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Abstract

An effective diffusivity model is developed for mass transport by molec-
ular diffusion and unsteady solute buoyancy-driven convection in a hori-
zontal capillary by a method similar to that used for Taylor dispersion in
forced flow. A 1D non-linear diffusion equation is obtained and an analyt-
ical asymptotic solution is found for dominant convective mass transport,
the solution for dominant molecular diffusion is already well known. Both
the effective diffusivity model and the asymptotic solutions are validated
numerically. A scaling analysis clarifies the boundary between dominant
molecular diffusion and dominant convective mass transport. The use of
a steady vertical magnetic field for liquid metals and semi-conductors is
found to damp the convective mass transport by a factor of Ha=* where
Ha is the Hartmann number, characterising the MHD problem.



Nomenclature
B imposed magnetic field

dimensionless alloy composition
alloy composition

reference composition
coefficient of molecular diffusion

SISES ISR

™

coefficient of effective diffusivity
gravity

height and length of cavity
dimensionless electric current density
dimensionless pressure

=~

dimensionless time

time

dimensionless velocity vector

velocity vector

Uy dimensionless axial component of velocity
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Vi, V, axial and lateral components of velocity
T,y dimensionless horizontal and vertical coordinates
X.,Y  horizontal and vertical coordinates
Greek symbols
Q@ function of Ha, defined in the text
I¢] solutal expansion coefficient
1) dimensionless diffusion length
AC initial step concentration in dopant
r diffusion length
v kinematic viscosity
0] dimensionless electric potential
p density
o electrical conductivity
Dimensionless groups
A GrySc/Ha?
Grs solutal Grashof number (BACgH?/v?)

Ha  Hartmann number (BH /o /pv)
Sc¢ Schmidt number (v/D)

Superscripts
* denotes alternative dimensionless scaling



1 Introduction

The accurate measurement of molecular diffusivities is important for various ap-
plications [1] , it is however often difficult to achieve in practice as diffusive mass
fluxes are generally so low that even very small levels of convection can signifi-
cantly affect experimental results. One possible solution is to quantify and hence
account for the convective mass transport.

Taylor devised a method of achieving this [2] for a fluid moving slowly under
forced convection through a capillary to which a solvent is introduced at some
position in the flow causing an initial one-dimensional step-difference in compo-
sition. He investigated the subsequent dispersion of the solvent arising from the
combined effects of molecular diffusion and the lateral variation in the Poiseuille
velocity field. It was then possible, subject to certain conditions!, to describe the
lateral average concentration of the solvent by a one-dimensional pure diffusion
equation in time and a spatial-axis which moves with the mean velocity of the
flow. The virtual coefficient of diffusion, as he called it, is { H*u?/(192D), where
H,u and D are the diameter of the capillary, mean flow velocity and molecular
diffusivity respectively.

Taylor’s analysis for simple Poiseuille flow is very similar to that of the so
called effective diffusivily model which was first proposed by Garandet et al.[3]
in order to account for thermal buoyancy-driven convection and applied by them
to the shear-cell technique which is shown schematically in figure 1. They found
that for a steady and axially uniform velocity field driven by a lateral temperature
gradient in a vertical capillary subject to an initial axial concentration step, the
problem could again be reduced to a one-dimensional diffusion equation in lateral
average concentration. The effective diffusivity is D(1+€e(Hu/D)?) where u is now
the mean absolute velocity (convection being parallel counter-flow) and e is some
constant which they estimated by orders of magnitude as 1/4 for a 2D capillary.
Similar results are found by Alboussiere et al. [4] for a horizontal cavity subject
to an axial temperature gradient, they also consider an electrically conducting
liquid and a steady vertical magnetic field to damp convection. In each case the
additional convective contribution to mass transport scales with H?*u?/D and
the constant e, of order unity, depends on the general form of the velocity profile
assumed (e.g. cubic Birikh, linear high Hartmann etc).

