On the Euler characteristics of real Milnor fibres of partially parallelizable maps of $\left(R^{n}, 0\right)$ to $\left(R^{2}, 0\right)$
 Nicolas Dutertre

To cite this version:

Nicolas Dutertre. On the Euler characteristics of real Milnor fibres of partially parallelizable maps of $\left(R^{n}, 0\right)$ to $\left(R^{2}, 0\right)$. Kodai Mathematical Journal, 2009, 32, pp.324-351. hal-00203473

HAL Id: hal-00203473

https://hal.science/hal-00203473

Submitted on 10 Jan 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE REAL MILNOR FIBRE OF SOME MAPS FROM \mathbb{R}^{n} TO \mathbb{R}^{2}

NICOLAS DUTERTRE

> AbSTRACT. We consider a real analytic map-germ $(f, g):\left(\mathbb{R}^{n}, 0\right) \rightarrow$ $\left(\mathbb{R}^{2}, 0\right)$. Under some conditions, we establish degree formulas for the following quantities : $$
\chi\left(\{f=\alpha\} \cap\{g=\delta\} \cap B_{\varepsilon}^{n}\right),
$$ $$
\chi\left(\{f=\alpha\} \cap\{g \geq \delta\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{f=\alpha\} \cap\{g \leq \delta\} \cap B_{\varepsilon}^{n}\right),
$$ where (α, δ) is a regular value of (f, g) and $0<|(\alpha, \delta)| \ll \varepsilon \ll 1$.

1. Introduction

Let $F=\left(f_{1}, \ldots, f_{k}\right):\left(\mathbb{K}^{n}, 0\right) \rightarrow\left(\mathbb{K}^{k}, 0\right)$, with $0<k<n$ and $\mathbb{K}=\mathbb{R}$ or \mathbb{C}, be an analytic map-germ such that 0 is an isolated singularity of $F^{-1}(0)$, i.e $\operatorname{rank}[D F(x)]=k$ at every $x \in F^{-1}(0) \backslash\{0\}$ close to the origin. Let $g:\left(\mathbb{K}^{n}, 0\right) \rightarrow(\mathbb{K}, 0)$ be a function-germ. We are interested in studying topological invariants associated with the mappings F and (F, g).

Let $B_{\varepsilon} \subset \mathbb{K}^{n}$ be a closed ball centered at the origin of radius ε. For any regular value $\delta \in \mathbb{K}^{k}$ close to the origin, the Milnor fibre of F associated with δ is the set $F^{-1}(\delta) \cap B_{\varepsilon}$, where $0<|\delta| \ll \varepsilon \ll 1$. We will denote it by $W_{F-\delta}^{\varepsilon}$.

In the complex case, the topology of the Milnor fibre is well known. Milnor [Mi] (in the case $k=1$) and Hamm [Ha] (in the case $k>1$) proved that $W_{F-\delta}^{\varepsilon}$ has the homotopy type of a bouquet of $\mu(F)$ spheres of dimension $n-k$. This number $\mu(F)$ is called the Milnor number of F and the Euler-Poincaré characteristic of the Milnor fibre is given by $\chi\left(W_{F-\delta}^{\varepsilon}\right)=1+(-1)^{n-k} \mu(F)$. Minor also showed that, when $k=1, \mu(F)$ is equal to the topological degree of the mapping $\frac{\nabla F}{\nabla F \mid}: \partial B_{\varepsilon} \rightarrow S_{1}^{2 n-1}$. This gives the following algebraic characterization of the Milnor number :

$$
\mu(F)=\operatorname{dim}_{\mathbb{C}} \frac{\mathcal{O}_{\mathbb{C}^{n}, 0}}{\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)}
$$

where $\mathcal{O}_{\mathbb{C}^{n}, 0}$ is the algebra of holomorphic function-germs at the origin.
This last formula was extended to the case $k>1$ by Lê [Le] and Greuel [Gr], who obtained the following formula :

$$
\mu\left(F^{\prime}\right)+\mu(F)=\operatorname{dim}_{\mathbb{C}} \mathcal{O}_{\mathbb{C}^{n}, 0} / I
$$

Mathematics Subject Classification (2000) : 14P15, 58K15.
where $F^{\prime}=\left(f_{1}, \ldots, f_{k-1}\right)$ and I is the ideal generated by f_{1}, \ldots, f_{k-1} and the minors $\frac{\partial\left(f_{1}, \ldots, f_{k}\right)}{\partial\left(x_{1}, \ldots, x_{i_{k}}\right)}$. Hence, proceeding by induction, one can get a formula for $\mu(F)$ in terms of dimensions of appropriate local algebras.

In the real case, the topology of the Milnor fibre depends on δ and can not be as well described as in the complex case. Nevertheless, there exist formulas similar to the ones mentionned above relating its Euler-Poincaré characteristic to topological degrees of mapping defined in terms of F. For instance, if $k=1$, the Khimshiashvili formula [Kh] states that:

$$
\chi\left(W_{F-\delta}^{\varepsilon}\right)=1-\operatorname{sign}(-\delta)^{n} \cdot \operatorname{deg}_{0} \nabla F,
$$

where $\operatorname{deg}_{0} \nabla F$ is the topological degree of the mapping $\frac{\nabla F}{|\nabla F|}: \partial B_{\varepsilon} \rightarrow S_{1}^{n-1}$.
We proved in [Du2] that if (δ, α) is a regular value of (F, g) with $0<$ $|\alpha| \ll|\delta| \ll \varepsilon \ll 1$ then :

$$
\begin{aligned}
& \chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \geq \alpha\}\right)-\chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \leq \alpha\}\right) \equiv \\
& \quad \chi\left(W_{(F-\delta, g-\alpha)}^{\varepsilon}\right)+\chi\left(W_{F-\delta}^{\varepsilon}\right) \equiv \operatorname{dim}_{\mathbb{R}} \mathcal{O}_{\mathbb{R}^{n}, 0} / I \bmod (2),
\end{aligned}
$$

where $\mathcal{O}_{\mathbb{R}^{n}, 0}$ is the ring of real analytic function-germs at the origin and I is the ideal generated by f_{1}, \ldots, f_{k} and the minors $\frac{\partial\left(g, f_{1}, \ldots, f_{k}\right)}{\partial\left(x_{1}, \ldots, x_{k}\right)}$. This formula generalized the case $g=x_{1}^{2}+\cdots+x_{n}^{2}$ already shown by Duzinski et al. [DLNS]. This a mod 2 formula and one may ask if, as in the complex case, it is possible to express the following quantities :

$$
\chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \geq \alpha\}\right)-\chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \leq \alpha\}\right),
$$

and

$$
\chi\left(W_{F-\delta}^{\varepsilon}\right)
$$

in terms of topological degrees of mappings defined in terms of F and g.
When $k=n-1$ and $g=x_{1}^{2}+\cdots+x_{n}^{2}$, Aoki et al. ([AFN1],[AFS]) proved that : $\chi\left(W_{F-\delta}^{\varepsilon}\right)=\operatorname{deg}_{0} H$ and $2 \times \operatorname{deg}_{0} H$ is the number of half-branches of $F^{-1}(0)$, where $H=\left(\frac{\partial\left(g, f_{1}, \ldots, f_{n-1}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}, f_{1}, \ldots, f_{n-1}\right)$. They extended this result to the case $g=x_{n}$ in [AFN2] and Szafraniec extended it to any g in [Sz1].

