. Fig. 6 shows a projection of periodic orbit 0 —

TABLE I
INCIDENCE MATRIX, HIGH SPEED CASE
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Fig. 4. High-speed case. (a) Activity of sensor n3, (b) False nearest neighbors

2 — 3, and its associated crossings whose sum SL(023) =
>-;0(023,023) =1+1—2—1= —1. We compute as well
SL(014), and the linking number LN (023,014) between the
two orbits. This process must be repeated for every periodic
orbit and every couple or periodic orbits, though we only give
the results for the couple (023,014) in Tab. I In the next
section we explain how to use those results.

V. DISCUSSION

First we must recall that the three dimensional attractor was
reconstructed from scalar data recorded by only one range
sensor, though a great number of such sensors where available.
We notice that this components of the overall phenomenon,
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Fig. 5. (a) Reconstruction of the attractor; (b) Poincaré section represented

by the dashed line, the branches are numbered from O to 5 and indicated by
arrows; (¢) Return map from Poincaré section along coordinate z. The boxes
are numbered from O to 4 from the names of the branches.

Fig. 6. Projection of periodic orbit 0 — 2 — 3 on plane (z, ). Crossings
are enclosed in squares, their crossing number is given.

TABLE II
TOPOLOGICAL INVARIANTS, HIGH SPEED CASE

| [ 023 | 014 |
023 [ -1 [ 2
o4 || 2 | 2

which needs a great number of coupled variables to be
completely described, relaxes on a three-dimensional manifold
and can be embedded easily using standard techniques.

Secondly we notice -as is exemplified in [20] with other
tools- from the presence of stretch and squeeze between
branches in the low and high-speed cases that the behavior
of the robot presents chaotic properties, even in regular and
steady environments with very precise sensors.

Then we proved that it was possible to extract a symbolic
encoding form the Poicaré section, that comes from the
discrete structure of the attractor (discrete branches, squeeze
and stretch lines), even though the exactness of our partition
deserves further assessments.

Last we exhibit a part of the unstable periodic orbit spec-
trum, along with their topological invariants. Comparing the
two cases, we see that the attractors share the same basic
structure -double loop in the middle, enclosed by a series
of wider circles- but observe that in the hi-speed case, two
branches were added (smaller loop inside, and outer fringe).
The study of orbit forcing and of unfolding is likely to explain
such construction and to give predictive insights, but this is left
to further developments.

From the point of view of the roboticist, what it the interest
of this analysis ? It comes from the need to give a quantitative
and standardized basis to the description and comparison
of all the possible behaviors of a given robot, with a given



command law, in a given environment. The possible paths
to this goal explored up to now, discussed in I, rely on
metric considerations: one records a set of trajectories either
in sensor space, or in the position space of the robot (e.g.
its x,y location in the environment). Then, features can be
extracted, a distance is defined on the trajectory or feature
space, and a classical classification algorithm partitions the
space so as to optimize some quantity (e.g. space occupation).
We state that by analogy with Physics, those methods lead to
coarse-grained classifications of behaviors, and can be refined.
The topological analysis we propose to apply can reveal the
inner structure of the dynamics, in a well established and
standardized way coming from a branch of Physics dealing
with nonlinear phenomena. In spite of their counter-intuitive
aspect such tools as the linking numbers given in Tab. II
can help comparing and classifying two behaviors in a much
sharper way than metric methods do, because they represent
in a 1:1 way the structure of the set of trajectories in phase
space, made of a set of underlying objects -the unstable
periodic orbits- that resist to perturbations (e.g. bifurcations)
and organize the geometric object named strange attractor that
supports the dynamics. If one can describe this skeleton and its
possible modifications under control parameter changes, one
can classify precisely the possible behaviors of a robot, and
that’s what topological invariants do.

VI. CONCLUSION

In this article we address the problem of classifying the
behavior of a robot from topological invariants extracted from
recorded sensor data, with no need for a model, and when the
robot morphology, the command law, and the environment are
likely to change. To do so, we propose an alternative to most
existing methods that rely on metric considerations, highly
sensitive to perturbations such as noise contamination. This al-
ternative is sought in the field of Physics of Nonlinear systems
in chaotic regime (see [2], [6], [18], [9]), that provides analysis
schemes able to extract the inner structure of the dynamics,
thanks to fopological objects such as unstable periodic orbits.
At the end of the analysis we are able to associate a group
of topological invariants to the robot dynamics, that form a
fingerprint of its behavior. From this fingerprint, it is possible
to classify different behaviors, in a much sharper way than
metric methods do. Next, we plan to cover a larger spectrum
of phenomena met in mobile robotics, on the basis of their
fingerprints, and to compare quantitatively the discriminative
power of this method with metric ones.
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