In practice however, density differences arising from variations in composition
are likely to have a significant contributory effect on convection. Barat & Garen-
det [5] considered a vertical capillary with a lateral temperature gradient and
an initial step concentration with a heavier liquid on the bottom so that solute
buoyancy forces tend to damp thermally driven convection. They found through
scaling analysis and numerical simulations that even when composition density

!The conditions were effectively that the axial mass transport is predominantly convective
and the typical convective timescale is large compared to the time for diffusion to extend over
one diameter of the capillary.



differences were quite small, there is a noticeable time-dependant damping effect
on convection and for larger composition density differences the velocity field is
no longer axially uniform. The general form of the expression for effective dif-
fusivity remains unchanged where there is solutal buoyancy-driven convection,
but the average-velocity term within the expression becomes a function of time
and axial space because it depends on the unsteady and non-uniform concentra-
tion gradient. The resulting one-dimensional diffusion equation in lateral average
concentration is therefore no longer linear.

The case of solute buoyancy-driven convection along with molecular diffusion
in a horizontal isothermal long capillary subject to an axial composition-step is
considered in this paper. The liquid is electrically conducting and the capillary is
placed in a vertical magnetic field, though the asymptotic case of the Hartmann
number going to zero is accounted for so the results equally apply to there being
no magnetic field. An idealised two-dimensional configuration is described in
section 2 and the corresponding non-linear one-dimensional effective diffusivity
model is developed in section 3. Separate asymptotic solutions corresponding to
convective mass transport dominating molecular diffusion and vice-versa are then
derived in section 4 and these are validated numerically using CFX, a commercial
CFD code in section 5. An orders of magnitude analysis is used in section 6 to
justify some assumptions made in the earlier analysis and finally a discussion of
the results and the work required to extend the model to a three dimensional
capillary are presented in section 7.

2 Configuration

A horizontal two dimensional cavity of length L and height H is considered with
L > H. This capillary contains a carrier fluid and a dopant of composition
C' = (), with an initial step concentration of AC' at its central cross-section.
Convection is driven by the density differences arising from variations in com-
position. The capillary is placed in a steady vertical magnetic field of strength
B. A schematic of the set-up with typical velocity and concentration profiles are
shown in figure 2.

The coefficient of molecular diffusion D, and the fluid properties kinematic
viscosity v, coefficient of solutal expansion 3 and electrical conductivity o are all
assumed independent of composition. Density, p, and the governing equations
are subject to the Boussinesq approximation.

Using the scales H, D/H, pD*/H?*, H*/D, BoD/H, BD and AC for length
x, velocity v, pressure p, time ¢, electric current density j, electric potential ¢ and
concentration ¢, and assuming that the magnetic Reynolds number is small, the
dimensionless Navier-Stokes, continuity, mass transport, Ohm’s law and electric



charge conservation equations are:

1 [0 1 B
(—V + (v V)V) = ——Vp+ Ha’ jx =+ Vv+ Grschc, (1)
9

Se \ ot Se B
V.v=0, (2)
(v V)e= V" )
Y v c= V-,
. B
J__V¢+V><§7 (4)
v.j=o. (5)

The non-dimensional groups appearing in these equations are: Hartmann number
Ha = BH /o /pv, Schmidt number S¢ = v/ D and solutal Grashof number Gry =
BACgH?/v?.
The boundary conditions at the walls arising from no-slip, zero mass transport
across walls and electrically insulating walls become:
dc 0 99

v =0, =

am oy

where 7 is the normal direction to the walls. The initial conditions are, at ¢ = 0:
v = 0; c(x <0)=0; c(r >0)=1

It was shown by Garandet et al.[6] that for such a 2D cavity, the electric
potential is uniform (V¢ = 0) and so the Lorentz force reduces to a damping
factor —B?v,x where v,X is the axial component of v.

3 Effective Diffusivity

The objective here is to reduce the coupled two dimensional governing equations
(1) to (5) into a single one dimensional diffusion equation in lateral average
concentration as a function of axial position and time. The concentration field,
¢(x,y,t)is broken down into components ¢o(, ) representing the average of ¢ over
a lateral cross-section of the capillary and ¢;(z, y, t) representing the perturbation
from the average. This can be expressed as ¢ = (¢), and ¢; = ¢ — ¢y where ()
denotes average over a lateral cross-section.