When $k=1$ and $g=x_{1}$, Fukui showed in [Fu] that:

$$
\chi\left(W_{F-\delta}^{\varepsilon} \cap\left\{x_{1} \geq 0\right\}\right)-\chi\left(W_{F-\delta}^{\varepsilon} \cap\left\{x_{1} \leq 0\right\}\right)=-\operatorname{sign}(-\delta)^{n} \cdot \operatorname{deg}_{0} H,
$$

where $H=\left(F, \frac{\partial F}{\partial x_{1}}, \ldots, \frac{\partial F}{\partial x_{n}}\right)$.
In [Du1], we proved that when $n=2,4$ or 8 and $k=1$, it is possible to construct a mapping $H:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ such that:

$$
\chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \geq \alpha\}\right)-\chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \leq \alpha\}\right)=-\operatorname{deg}_{0} H .
$$

This last result was generalized by Fukui and Khovanskii [FK]. In that paper, the authors consider an analytic function-germ $g:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ that satisfies the following condition (P) : there exits C^{∞}-vector fields v_{2}, \ldots, v_{n} which span the tangent space at x to $g^{-1}(g(x))$, whenever x is a regular point of g, and $\nabla g, v_{2}, \ldots, v_{n}$ agree with the orientation of \mathbb{R}^{n}. They define a mapping $H:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ by $H=\left(F, v_{2} F, \ldots, v_{n} F\right)$ and they prove
that if 0 is isolated in $H^{-1}(0)$, if the set of critical points of g does not intersect $W_{F-\delta}^{\varepsilon}$ and if $(\delta, 0)$ is a regular value of (F, g) then :

$$
\chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \geq 0\}\right)-\chi\left(W_{F-\delta}^{\varepsilon} \cap\{g \leq 0\}\right)=\operatorname{sign}(-\delta)^{n} \cdot \operatorname{deg}_{0} H
$$

In this paper, we continue this work of computing Euler-Poincaré characteristics of real Milnor fibres, especially for mappings with two components. In Section 2, we give generalizations of Khimshiashvili's formula. We consider an analytic function-germ $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$, with an isolated critical point at 0 , that satisfies the condition (P) described above. Let $g:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be an other function-germ. We define a mapping $k(f, g):\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ in terms of f and g and we assume that it has an isolated zero at the origin. We prove (Theorem 2.1) that :

$$
\begin{aligned}
& \text { if } n \text { is even }: \chi\left(W_{(f, g-\delta)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} \nabla f+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} k(f, g), \\
& \text { if } n \text { is odd }: \chi\left(W_{(f, g-\delta)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k(f, g)
\end{aligned}
$$

We also show that if n is even :

$$
\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \geq \delta\}\right)-\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \leq \delta\}\right)=\operatorname{deg}_{0} k(f, g)
$$

where (α, δ) is an appropriate regular value of (f, g). Then we assume that g has an isolated critical point at the origin as well and we define an other mapping $l(f, g)$. If it has an isolated zero at the origin, then we have (Theorem 2.9) :

$$
\begin{aligned}
& \text { if } n \text { is even }: \chi\left(W_{(f-\delta, g)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} \nabla g-\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} l(f, g) \\
& \text { if } n \text { is odd }: \chi\left(W_{f-\delta}^{\varepsilon} \cap\{g \geq 0\}\right)-\chi\left(W_{f-\delta}^{\varepsilon} \cap\{g \leq 0\}\right)= \\
& \operatorname{deg}_{0} \nabla g+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} l(f, g),
\end{aligned}
$$

where $0<|\delta| \ll \varepsilon \ll 1$.
In Section 3, we give a generalization of the formula of Fukui mentionned above. We work in \mathbb{R}^{1+n} equipped with the coordinate system $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and we consider a function-germ $F:\left(\mathbb{R}^{1+n}, 0\right) \rightarrow(\mathbb{R}, 0)$ with an isolated critical point at 0 . We assume that F satisfies the following condition (Q) : there exists C^{∞} vector fields V_{2}, \ldots, V_{n} on \mathbb{R}^{1+n} such that $V_{2}(p), \ldots, V_{n}(p)$ span the tangent space at p to $F^{-1}(F(p)) \cap x_{0}^{-1}\left(x_{0}(p)\right)$ whenever p is a regular point of $\left(F, x_{0}\right)$ and such that $\left(e_{0}, \nabla F(p), V_{2}(p), \ldots, V_{n}(p)\right)$ agrees with the orientation of \mathbb{R}^{1+n}. Here e_{0} is the vector $(1,0, \ldots, 0)$. Let $G:\left(\mathbb{R}^{1+n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be an other function-germ. We define three mappings $H(F, G), I(F, G)$ and $J(F, G):\left(\mathbb{R}^{1+n}, 0\right) \rightarrow\left(\mathbb{R}^{1+n}, 0\right)$. We prove that if 0 is isolated in $J(F, G)^{-1}(0)$ and $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$ then (Theorem 3.1) :

$$
\begin{aligned}
& \operatorname{deg}_{0} H(F, G)=\operatorname{sign}(-\delta)^{n} \cdot\left[\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)\right. \\
&\left.-\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)\right] \\
& \operatorname{deg}_{0} J(F, G)=\operatorname{sign}(-\delta)^{n} \cdot\left[\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)\right.\left.-\chi\left(W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}\right)\right]
\end{aligned}
$$

where $0<|\delta| \ll \varepsilon \ll 1$. Then we apply these formulas to the case where F and G are one-parameter deformations of two function-germs f and g : $\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$. Denoting by f_{t} and g_{t} the deformations given by $f_{t}(x)=$ $F(t, x)$ and $g_{t}(x)=G(t, x)$ and applying a deformation argument as Fukui did in $[\mathrm{Fu}]$, we obtain degree formulas for $\chi\left(W_{\left(f_{t}, g_{t}\right)}^{\varepsilon}\right)$ and

$$
\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \geq 0\right\}\right)-\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \leq 0\right\}\right)
$$

where $0<|t| \ll \varepsilon \ll 1$ (Corollary 3.15). When the deformations of f and g are of the form :

$$
F(t, x)=f(x)-\gamma_{1}(t) \text { and } G(t, x)=g(x)-\gamma_{2}(t)
$$

where $\gamma=\left(\gamma_{1}, \gamma_{2}\right):(\mathbb{R}, 0) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ is an analytic arc such that $\gamma(t) \neq 0$ if $t \neq 0, \gamma_{1}^{\prime}(t) \neq 0$ if $t \neq 0$, and the image of γ consists of regular values of (f, g) (except the origin in \mathbb{R}^{2} of course), we get formulas for $\chi\left(W_{\left(f-\gamma_{1}(t), g-\gamma_{2}(t)\right)}^{\varepsilon}\right)$ and

$$
\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \geq \gamma_{2}(t)\right\}\right)-\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \leq \gamma_{2}(t)\right\}\right)
$$

where $0<|t| \ll \varepsilon \ll 1$ (Corollary 3.17).
In Section 4, we present different cases where we can apply the results of the previous sections. There are two cases : when $n=2,4$ or 8 and when $\frac{\partial f}{\partial x_{1}} \geq 0$ and $\frac{\partial F}{\partial x_{1}} \geq 0$. In this last situation, we explain how the results concerning the one-parameter deformations can be simplified with the aid of Theorem 2.1 (see Corollaries 4.1 and 4.2).

We will use the following notations. Some of them have already appeared in this introduction :
(1) if $H:\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ is a mapping with an isolated zero at the origin then $\operatorname{deg}_{0} H$ is the topological degree of $\frac{H}{|H|}: S_{\varepsilon}^{n-1} \rightarrow S_{1}^{n-1}$ where S_{ε}^{n-1} is the sphere of radius ε centered at the origin,
(2) if $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a mapping then W_{F}^{ε} denotes the set $F^{-1}(0) \cap B_{\varepsilon}^{n}$, where B_{ε}^{n} is the ball of radius ε centered at the origin and $\partial W_{F}^{\varepsilon}$ is $F^{-1}(0) \cap S_{\varepsilon}^{n-1}$,
(3) if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a smooth function then $f_{x_{i}}$ denotes the partial derivative $\frac{\partial f}{\partial x_{i}}$ and ∇f is the gradient of f,
(4) if $F=\left(F_{1}, \ldots, F_{k}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}, 0<k \leq n$, is a smooth mapping then $D F(x)$ is its Jacobian matrix at x and $\frac{\partial\left(F_{1}, \ldots, F_{k}\right)}{\partial\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)}$ is the determinant of the following $k \times k$ minors of $D F(x)$:

$$
\left(\begin{array}{ccc}
F_{1 x_{i_{1}}} & \cdots & F_{1 x_{i_{k}}} \\
\vdots & \ddots & \vdots \\
F_{k x_{i_{1}}} & \cdots & F_{k x_{i_{k}}}
\end{array}\right) .
$$

2. Generalizations of Khimshiashvili's formula

In this section, we prove formulas similar to Khimshiashvili's one for the fibre of a function on a hypersurface with an isolated singularity. We need
to put the same conditon (P) as Fukui and Khovanskii's condition $(P)[\mathrm{FK}]$, either on the function or on the function defining the hypersurface.