Averaging equation (3) in a similar manner and making use of the boundary
conditions for velocity and concentration yields:

@co 8<vrc1>s . 8260
at + or  0z%’ (6)




It is now required to find expressions for ¢; and v, as a functions of ¢g which
can be substituted into equation (6) to give an equation only in ¢y. Subtracting
equation (6) from equation (3) gives:

% +v- VCO +v- Vcl — 7a<vICI>S

j— 2 o

It will be shown by order of magnitudes analysis in section 6 that when ¢ > 1,
equation (7) reduces to the following leading terms®:

O — Ve, 5)

.
where V% = % The analysis leading to equation (8) is of the same nature as
Taylor’s approach [2].

The velocity field is obtained through analogy to work done by Garandet et
al.[6] on a similar set-up, but where convection was driven by a uniform steady
thermal gradient rather than the unsteady non-uniform composition gradient
here. Following their method of analysis, using a local concentration gradient

de
o, — A%( sinh(Hay) B y) ’ (9)

52, one finds:
Odx \2sinh(Ha/2)

where A = % The validity of equation (9) is based on the assumption that
% is “locally” uniform, i.e. uniform over a cross-section and axially uniform over

a distance longer than H. This will be discussed in section 6.
Substituting for v, into equation (8), integrating twice with respect to y and
using (c1), = 0 along with the boundary condition 2% = 0 at y = +1 gives an

dy
expression for ¢; depending on %
_ 4 deo\’ y®  Hatanh(Ha/2) — 4 sinh(Hay) (10)
“a= Ox 6 8Ha tanh(Ha/2) YT 9 Ha? sinh(Ha/2) ]’

The convective term in equation (6) can now be calculated from equations (9)
and (10):

(vper)s = —A? (%)SQ(H@, (11)

where, denoting Th = tanh (Ha/2) and Sh = sinh (Ha/2),

(Ha) 1 1 N 1 ( 1 N 1 ) N 1 2 (12)
al(Ha) = — — — )
120 12HaTh  Ha? \4Th? = 85h? 4Ha®*Th  Ha*

2This proof is given in section 6 which may be read prior to the remainder of the current
section without loss of continuity in the text to the reader.



It is found that as Ha — oo, aA? — (?;02212 and as Ha — 0, aA? — g;gsgg,
this can be seen from the plot of a(Ha) against Ha in figure 3. These limits
respectively agree with the solutions obtained for equation (11) if the linear high
Hartmann velocity of Garandet et al.[6] or the cubic velocity in the absence of a
magnetic field of Birikh [7] are used in place of v, from equation (9).

Substituting for (v;c1)s, equation (6) becomes after rearrangement:

Jdecg 0 Jco deo
= 1+ aA? — 7. 1
ot 8:1:{ + (@x)] Ox (13)
This expression represents a one dimensional diffusion equation in ¢g valid for
t > 1. The dimensionless coefficient of effective diffusivity is D.(x,t)/D =

2
[1 + aA? (3“0) ] . The equation is characterised by the dimensionless parameters

of the system encompassed within the term aA?. By rescaling the length and
time with ¢* = alﬁt and x* = \/—ACL’ respectively, a universal equation valid for

> alﬁ but which is otherwise independent of all system parameters is obtained:
860 @ 300 ? 300

= 1 . 14
o~ b { * (w) s (1)

4 Asymptotic solutions

In equation (14) , the term (3;2)2 represents the convective contribution to ef-
fective diffusivity, it is the mass transport over and above the pure molecular
diffusion which would otherwise occur in the absence of convection. Contrary to
the case of thermal buoyancy-driven convection where the convective contribu-
tion to effective diffusivity is steady and constant, it is here a function of both
space and time. At small ¢*, this term is large (and indeed tends to infinity at
z* =0 as t* — 07) and the convective contribution will dominate molecular dif-
fusion. In the middle of the cavity, the term monotonically decreases with time
and will eventually be small compared to unity, after which molecular diffusion

will dominate the convective contribution. By orders of magnitude on equation
(14), considering both (3”1) > 1 and (3”1) < 1 it is found that the transi-

tion between the two regimes must occur at t* ~ 1. Equation (14) is however
only valid for t* > ﬁ so the transition between the two asymptotic regimes
could, depending on the parameters of the system, occur before or after this
time. Solutions are now derived for the two asymptotic regimes.