Let $\left(x_{1}, \ldots, x_{n}\right)$ be a coordinate system in \mathbb{R}^{n} and let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be an analytic function-germ with an isolated critical point at the origin. We assume that f satisfies the following condition (P) : there exists C^{∞} vector fields v_{2}, \ldots, v_{n} on \mathbb{R}^{n} such that $v_{2}(x), \ldots, v_{n}(x)$ span the tangent space at x to $f^{-1}(f(x))$, whenever x is a regular point of f, and such that the orientation of $\left(\nabla f(x), v_{2}(x), \ldots, v_{n}(x)\right)$ agrees with the orientation of \mathbb{R}^{n}.

Let $g:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be an other analytic function-germ. We define a mapping $k(f, g):\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ in the following way :

$$
k(f, g)=\left(f, v_{2} g, \ldots, v_{n} g\right)
$$

We will prove the following theorem :
Theorem 2.1. If 0 is an isolated critical point of f and is isolated in $k(f, g)^{-1}(0)$, then we have :

$$
\begin{aligned}
& \text { if } n \text { is even : } \chi\left(W_{(f, g-\delta)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} \nabla f+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} k(f, g) \text {, } \\
& \text { if } n \text { is odd }: \chi\left(W_{(f, g-\delta)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k(f, g),
\end{aligned}
$$

where $0<|\delta| \ll \varepsilon \ll 1$. Furthermore, if n is even, we also have :

$$
\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \geq \delta\}\right)-\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \leq \delta\}\right)=\operatorname{deg}_{0} k(f, g),
$$

where $0 \leq|\delta| \ll|\alpha| \ll \varepsilon \ll 1$ and (α, δ) is a regular value of (f, g).
To establish this theorem, we need a series of lemmas. From now on, we will assume that the hypothesis of Theorem 2.1 are fullfilled. For all $(i, j) \in\{1, \ldots, n\}^{2}$, we will set $m_{i j}=\frac{\partial(g, f)}{\partial\left(x_{i}, x_{j}\right)}$.
Lemma 2.2. For $\delta \neq 0$ sufficiently small, $(0, \delta)$ is a regular value of (f, g).
Proof. Since f has an isolated critical point, $f^{-1}(0) \backslash\{0\}$ is smooth (or empty). By the Curve Selection Lemma, the critical points of $g_{\mid f^{-1}(0) \backslash\{0\}}$ lie in $g^{-1}(0)$.
Lemma 2.3. Let p be a regular point of f. The function $g_{\mid f^{-1}(f(p))}$ has a critical point at p if and only if $v_{i} g(p)=0$ for all $i \in\{2, \ldots, n\}$.

Proof. If p is a regular point of f then $v_{2}(p), \ldots, v_{n}(p)$ span the tangent space at $f^{-1}(f(p))$. Therefore $g_{\mid f^{-1}(f(p))}$ has a critical point at p if and only if $\left\langle v_{i}(p), \nabla g(p)\right\rangle=0$ for all $i \in\{2, \ldots, n\}$.
Lemma 2.4. The origin is an isolated singularity of $f^{-1}(0) \cap g^{-1}(0)$ if and only if 0 is isolated in $k(f, g)^{-1}(0)$.

Proof. A point p, distinct from the origin, is in $k(f, g)^{-1}(0)$ if and only if $g_{\mid f^{-1}(0) \backslash\{0\}}$ has a critical point at p. But, as noticed above, such a point lies in $g^{-1}(0)$.

Lemma 2.5. Let $\alpha \neq 0$ be a small regular value of f. Let p be a point in $f^{-1}(\alpha)$. The function $g_{\mid f^{-1}(\alpha)}$ has a non-degenerate critical point at p if and only if $k(f, g)(p)=(\alpha, 0, \ldots, 0)$ and $\operatorname{det} D k(f, g)(p) \neq 0$. Furthermore if $\lambda(p)$ is the Morse index of $g_{\mid f^{-1}(\alpha)}$ at p then one has :

$$
(-1)^{\lambda(p)}=\operatorname{sign}[\operatorname{det} D k(f, g)(p)] .
$$

Proof. Since α is a regular value of f, there exists j such that $f_{x_{j}}(p) \neq 0$. Assume that $j=1$. From [Sz2,p349-350], p is a non-degenerate critical point of $g_{\mid f^{-1}(\alpha)}$ if and only if :

$$
\operatorname{det}\left[\begin{array}{c}
\nabla f(p) \\
\nabla m_{1 i}(p)
\end{array}\right]_{2 \leq i \leq n} \neq 0
$$

Furthermore, we have :

$$
(-1)^{\lambda(p)}=(-1)^{n-1} \cdot \operatorname{sign}\left(f_{x_{1}}(p)\right)^{n} \cdot \operatorname{det}\left[\begin{array}{c}
\nabla f(p) \\
\nabla m_{1 i}(p)
\end{array}\right]
$$

We have to relate $\operatorname{det}\left[\begin{array}{c}\nabla f(p) \\ \nabla m_{1 i}(p)\end{array}\right]$ to $\operatorname{det}\left[\begin{array}{c}\nabla f(p) \\ \nabla v_{i} g(p)\end{array}\right]$. For $i \in\{2, \ldots, n\}$, let $u_{i}(p)$ be the vector $\left(f_{x_{i}}(p), 0, \ldots, 0,-f_{x_{1}}(p), 0, \ldots, 0\right)$, where $-f_{x_{1}}(p)$ is the i-th coordinate. Then $\left(u_{2}(p), \ldots, u_{n}(p)\right)$ is a basis of $T_{p} f^{-1}(\alpha)$ and it is not difficult to see that :

$$
\operatorname{det}\left(\nabla f(p), u_{2}(p), \ldots, u_{n}(p)\right)=(-1)^{n-1} \cdot f_{x_{1}}(p)^{n-2} \cdot\left(\sum_{i=1}^{n} f_{x_{i}}^{2}(p)\right)
$$

Hence there exists a $(n-1) \times(n-1)$ matrix $B(p)$ such that :

$$
\binom{\nabla f(p)}{u_{i}(p)}=\left(\begin{array}{cc}
1 & 0 \\
0 & B(p)
\end{array}\right) \cdot\binom{\nabla f(p)}{v_{i}(p)}
$$

with $\operatorname{sign}[\operatorname{det} B(p)]=(-1)^{n-1} \operatorname{sign}\left[f_{x_{1}}(p)^{n-2}\right]$. Hence, for $i \in\{2, \ldots, n\}$:

$$
u_{i}(p)=\sum_{j=2}^{n} B_{i j}(p) \cdot v_{j}(p)
$$

and :

$$
m_{1 i}(p)=u_{i} g(p)=\sum_{j=2}^{n} B_{i j}(p) \cdot v_{j} g(p)
$$

Since $v_{j} g(p)=0$, we have :

$$
\nabla m_{1 i}(p)=\sum_{j=2}^{n} B_{i j}(p) \cdot \nabla v_{j} g(p)
$$

and :

$$
\binom{\nabla f(p)}{\nabla m_{1 i}(p)}=\left(\begin{array}{cc}
1 & 0 \\
0 & B(p)
\end{array}\right) \cdot\binom{\nabla f(p)}{\nabla v_{i} g(p)}
$$

With this equality, it is easy to conclude.

To prove Theorem 2.1, we will use Morse theory for manifolds with corners. The reader may refer to [Du4,Section 2] for a brief description of this theory. The following lemma deals with the critical points of $g_{\mid \partial W_{f-\alpha}^{\varepsilon}}$.

Lemma 2.6. For all α and ε such that $0<|\alpha| \ll \varepsilon \ll 1$, one has :

- at all correct critical points of $g_{\mid \partial W_{f-\alpha}^{\varepsilon}}$ with $g>0, \nabla g_{\mid f-1(\alpha)}$ points outwards,
- at all correct critical points of $g_{\mid \partial W_{f-\alpha}^{\varepsilon}}$ with $g<0, \nabla g_{\mid f^{-1}(\alpha)}$ points inwards,
- there are no correct critical points of $g_{\mid \partial W_{f-\alpha}^{\varepsilon}}$ in $g^{-1}(0)$.

Proof. The proof is the same as [Du1], Lemma 4.1.
Lemma 2.7. We can choose α small enough and we can perturbe g into \tilde{g} in such a way that $\tilde{g}_{\mid W_{f-\alpha}^{\varepsilon}}$ has only Morse critical points.

Proof. Let $(x ; t)=\left(x_{1}, \ldots, x_{n} ; t_{1}, \ldots, t_{n}\right)$ be a coordinate system of $\mathbb{R}^{2 n}$ and let $\bar{g}(x, t)=g(x)+t_{1} x_{1}+\cdots t_{n} x_{n}$. For $(i, j) \in\{1, \ldots, n\}^{2}$, we define $M_{i j}(x, t)$ by $M_{i j}(x, t)=\frac{\partial(f, \bar{g})}{\partial\left(x_{i}, x_{j}\right)}(x, t)$. Notice that:

$$
M_{i j}(x, t)=m_{i j}(x, t)+f_{x_{i}}(x) t_{j}-t_{i} f_{x_{j}}(x)
$$

Let Γ be defined by :

$$
\Gamma=\left\{(x, t) \in \mathbb{R}^{2 n} \mid M_{i j}(x, t)=0 \text { for }(i, j) \in\{1, \ldots, n\}^{2}\right\}
$$

At a point p, if f does not vanish then there exists $i \in\{1, \ldots, n\}$ such that $f_{x_{i}}(p) \neq 0$. This implies that $\Gamma \backslash\{f=0\}$ is a smooth manifold (or empty) of dimension $n+1$. Actually if p belongs to $\Gamma \backslash\{f=0\}$, then one can assume that $f_{x_{1}}(p) \neq 0$. In this case, around p, Γ is defined by the vanishing of $M_{12}, \ldots, M_{1 n}$ and the gradient vector fields of these functions are linearly independent. Let π be the following mapping :

$$
\begin{array}{cccc}
\pi: \Gamma \backslash\{f=0\} & \rightarrow & \mathbb{R}^{1+n} \\
(x, t) & \mapsto & (f(x), t)
\end{array}
$$

By the Bertini-Sard theorem, we can choose (α, s) close to 0 in \mathbb{R}^{1+n} such that π is regular at each point in $\pi^{-1}(\alpha, s)$ close to the origin. If we denote by \tilde{g} the function defined by $\tilde{g}(x)=\bar{g}(x, s)$, this means that $\tilde{g}_{\mid f^{-1}(\alpha)}$ admits only Morse critical points in a neighborhood of the origin.

Proof of Theorem 2.1. Let $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the distance function to the origin. Let $\varepsilon>0$ be sufficiently small so that $g_{\mid f^{-1}(0) \backslash\{0\}}$ has no critical point in $f^{-1}(0) \backslash\{0\} \cap\{\omega<\varepsilon\}$. Let δ be such that $0<|\delta| \ll \varepsilon \ll 1$. We want to express $\chi\left(W_{(f, g-\delta)}^{\varepsilon}\right)$ in terms of $\operatorname{deg}_{0} k(f, g)$. Let α be a regular value of f such that $0<|\alpha| \ll|\delta|$ and the following properties are satisfied :
(1) $W_{(f-\alpha, g-\delta)}^{\varepsilon}$ is diffeomorphic to $W_{(f, g-\delta)}^{\varepsilon}$,
(2) the critical points of $g_{\mid f^{-1}(\alpha) \cap\{\omega<\varepsilon\}}$ lie in $\{|g|<\delta\} \cap\left\{\omega<\frac{\varepsilon}{2}\right\}$.

Hence the critical points of $g_{\mid \partial W_{f-\alpha}^{\varepsilon}}$ are correct. Furthermore by the previous lemmas, we can assume that $g_{\mid f^{-1}(\alpha) \cap\{\omega<\varepsilon\}}$ has only Morse critical points, that at the correct critical points of $g_{\mid W_{f-\alpha}^{\varepsilon}}$ lying in $\{g>0\}$ (resp. $\{g<0\}$), $\nabla g_{\mid W_{f-\alpha}^{\varepsilon}}$ points outwards (resp. inwards) and that there are no correct critical points of $g_{\mid W_{f-\alpha}^{e}}$ in $g^{-1}(0)$.
We assume that $\delta>0$ and we apply Morse theory for manifolds with boundary to obtain :

$$
\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \geq-\delta\}, W_{(f-\alpha, g+\delta)}^{\varepsilon}\right)=\sum_{i}(-1)^{\lambda\left(p_{i}\right)},
$$

where $\left\{p_{i}\right\}$ is the set of critical points of $g_{\mid f^{-1}(\alpha) \cap\{\omega<\varepsilon\}}$, and :

$$
\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \leq-\delta\}, W_{(f-\alpha, g+\delta)}^{\varepsilon}\right)=0 .
$$

Summing these equalities and using the Mayer-Vietoris sequence gives:

$$
\chi\left(W_{f-\alpha}^{\varepsilon}\right)-\chi\left(W_{(f-\alpha, g+\delta)}^{\varepsilon}\right)=\sum_{i}(-1)^{\lambda\left(p_{i}\right)} .
$$

By Lemma 2.5, $\sum_{i}(-1)^{\lambda\left(p_{i}\right)}$ is equal to $\operatorname{deg}_{0} k(f, g)$. By Khimshiashvili's formula, $\chi\left(W_{f-\alpha}^{\varepsilon}\right)=1-\operatorname{sign}(-\alpha)^{n} \cdot \operatorname{deg}_{0} \nabla f$. Now by Proposition 1.1 in [FK], we know that $\operatorname{deg}_{0} \nabla f=0$ if n is odd. This gives the result for the fibre $W_{(f, g-\delta)}^{\varepsilon}$ with $\delta<0$. The formula for the fibre $W_{(f, g-\delta)}^{\varepsilon}$ with $\delta>0$ is obtained replacing g with $-g$. It remains to prove the third formula. Let δ be such that (α, δ) is a regular value of (f, g) and $0 \leq|\delta| \ll|\alpha| \ll \varepsilon$. Since n is even, we have :

$$
\begin{gathered}
\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \geq \delta\}\right)-\chi\left(W_{(f-\alpha, g-\delta)}^{\varepsilon}\right)=\sum_{i \mid g\left(p_{i}\right)>\delta}(-1)^{\lambda\left(p_{i}\right)}, \\
\chi\left(W_{f-\alpha}^{\varepsilon} \cap\{g \leq \delta\}\right)-\chi\left(W_{(f-\alpha, g-\delta)}^{\varepsilon}\right)=-\sum_{i \mid g\left(p_{i}\right)<\delta}(-1)^{\lambda\left(p_{i}\right)} .
\end{gathered}
$$

Making the difference and using Lemma 2.5 leads to the result.
Corollary 2.8. If 0 is an isolated critical point of f and is isolated in $k(f, g)^{-1}(0)$, then one has :
if n is odd: $\chi\left(\partial W_{(f, g)}^{\varepsilon}\right)=2-2 \operatorname{deg}_{0} k(f, g)$,
if n is even : $\chi\left(\partial W_{f}^{\varepsilon} \cap\{g \geq 0\}\right)-\chi\left(\partial W_{f}^{\varepsilon} \cap\{g \leq 0\}\right)=2 \operatorname{deg}_{0} k(f, g)$.
Proof. The first point is easy. For the second point, see [Du1], Theorem 5.2.