2
Considering first the case where (%) < 1, equation (14) reduces to:

aCO a 8260
o gzt

(15)



The solution to this equation for a step input is well known [8], though more
commonly as applied to the analogous case of a semi-infinite solid subject to a
step-input constant surface temperature:

co(a™, 1) = %—U%—erf(ﬁ)], (16)

= —t*_%e_ﬁ s (17)

*

where k(z*,1%) = NG

2
The second case, when t* is “small” and so (%) > 1 leads to the following

non-linear form for equation (14):

deo 9 |’
o dx* [(8:1:*) ] . (18)

Substituting f(x*,t*) = gi‘i and differentiating (18) with respect to z*:

af B 923
o gzt

(19)

A self-similar solution is now sought of the form f(z*,t*) = ¢(t*)h(n) where
n = g(t*)z* and [T hdny = 1 since ¢y varies from 0 to 1 when z varies from —oo
to +o0o. Substituting for f into (19), dividing by ¢°h and rearranging gives:

' 3hh" + 6k
T (20)
the right hand side of this expression a function of n(z*,t*), the left hand side
however is only a function of t* and both sides of the equation must therefore be

constant, so
g=Kt~'", (21)

Any choice for the constant K would be valid and accommodated for in h, K =1
is chosen here. Substituting f = {='/4h, equation (20) after some manipulation
becomes:
1 / 3 n

—th]:[h]. (22)
Integrating this once with respect to n and choosing a zero constant of integration
so that h is an even function (A'(0) = 0) since the spatial concentration gradient
must be a maximum at z* = 0:

1
_Znh =1 (23)



Ignoring the trivial solution A = 0 and dividing by % then integrating with respect
to n gives:

=, (24)
where (' 1s a constant. This is the equation for an ellipse, centred at the origin,
the constant ' is obtained from the requirement that [2° hdp = 1, implying
that the area under the half-ellipse is 1 which gives C* = —=. The solution for

V37
h, which is valid until A = 0 since its derivation required division by A, is then:

hn) = J—— 4+ L. (25)

This is one possible solution for h(n), satisfying equation (22) on the inter-
val [—=2(v/3/7)"?, +2(+/3/7)'/?] which represents the extent of transport of the

dopant, outside this interval the function can be continued with hA(n) = 0 without
loss of continuity for h. The function & is by definition 83%, the solution for the

spatial derivative of ¢y in this asymptotic regime though now becomes:

=t e 26
oxr* \/§7r + 12° ( )

and ¢g is obtained by integrating h with respect to n with the condition ¢y = 1/2
at n =0 (i.e. at 2* = 0):

1 9 1 n? 1 . [\
= — 4 L —F = — = . 2
€ = 3 + 2\ Var + 19 7Tar631n(2€/§ (27)

Figure 4 shows a graphical representation of h and ¢y against 1. The concen-
tration profile looks similar to the error function solution of the pure diffusion

case (equation (16)) though now of finite extent |p| < 21/v/3/x. The role of e+’
in equation (17) is played here by h with its semi-ellipse replacing the classic
‘bell’” curve of pure diffusion. The maximum of 88;2 is always in the middle of the

cavity, it now decreases as t~'/* as oppose to t~/2 for pure diffusion.

5 Numerical Simulations

Numerical solutions were obtained independently, for the universal one dimen-
sional equation in ¢q (14), and for the full set of governing equations (1) to (5)
using the commercial CFD code, CFX. Checks were made that the final solu-
tions did not depend on spatial or time discretization and that the dopant had
not reached the ends of the cavity.

Equation (14) was solved as a molecular-diffusion problem but with the co-
efficient of diffusion being dynamically modified on each iteration to account for



the additional effective diffusivity as a function of local concentration gradient.
The grid ran from z* = —50 to 450, discretized into 600 cells with geometric
progressions being used to concentrate the mesh around the position of the initial
step-concentration at x* = 0.

The full set of governing equations (1) to (5) were solved in their dimen-
sionless form in a cavity of aspect ratio L/H = 100 with an initial unit step-
concentration at the centre. Typical grids were 500 x 50 with geometric pro-
gressions to concentrate the grid close to the step-concentration and where nec-
essary close to the horizontal walls to catch the Hartmann layers. The pa-
rameters specified for each run were Grg, S¢ and Ha, each of which could be
independently varied. Results are presented here from two different configura-
tions: Gr, = 1420, Sc = 167, Ha = 15.8 corresponding to a(Ha)A* = 3669 and
Grs = 4,5¢ =100, Ha = 15.8 corresponding to a(Ha)A* = 0.01.