Now let us suppose that g also has an isolated critical point at the origin and consider the mapping $l(f, g):\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ defined by :

$$
l(f, g)=\left(g, v_{2} g, \ldots, v_{n} g\right) .
$$

In [FK], Theorem 4.1, Fukui and Khovanskii prove that if 0 is isolated in $l(f, g)^{-1}(0)$ and if the set of critical points of f does not intersect $W_{g-\delta}^{\varepsilon}$ then:

$$
\operatorname{deg}_{0} l(f, g)=-\operatorname{sign}(-\delta)^{n} \cdot\left\{\chi\left(W_{g-\delta}^{\varepsilon} \cap\{f \geq 0\}\right)-\chi\left(W_{g-\delta}^{\varepsilon} \cap\{f \leq 0\}\right)\right\}
$$

In our situation the second condition is fullfilled because f has an isolated critical point. We want to give an other interpretation to this degree. We will prove the following theorem.
Theorem 2.9. If f and g have an isolated critical point at the origin and 0 is isolated in $l(f, g)^{-1}(0)$ then :

$$
\begin{array}{r}
\text { if } n \text { is even }: \chi\left(W_{(f-\delta, g)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} \nabla g-\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} l(f, g) \\
\text { if } n \text { is odd }: \chi\left(W_{f-\delta}^{\varepsilon} \cap\{g \geq 0\}\right)-\chi\left(W_{f-\delta}^{\varepsilon} \cap\{g \leq 0\}\right)= \\
\operatorname{deg}_{0} \nabla g+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} l(f, g),
\end{array}
$$

where $0<|\delta| \ll \varepsilon \ll 1$.
The proof of this theorem goes nearly like the proof of Theorem 2.1. We need some lemmas.

Lemma 2.10. For $\delta \neq 0$ sufficiently small, $(\delta, 0)$ is a regular value of (f, g).
Lemma 2.11. Let p be a regular point of g. The function $f_{\mid g^{-1}(g(p))}$ has a critical point at p if and only if $v_{i} g(p)=0$ for all $i \in\{2, \ldots, n\}$.

Proof. The function $f_{\mid g^{-1}(g(p))}$ has a critical point at p if and only if $\nabla f(p)$ and $\nabla g(p)$ are colinear. Since these two vectors are non zero, this is equivalent to the fact that $g_{\mid f^{-1}(f(p))}$ has a critical point at p. It is enough to use Lemma 2.3.
Lemma 2.12. The origin is an isolated singularity of $f^{-1}(0) \cap g^{-1}(0)$ if and only if 0 is isolated in $l(f, g)^{-1}(0)$.
Lemma 2.13. Let $\alpha \neq 0$ be a small regular value of g. Let p be a point in $g^{-1}(\alpha)$. The function $f_{\mid g^{-1}(\alpha)}$ has a non-degenerate critical point at p if and only if $l(f, g)(p)=(\alpha, 0, \ldots, 0)$ and $\operatorname{det} D l(f, g)(p) \neq 0$. Furthermore if $\lambda(p)$ is the Morse index of $f_{\mid g^{-1}(\alpha)}$ at p and if $\mu(p)$ is the real number such that $\nabla f(p)=\mu(p) \cdot \nabla g(p)$ then we have :

$$
(-1)^{\lambda(p)}=(-1)^{n-1} \cdot \operatorname{sign}\left[\mu(p)^{n} \cdot \operatorname{det} D l(f, g)(p)\right]
$$

Proof. Since α is a regular value of g, there exists j such that $g_{x_{j}}(p) \neq 0$. Assume that $j=1$. From [Sz2,p349-350], p is a non-degenerate critical point of $f_{\mid g^{-1}(\alpha)}$ if and only if :

$$
\operatorname{det}\left[\begin{array}{c}
\nabla g(p) \\
-\nabla m_{1 i}(p)
\end{array}\right]_{2 \leq i \leq n} \neq 0
$$

Furthermore, we have :

$$
(-1)^{\lambda(p)}=(-1)^{n-1} \cdot \operatorname{sign}\left(g_{x_{1}}(p)^{n} \cdot \operatorname{det}\left[\begin{array}{c}
\nabla g(p) \\
-\nabla m_{1 i}(p)
\end{array}\right]\right) .
$$

Since $g_{x_{1}}(p) \neq 0, f_{x_{1}}(p)$ does not vanish for otherwise $\mu(p)$ and $\nabla f(p)$ would vanish as well. Then the computations done in Lemma 2.5 show that :

$$
\operatorname{sign}\left(\operatorname{det}\left[\begin{array}{c}
\nabla g(p) \\
-\nabla v_{i} g(p)
\end{array}\right]\right)=\operatorname{sign}\left(f_{x_{1}}(p)^{n-2} \cdot \operatorname{det}\left[\begin{array}{c}
\nabla g(p) \\
-\nabla m_{1 i}(p)
\end{array}\right]\right)
$$

and it is easy to conclude.
The following lemma deals with the critical points of $f_{\mid \partial W_{g-\alpha}^{\varepsilon}}$.
Lemma 2.14. For all α and ε such that $0<|\alpha| \ll \varepsilon \ll 1$, one has :

- at all correct critical points of $f_{\mid \partial W_{g-\alpha}^{\varepsilon}}$ with $f>0, \nabla f_{\mid g^{-1}(\alpha)}$ points outwards,
- at all correct critical points of $f_{\mid \partial W_{g-\alpha}^{\varepsilon}}$ with $f<0, \nabla f_{\mid g^{-1}(\alpha)}$ points inwards,
- there are no correct critical points of $f_{\mid \partial W_{g-\alpha}^{\varepsilon}}$ in $f^{-1}(0)$.

Similarly, we have :
Lemma 2.15. For ε sufficiently small, one has :

- at all correct critical points of $f_{\mid S_{\varepsilon}^{n-1}}$ with $f>0, \nabla f$ points outwards,
- at all correct critical points of $f_{\mid S_{\varepsilon}^{n-1}}$ with $f<0, \nabla f$ points inwards,
- there are no correct critical points of $f_{\mid S_{\varepsilon}^{n-1}}$ in $f^{-1}(0)$.

Lemma 2.16. We can choose α small enough and we can pertube g into \tilde{g} in such a way that $f_{\mid W_{g-\alpha}^{\varepsilon}}$ has only Morse critical points.

Proof. With the method of Lemma 2.7, we can prove that there exists a small perturbation \tilde{g} of g such that $f_{\mid W_{g-\alpha}^{\varepsilon}}$ has only Morse critical points outside $\{f=0\}$. But Lemma 2.2 states that $(0, \alpha)$ is a regular value of (f, \tilde{g}) for α small enough.

Proof of Theorem 2.9. The case n even is proved as in Theorem 2.1. So let us assume that n is odd. Let $\omega: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the distance function to the origin. Let $\varepsilon>0$ be sufficiently small so that $f_{\mid g^{-1}(0) \backslash\{0\}}$ has no critical point in $g^{-1}(0) \backslash\{0\} \cap\{\omega<\varepsilon\}$. Let (δ, α) be a regular value of (f, g) such that :
(1) $0<|\alpha| \ll|\delta| \ll \varepsilon$,
(2) the critical points of $f_{\mid g^{-1}(\alpha)}$ lie in $\{|f|<\delta\} \cap\left\{\omega<\frac{\epsilon}{2}\right\}$,
(3) $\{g ? 0\} \cap W_{f-\delta}^{\varepsilon}$ is diffeomorphic to $\{g ? \alpha\} \cap W_{f-\delta}^{\varepsilon}$, where $? \in\{\leq,=, \geq\}$.