A dimensionless length scale, §(¢) = 1/52|,_o, which is a measure of the axial
distance over which the dopant has spread is defined as shown schematically in
figure 5. This is then used as one means of comparing the results between the
analytical and numerical models for diffusion. Figure 6 summarises results for

development of diffusion length with time from the two asymptotic models, the
numerical simulation of the 1D universal equation and the two particular 2D
numerical runs. The graph is in terms of the universal coordinate system, (z*,*)
defined in section 4 with 6* = ﬁ&
The effective diffusivity model applied to the 2D problem is valid when #* >
1/(aA?) as shown in the next section. The numerical results presented here
give examples of this occurring before and after the transition from effective
diffusivity to molecular diffusion with aA? = 3669 and A% = 0.01 respectively.
At aA? = 3669, the numerical results show good agreement with the asymptotic
solution for effective diffusivity shortly after t* = 1/(aA?). As expected, the
solution then follows the 1D numerics as this departs from the asymptotic model.
The run was stopped when diffusion had extended the length of the cavity.
Inspection of equations (17) and (26) shows that the two asymptotic solu-
tions for 6* intersect at ¢* = %,
asymptotic models from about one decade in time either side of this interception

the 1D numerical solution agrees well with the

point.

The second 2D model, with «A? = 0.01, shows good agreement with the
asymptotic solution for pure diffusion a long time before the validity of the effec-
tive diffusion model. This is because for small (enough) values of aA? convective
mass transport will be dominated by molecular diffusion and the global diffusive
solution is obtained irrespective of whether or not the convective contribution
follows the effective diffusivity model.

It can be seen from figure 7 that in the effective diffusivity regime, the nu-
merical solutions for concentration gradient as a function of axial distance show
reasonable agreement with the asymptotic model. The difference around n = 0
for the 2D numerics may be attributed to there being some detectable molecular

10



diffusion, the reason for this being that the onset of the validity of the effec-
tive diffusivity model occurs very close to the beginning of the transition from
the effective to pure diffusion regimes. This effect could presumably have been
avoided by modelling with a higher value of a4, Both 1D and 2D numerical
solutions deviate from the asymptotic model as h(n) — 0. This is expected and

2
is because locally the assumption that (3;‘1) > 1 in equation (18) becomes false
860

525 approaches 0, molecular diffusion then has a noticeable effect
in smoothing the concentration gradient. The axial velocity profiles in figure 8
were calculated analytically using equations (9) and (26). The agreement with
the 2D numerical model is good at = = 0, the small difference in maximum veloc-
ity may again be attributed to there being some noticeable effects of molecular

as h and hence

diffusion for the chosen value of aA?. The agreement is reasonable at z = 12
which corresponds approximately to the distance diffusion has spread (6 = 24).
Close inspection shows however that there is no longer symmetry of the absolute
magnitude of velocity about y = 0. This is not due to numerical errors, it is

because the assumption that %%} < 83% does not hold strictly and 38“; is not an
even function of y when x # 0.

6 Order of magnitude analysis

The main objective of this section is to show that equation (8) and hence the
effective diffusivity model become valid once ¢ > 1. It is more instructive to work
in dimensional terms here, whereby the equivalent criteria is that dimensional
time, "> H?*/D.

For all time, denoting the dimensional diffusion length as I'(T") = 6 H where
0 is the corresponding dimensionless diffusion length defined in figure 5, the
dimensional axial velocity, V. can be estimated from Garandet et al. [6] as:

D
Vi~ al/QAF. (28)

Where a'/?2A ~ GrySc for Ha = 0 and a'/?A ~ GrySc/Ha* for Ha > 1, the
parameters a and A are defined more rigorously in section 3. The magnitudes
of diffusion length and velocity are first considered for T < H?/D. 1t is pos-
sible during this phase, depending on the parameters of the system, that mass
transport will be dominated by either diffusion or by convection. In the case of

convective mass transport being dominant, the concentration discontinuity will
be a thin line distorted by the velocity field and the growth of I' with time is:

ar

a7~ Ve (29)