Thanks to the three previous lemmas, we can assume as in Theorem 2.1 that we are in a good situation to apply Morse theory for manifolds with corners. Let us assume that $\delta>0$. By Morse Theory, we obtain :

$$
\begin{align*}
& \chi\left(\{g \geq \alpha\} \cap\{f \geq \delta\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{g \geq \alpha\} \cap W_{f-\delta}^{\varepsilon}\right)=0, \tag{1}\\
& \chi\left(\{g \geq \alpha\} \cap\{f \leq \delta\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{g \geq \alpha\} \cap W_{f-\delta}^{\varepsilon}\right)=\sum_{i \mid \mu\left(p_{i}\right)<0}(-1)^{\lambda\left(p_{i}\right)}, \tag{2}\\
& \chi\left(\{g \leq \alpha\} \cap\{f \geq \delta\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{g \leq \alpha\} \cap W_{f-\delta}^{\varepsilon}\right)=0, \tag{3}\\
& \chi\left(\{g \leq \alpha\} \cap\{f \leq \delta\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{g \leq \alpha\} \cap W_{f-\delta}^{\varepsilon}\right)= \\
& -\quad-\operatorname{deg}_{0} \nabla f+\sum_{i \mid \mu\left(p_{i}\right)>0}(-1)^{\lambda\left(p_{i}\right) .} . \tag{4}
\end{align*}
$$

In the equality (4), the terms $-\operatorname{deg}_{0} \nabla f$ appears because we can pertube f in such a way that its critical points lie in $\{|g| \leq \alpha\} \cap\{|f| \leq \delta\}$. The combination $(1)+(2)-(3)-(4)$ together with the Mayer-Vietoris sequence gives :

$$
\begin{aligned}
& \chi\left(\{g \geq \alpha\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{g \leq \alpha\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{g \geq \alpha\} \cap W_{f-\delta}^{\varepsilon}\right) \\
&+\chi\left(\{g \leq \alpha\} \cap W_{f-\delta}^{\varepsilon}\right)=-\sum_{i} \operatorname{sign} \mu\left(p_{i}\right) \cdot(-1)^{\lambda\left(p_{i}\right)}+\operatorname{deg}_{0} \nabla f
\end{aligned}
$$

We have already seen that $\operatorname{deg}_{0} \nabla f=0$. Moreover, by the remark after Theorem 3.2 in [Du3], we have :

$$
\chi\left(\{g \geq \alpha\} \cap B_{\varepsilon}^{n}\right)-\chi\left(\{g \leq \alpha\} \cap B_{\varepsilon}^{n}\right)=\operatorname{deg}_{0} \nabla g
$$

Using Lemma 2.13, we find that :

$$
\chi\left(\{g \geq 0\} \cap W_{f-\delta}^{\varepsilon}\right)-\chi\left(\{g \leq 0\} \cap W_{f-\delta}^{\varepsilon}\right)=\operatorname{deg}_{0} \nabla g+\operatorname{deg}_{0} l(f, g)
$$

The proof for δ negative is obtained replacing f with $-f$.

3. A generalization of Fukui's formula

In this section, we present a generalization of Fukui's formula mentionned in the introduction. As in the previous section, we need to put a condition. More precisely, let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be a coordinate system in \mathbb{R}^{1+n} and let $F:\left(\mathbb{R}^{1+n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be an analytic function-germ with an isolated critical point at the origin. We assume that F satisfies the following condition (Q) : there exists C^{∞} vector fields V_{2}, \ldots, V_{n} on \mathbb{R}^{1+n} such that $V_{2}(p), \ldots, V_{n}(p)$ span the tangent space at p to $F^{-1}(F(p)) \cap x_{0}^{-1}\left(x_{0}(p)\right)$ whenever p is a regular point of $\left(F, x_{0}\right)$ and such that $\left(e_{0}, \nabla F(p), V_{2}(p), \ldots, V_{n}(p)\right)$ agrees with the orientation of \mathbb{R}^{1+n}. Here e_{0} is the vector $(1,0, \ldots, 0)$.

Let $G:\left(\mathbb{R}^{1+n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be an other analytic function-germ. We define three mappings $H(F, G), I(F, G)$ and $J(F, G):\left(\mathbb{R}^{1+n}, 0\right) \rightarrow\left(\mathbb{R}^{1+n}, 0\right)$ by :

$$
\begin{gathered}
H(F, G)=\left(F, G, V_{2} G, \ldots, V_{n} G\right) \\
I(F, G)=\left(x_{0}, G, V_{2} G, \ldots, V_{n} G\right) \\
J(F, G)=\left(x_{0} F, G, V_{2} G, \ldots, V_{n} G\right)
\end{gathered}
$$

Our first aim is to prove the following theorem :
Theorem 3.1. If F has an isolated critical point at the origin, 0 is isolated in $J(F, G)^{-1}(0)$ and $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$, then 0 is isolated in $H(F, G)^{-1}(0)$ and we have :

$$
\begin{aligned}
& \operatorname{deg}_{0} H(F, G)=\operatorname{sign}(-\delta)^{n} \cdot\left[\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)\right. \\
& \left.-\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)\right], \\
& \operatorname{deg}_{0} J(F, G)=\operatorname{sign}(-\delta)^{n} \cdot\left[\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)-\chi\left(W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}\right)\right], \\
& \text { where } 0<|\delta| \ll \varepsilon \ll 1 \text {. }
\end{aligned}
$$

To establish this theorem, we need a series of lemmas. From now on, we will assume that the three assumptions of Theorem 3.1 are fullfilled. For all $(i, j) \in\{1, \ldots, n\}^{2}$, we will set $M_{i j}=\frac{\partial(F, G)}{\partial\left(x_{i}, x_{j}\right)}$.

Lemma 3.2. For $\delta \neq 0$ sufficiently small, $(0, \delta)$ is a regular value of (F, G).
Lemma 3.3. The origin is an isolated singularity of $F^{-1}(0) \cap G^{-1}(0)$.
Lemma 3.4. Let $\delta \neq 0$ be sufficiently small so that $F^{-1}(0) \cap G^{-1}(\delta)$ is smooth submanifold (or empty) of codimension 2 near the origin. Let p be a point in $F^{-1}(0) \cap G^{-1}(\delta)$. The function $x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ has a critical point at p if and only if $H(F, G)(p)=(0, \delta, 0, \ldots, 0)$.

Proof. The function $x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ has a critical point at p if and only if $F(p)=0, G(p)=\delta$ and

$$
\operatorname{rank}\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
F_{x_{0}}(p) & F_{x_{1}}(p) & \ldots & F_{x_{n}}(p) \\
G_{x_{0}}(p) & G_{x_{1}}(p) & \ldots & G_{x_{n}}(p)
\end{array}\right]<3
$$

First let us suppose that p is a critical point of $x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ and remark that necessarly $x_{0}(p) \neq 0$ because $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$. This implies that p is a regular point of $\left(F, x_{0}\right)$ for the critical points of $x_{0 \mid F^{-1}(0) \backslash\{0\}}$ lie in $\left\{x_{0}=0\right\}$ by the Curve Selection Lemma and, so, $\left(V_{2}(p), \ldots, V_{n}(p)\right)$ is a basis of $T_{p}\left[F^{-1}(0) \cap x_{0}^{-1}\left(x_{0}(p)\right)\right]$. Since $\nabla G(p)$ belongs to the normal space at p to $F^{-1}(0) \cap x_{0}^{-1}\left(x_{0}(p)\right)$, we find that for each $i \in\{2, \ldots, n\},\left\langle V_{i}(p), \nabla G(p)\right\rangle=0$.

Let us show the inverse implication. Let p be such that $H(F, G)(p)=$ $(0, \delta, 0, \ldots, 0)$. If $\left(F, x_{0}\right)$ is not regular at p then $x_{0}(p)=0$ and $(0, \delta, 0)$ is not a regular value of $\left(F, G, x_{0}\right)$, which is impossible. Hence $\left(V_{2}(p), \ldots, V_{n}(p)\right)$ is a basis of $T_{p}\left[F^{-1}(0) \cap x_{0}^{-1}\left(x_{0}(p)\right)\right]$ and $\nabla G(p)$ is normal to this last tangent space.

Lemma 3.5. Under the assumptions of Lemma 3.4, $x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ has a non-degenerate critical point at p if and only if $H(F, G)(p)=(0, \delta, 0, \ldots, 0)$ and $\operatorname{det} D H(F, G)(p) \neq 0$. Furthermore if $\lambda(p)$ is the Morse index of this function at p then :

$$
(-1)^{\lambda(p)}=(-1)^{n} \cdot \operatorname{sign}\left[\left(\frac{G(p)}{x_{0}(p)}\right)^{n} \cdot \operatorname{det} D H(F, G)(p)\right]
$$

Proof. First observe that, since $(0, \delta)$ is a regular value of (F, G) and the $M_{i j}$'s, $i, j \in\{1, \ldots, n\}$, vanish at p, there exists $k \in\{1, \ldots, n\}$ such that $\frac{\partial(F, G)}{\partial\left(x_{0}, x_{k}\right)}(p) \neq 0$. Assume that $k=1$. This implies that $F_{x_{1}}(p) \neq 0$ for otherwise $G_{x_{1}}(p) \neq 0$ and $F_{x_{j}}(p)=0$ for $j \in\{2, \ldots, n\}$, which means that p is not a regular point of $\left(F, x_{0}\right)$ and $x_{0}(p)=0$.

From [Sz2,p349-350], p is a Morse critical point of $x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ if and only if

$$
\operatorname{det}\left[\begin{array}{c}
\nabla F(p) \\
\nabla G(p) \\
\nabla N_{i}(p)
\end{array}\right]_{2 \leq i \leq n} \neq 0
$$

where $N_{i}=\frac{\partial\left(x_{0}, F, G\right)}{\partial\left(x_{0}, x_{1}, x_{i}\right)}=M_{1 i}$. Moreover, one has :

$$
(-1)^{\lambda(p)}=\operatorname{sign}\left(\operatorname{det}\left[\begin{array}{c}
\nabla F(p) \\
\nabla G(p) \\
\nabla M_{1 i}(p)
\end{array}\right] \cdot \frac{\partial(F, G)}{\partial\left(x_{0}, x_{1}\right)}(p)^{n}\right)
$$

Let us relate $\operatorname{det}\left(\nabla F(p), \nabla G(p), \nabla M_{1 i}(p)\right)$ to $\operatorname{det}\left(\nabla F(p), \nabla G(p), \nabla V_{i} G(p)\right)$. For $i \in\{2, \ldots, n\}$, let $U_{i}(p)$ be the vector :

$$
\left(0, F_{x_{i}}(p), 0, \ldots, 0,-F_{x_{1}}(p), 0, \ldots, 0\right)
$$

where $-F_{x_{1}}(p)$ is the $(i+1)$-th coordinate. Then $\left(U_{2}(p), \ldots, U_{n}(p)\right)$ is a basis $T_{p}\left[F^{-1}(0) \cap x_{0}^{-1}\left(x_{0}(p)\right)\right]$ and

$$
\operatorname{det}\left(e_{0}, \nabla F(p), U_{2}(p), \ldots, U_{n}(p)\right)=(-1)^{n-1} \cdot F_{x_{1}}(p)^{n-2} \cdot\left(\sum_{i=1}^{n} F_{x_{i}}(p)^{2}\right)
$$

Hence there exists a $(n-1) \times(n-1)$-matrix $B(p)$ such that :

$$
\left(\begin{array}{c}
e_{0} \\
\nabla F(p) \\
U_{i}(p)
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & B(p)
\end{array}\right) \cdot\left(\begin{array}{c}
e_{0} \\
\nabla F(p) \\
V_{i}(p)
\end{array}\right)
$$

with $\operatorname{sign}[\operatorname{det} B(p)]=(-1)^{n-1} \cdot \operatorname{sign}\left[F_{x_{1}}(p)^{n-2}\right]$. As we proceed in Lemma 2.5, we have :

$$
\begin{aligned}
& \operatorname{sign}\left[\operatorname{det}\left(e_{0}, \nabla F(p), \nabla U_{i} G(p)\right)\right]= \\
& \quad(-1)^{n-1} \cdot \operatorname{sign}\left[F_{x_{1}}(p)^{n-2} \cdot \operatorname{det}\left(e_{0}, \nabla F(p), \nabla V_{i} G(p)\right)\right] .
\end{aligned}
$$

Since e_{0} is a linear combination of $\nabla F(p)$ and $\nabla G(p)$, it is easy to see that :

$$
\begin{aligned}
& \operatorname{sign}\left[\operatorname{det}\left(\nabla F(p), \nabla G(p), \nabla U_{i} G(p)\right)\right]= \\
& \quad(-1)^{n-1} \cdot \operatorname{sign}\left[F_{x_{1}}(p)^{n-2} \cdot \operatorname{det}\left(\nabla F(p), \nabla G(p), \nabla V_{i} G(p)\right)\right] .
\end{aligned}
$$

Using the fact that $U_{i} G(p)=-M_{1 i}(p)$, we find that :

$$
(-1)^{\lambda(p)}=\operatorname{sign}\left(\operatorname{det}\left[\begin{array}{c}
\nabla F(p) \\
\nabla G(p) \\
\nabla V_{i} G(p)
\end{array}\right] \cdot \frac{\partial(F, G)}{\partial\left(x_{0}, x_{1}\right)}(p)^{n} \cdot F_{x_{1}}(p)^{n-2}\right)
$$

It remains to study the sign of $\frac{\partial(F, G)}{\partial\left(x_{0}, x_{1}\right)}(p)$. By the Curve Selection Lemma, we can assume that p is on the image of an analytic arc $\gamma:] 0, \varepsilon\left[\rightarrow F^{-1}(0)\right.$ such that $M_{i j}(\gamma(t))=0$ for $\left.t \in\right] 0, \varepsilon\left[\right.$ and $(i, j) \in\{1, \ldots, n\}^{2}$. One has $\sum_{i=1}^{n} F_{x_{i}}(\gamma) \cdot \gamma_{i}^{\prime}=0$ since $F \circ \gamma=0$ and $(G \circ \gamma)^{\prime}=\sum_{i=1}^{n} G_{x_{i}}(\gamma) \cdot \gamma_{i}^{\prime}$.

Multiplying the first equality by $G_{x_{1}}$, the second by $F_{x_{1}}$ and making the difference leads to :

$$
F_{x_{0}} G_{x_{1}}-G_{x_{0}} F_{x_{1}}=-\frac{(G \circ \gamma)^{\prime}}{\gamma_{0}^{\prime}} \cdot F_{x_{1}}
$$

Hence if $\delta \neq 0$ is small enough, $\operatorname{sign}\left({\frac{\partial(F, G)}{\partial\left(x_{0}, x_{1}\right)}}^{n} \cdot F_{x_{1}}^{n-2}\right)=-\operatorname{sign}\left(\frac{G}{x_{0}}\right)$ at p.
The following lemma deals with the critical points of $x_{0 \mid \partial W_{(F, G-\delta)}^{\varepsilon}}$.
Lemma 3.6. Assume that $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$ for δ sufficiently small. Then, for ε and δ such that $0<|\delta| \ll \varepsilon \ll 1$:

- the vector $\nabla x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ points outwards at all correct critical points of $x_{0 \mid \partial W_{(F, G-\delta)}^{\varepsilon}}$ with $x_{0}>0$,
- the vector $\nabla x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ points inwards at all correct critical points of $x_{0 \mid \partial W_{(F, G-\delta)}^{\varepsilon}}$ with $x_{0}<0$,
- there are no correct critical points of $x_{0 \mid \partial W_{(F, G-\delta)}^{\varepsilon}}$ in $\left\{x_{0}=0\right\}$.