Solving equations (28) and (29) and integrating I over time gives approximations

11



for V. and I' during this initial convective phase:

' ~ V2al/2ADT, (30)

1/2AD
Vo [T (31)

It can be seen from the numerical results in figure 6 that for a4? > 1 and
T < H?*/D (corresponding to {* < —= in the figure), the slope of the logarith-
mic plot of diffusion length against time is approximately % in agreement with

equation (30). If however molecular diffusion dominates convection during the
initial phase, then both during and after this phase,

I'~VDT (32)

D
V. ~ a'l? Ay =. 33
a2 | (33)

Comparing equations (30) and (32) shows that convection will dominate during
the initial phase if Va/24 > 1 and diffusion will dominate if Val/24 < 1. Of

particular interest and use in the subsequent analysis though is that whichever

and from equation (28),

scenario is dominant, and even if there is a transition from the dominance of
convective to diffusive mass transport, be this before or after the initial phase,
when T > H?*/D:

I'>H, (34)

and either dividing equations (31) by (30) or dividing equations (33) by (32),
noting that both V,. and 1/I" decrease with time,

Ve D
— L —. 35
Y (35)
Taking I" and H as representative length scales for the transport of the dopant
in the axial and lateral directions respectively, the validity of the effective diffu-
sivity model can now be shown. The dimensional forms of equations (7) and (8)

are:

801 800 a<‘/1‘01>8 2 _
v Tax TV VO - Ty —bviai=o, (36)
800 . 2
Vegx = DViCr. (37)

The requirement is that equation (36) reduces to its leading terms in equation
(37) when T'>> H?/D. Considering first the order of magnitude of the laplacian
of C1 in equation (36):

92C,
0X?

+ Vﬁca] ~ D [ﬁ + ﬁ] ~ Dﬁ (38)

2
DV 01:1)[ =t 7

12



It can be seen that each of the remaining terms of equation (36) in C; are, for
T > H?*/D, much smaller than DC}/H? and can therefore be ignored:

aC C D
8—T1 ~ ?1 < Ciy (39)
By continuity V,, ~ Vx%, so by equation (35):
AV,.Ch)s D
V-VC’l,%<<C1ﬁ, (40)

and hence taking only the remaining dominant terms, equation (36) reduces to
equation (37) as required.

The derivation of equation (9) is based on % being “locally” uniform, this
can now be shown to be true for 7' > H?/D. FEquation (37) implies that,
Cy ~ (V,CoH?*)/(DT), which by equation (35) means that C; < Cj and so

% A % and % is therefore uniform over a cross section. Axial variations of
C' occur over a typical length-scale of I', and since I' > H, % is also axially

uniform over a distance longer than H.

It is interesting to return to the estimates of the diffusion length during the
initial stage (for 7' < H?/D) and in particular its continuity through the transi-
tion to the effective diffusivity model. The case of Val/2A4 < 1 is trivial as T is
predicted by equation (32) for all time. When vVa'/2A >> 1, the transport length
during the initial convective stage is predicted by equation (30), the diffusion
length can also be estimated for the effective diffusion phase from equation (26):

I' ~Val2AH (DT)"* (41)

At the time of the transition from convective to effective diffusive mass transport
(i.e. T ~ H?*/D), both of these approximations become I' ~ Va'/2AH. This
implies that after a few H?/D the initial convective phase will be smoothed out
by effective diffusion and its influence on diffusion length negligible.

7 Discussion and conclusions

A non-linear one-dimensional effective diffusivity model has been developed to
describe the combined effects of molecular diffusion and solute buoyancy-driven
convection in a horizontal isothermal capillary subject to an initial axial step-
concentration. Analytical asymptotic solutions were found for this model relating
to the two extremes of dominant convective mass transport and dominant diffu-
sive mass transport. A numerical solution of the one-dimensional model agreed
well with the asymptotic solutions. Numerical simulations were also performed
for the full set of two-dimensional governing equations and there was again good
agreement between these and the one-dimensional model.

13



Through scaling analysis it was shown that the effective diffusivity model
becomes valid once T' > H?*/D in agreement with Taylor [2]. Tt was further
shown that the convective contribution to mass transport will be negligible in
comparison to diffusion when the dimensionless group aA? < 1. In the converse
case of aA? > 1, convective mass transport will dominate diffusion until ¢* ~
3/16, after this time solute buoyancy forces will have decayed sufficiently for
diffusion to again dominate. All of these findings agree with the numerical results.

This analysis could be useful in experimental work to determine molecular
diffusion coefficients. The solutions obtained for the 2D model are valid in 3D
though the group aA? must be determined for any particular set-up. By anal-
ogy to the case of thermal convection in a horizontal capillary [4] this group is
7(GrsSc)? /11796480 when there is no magnetic field and 7A%/384 in the high
Hartmann limit with a vertical magnetic field, assuming in both cases that there
is no convective mass transport within a cross-section (i.e. no stratification of con-
centration). For intermediate Hartmann numbers the general form of the group
is still a(Ha)A? though analytical solutions have not been obtained. Numerical
solutions for the function a(Ha) in the 3D cylinder with no cross-sectional mass
transport have however been calculated and are presented in figure 3, the method
used for these numerics is briefly described here. Assuming no convective mass
transport over a cross-section and ignoring inertia, the governing equations for a
cross-section of the capillary can, once the effective diffusivity model is valid, be
reduced to:

Vv, = Ha® (% + vz) — GrsSc%y, (42)
Jv,
Vig=——= 43
9= (43)
0
Vie, = vza—(:, (44)
where V% = % + %. The CFX package was used to solve equations (42) to

(44) numerically on a 2D circular domain with the original boundary conditions
described in section 2, a was then determined from equation (11) using the cal-
culated values of v, and ¢;. This process was repeated for a range of values
of Grs, Ha and Sc. The value of %—Cgf does not affect the calculated value of a.
Davoust et al.[9] find that when there is stratification and hence convective mass
transport within a cross-section, the result for a 3D cylinder in the high Hart-
mann limit changes by about 5% to 54%/288, implying that the assumption of
no stratification is reasonable.

In all cases, the convective contribution to mass transport scales with Ha™*
and so the use of magnetic fields where the fluid is an electrical conductor could
be a useful means of suppressing unwanted convective effects, which was also
shown to be the case where convection is thermally driven [4].
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The work could be extended to consider the combination of thermal and
solutal driven buoyancy. The governing equations are again highly non linear and
the solutions are likely to depend on whether the two driving forces complement
or oppose each other as suggested by previous experimental results [4]. Further
extensions to the work could be to look at other forces driving convection such
as Marangoni, vibrations and g-jitters in space.

The analytical work presented here assumes that inertia will be low and does
not account for the possibility of shear-flow instabilities when the solute buoyancy
driving force is very high. This situation was observed in the initial stages of some
numerical runs (though not the ones presented here) when the group aA? is very
large, causing recirculation of the flow. It may be expected to cause mixing and
hence increase the perceived effective diffusivity. In the numerical runs where it
was observed, the effects were eventually smoothed out and undetectable by the
start of the effective diffusivity regime though the situation was not investigated
in any detail.
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Captions & Figures

1) Fill  2) Join 3) Diffuse 4) Shear

Figure 1: Schematic of the Shear cell technique: 1) Two capillaries are filled
with liquids of different compositions. 2) The capillaries are joined giving a
step-composition at the interface. 3) Diffusion and/or convective mass transport
occurs. 4) The capillary is sheared, each shear-sample is solidified and globally
analysed to give a 1D variation of composition with axial distance
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Figure 2: a) Model of the cavity with initial concentration step. b) Typical
velocity field. ¢) Typical lines of iso-concentration. The plots in b) and c¢) are
taken from a numerical run, the y-axis has been stretched for clarity.
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Figure 4: Concentration profile and its spatial derivative for the case of dominant
convective contribution to effective diffusivity.
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Figure 5: Diffusion length, 6, based on the averaged concentration gradient at

z = 0.
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Figure 6: Diffusion length (6*) versus time (¢*) from asymptotic and numerical

models
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Figure 7: Time-independent profiles of averaged concentration gradient in the

effective diffusivity regime: 5 = t*~Y/42* versus h(n) = t*lM%
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Figure 8: Analytical and numerical predictions for axial velocity profiles at t = 3.2

(t* = 8.7 x 107%) for aA? = 3669.
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