Proof. The proof is the same as [Du1], Lemma 4.1.
Lemma 3.7. If for δ small enough $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$, then we can perturbe G into \tilde{G} in such a way that $x_{0 \mid W_{(F, \tilde{G}-\delta)}^{\varepsilon}}$ has only Morse critical points in $W_{(F, \tilde{G}-\delta)}^{\varepsilon} \backslash\left\{x_{0}=0\right\}$.

Proof. The proof is similar to the proofs of Lemma 2.7 and Lemma 4.2 in [Du1]. Let us describe it briefly. Let $\left(x_{0}, \ldots, x_{n} ; t_{1}, \ldots, t_{n}\right)=(x ; t)$ be a coordinate system of $\mathbb{R}^{2 n+1}$ and let

$$
\bar{G}(x, t)=G(x)+t_{1} x_{1}+\cdots+t_{n} x_{n} .
$$

For $(i, j) \in\{1, \ldots, n\}^{2}$, we define $M_{i j}(x, t)$ by $M_{i j}(x, t)=\frac{\partial(F, \bar{G})}{\partial\left(x_{i}, x_{j}\right)}$. Note that $M_{i j}(x, t)=m_{i j}(x)+F_{x_{i}} t_{j}-F_{x_{j}} t_{i}$. Let Γ be defined by :

$$
\Gamma=\left\{(x, t) \in \mathbb{R}^{2 n+1} \mid F(x)=0 \text { and } M_{i j}(x, t)=0 \text { for }(i, j) \in\{1, \ldots, n\}^{2}\right\} .
$$

In the same way as in Lemma 2.7 and Lemma 4.2, we can prove that $\Gamma \backslash\left\{x_{0}=\right.$ $0\}$ is a smooth manifold (or empty) of dimension $n+1$. Then we conclude with the following mapping :

$$
\begin{array}{cccc}
\pi: \Gamma \backslash\left\{x_{0}=0\right\} & \rightarrow & \mathbb{R}^{1+n} \\
(x, t) & \mapsto & (\bar{G}(x, t), t)
\end{array}
$$

Lemma 3.8. The function $G_{\mid\left\{x_{0}=0\right\}}$ has an isolated critical point at the origin.

Proof. Since $J(F, G)$ has an isolated zero at 0 , the point $(0,0,0)$ is isolated in $I(F, G)^{-1}(0)$. This would not be the case if 0 in \mathbb{R}^{n} was not an isolated critical point of $G_{\mid\left\{x_{0}=0\right\}}$.

Lemma 3.9. Let $\delta \neq 0$ be sufficiently small so that $\left\{x_{0}=0\right\} \cap G^{-1}(\delta)$ is a smooth submanifold of codimension 2 (or empty) near the origin. Let s be a point in $\left\{x_{0}=0\right\} \cap G^{-1}(\delta)$. The function $F_{\left\{\left\{x_{0}=0\right\} \cap G^{-1}(\delta)\right.}$ has a critical point at s if and only if $I(F, G)(s)=(0, \delta, 0, \ldots, 0)$.

Proof. Since $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$, we can apply the proof of Lemma 2.11.
Lemma 3.10. Under the assumptions of Lemma 3.9, $F_{\mid G^{-1}(\delta) \cap x_{0}^{-1}(0)}$ has a non-degenerate critical point at s if and only if $I(F, G)(s)=(0, \delta, 0, \ldots, 0)$ and $\operatorname{det} D I(F, G)(s) \neq 0$. Furthermore if $\mu(s)$ is the Morse index of this function at s then :

$$
(-1)^{\mu(s)}=(-1)^{n-1} \cdot \operatorname{sign}\left[\left(\frac{G(s)}{F(s)}\right)^{n} \cdot \operatorname{det} D I(F, G)(s)\right] .
$$

Proof. The proof is the same as Lemmas 2.5, 2.13 and 3.5. We leave it to the reader.

The following lemma deals with the critical points of $F_{\mid \partial W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}}$.
Lemma 3.11. Assume that $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$ for δ sufficiently small. Then, for ε such that $0<|\delta| \ll \varepsilon \ll 1$:

- the vector $\nabla F_{\mid x_{0}^{-1}(0) \cap G^{-1}(\delta)}$ points outwards at all correct critical points of $F_{\mid W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}}$ with $F>0$,
- the vector $\nabla F_{\mid x_{0}^{-1}(0) \cap G^{-1}(\delta)}$ points inwards at all correct critical points of $F_{\mid W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}}$ with $F<0$,
- there are no correct critical points of $F_{\mid W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}}$ in $F^{-1}(0)$.

Lemma 3.12. We can perturbe G into \tilde{G} in such a way that $F_{\mid W_{\left(\tilde{G}-\delta, x_{0}\right)}^{\varepsilon}}$ has only Morse critical point.

Proof. The same method as Lemma 2.16 can be applied, because we have assumed that $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$.

Proof of Theorem 3.1. It is easy to see that 0 is isolated in $H(F, G)^{-1}(0)$ and $I(F, G)^{-1}(0)$. Let $\omega: \mathbb{R}^{1+n} \rightarrow \mathbb{R}$ be the distance function to the origin. Because 0 is isolated in $H(F, G)^{-1}(0), x_{0 \mid F^{-1}(0) \cap G^{-1}(0) \backslash\{0\}}$ has no critical point and then, choosing δ sufficiently small, we can assume that $x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta) \cap\{\omega<\varepsilon\}}$ admits its critical points in $W_{(F, G-\delta)}^{\varepsilon / 4}$. Thus the critical points of $x_{0 \mid \partial W_{(F, G-\delta)}^{\varepsilon}}$ are correct. By Lemmas 3.6 and 3.7, we can suppose that $x_{0 \mid W_{(F, G-\delta)}^{\varepsilon}}$ is a correct Morse function, that its critical points lie in $B_{\varepsilon / 2}$, that at the correct critical points of $x_{0 \mid W_{(F, G-\delta)}^{\varepsilon}}$ lying in $\left\{x_{0}>0\right\}$ (resp. in $\left\{x_{0}<0\right\}$), $\nabla x_{0 \mid F^{-1}(0) \cap G^{-1}(\delta)}$ points outwards (resp. inwards) and that there are no correct critical points of $x_{0 \mid F_{\delta}}$ in $\left\{x_{0}=0\right\}$. Applying Morse Theory for manifolds with boundary, we find :

$$
\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}, W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)=\sum_{i \mid x_{0}\left(p_{i}\right)>0}(-1)^{\lambda\left(p_{i}\right)},
$$

where $\left\{p_{i}\right\}$ is the set of Morse critical points of $x_{0 \mid W_{(F, G-\delta)}^{\varepsilon}}$. Similarly, we have :

$$
\chi\left(W_{(F, G-\delta)}^{\varepsilon}\left\{x_{0} \leq 0\right\}, W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)=(-1)^{n-1} \sum_{i \mid x_{0}\left(p_{i}\right)<0}(-1)^{\lambda\left(p_{i}\right)}
$$

By Lemma 3.4, p is a critical point of $x_{0 \mid W_{(F, G-\delta)}^{\varepsilon}}$ if and only if

$$
H(F, G)(p)=(0, \delta, 0, \ldots, 0)
$$

Hence $H(F, G)^{-1}(0, \delta, 0, \ldots, 0)$ is the set of critical points of $x_{0 \mid W_{(F, G-\delta)}^{\varepsilon}}$. Since $x_{0 \mid W_{(F, G-\delta)}^{\varepsilon}}$ is a Morse function, $\operatorname{det} D H(F, G)(p) \neq 0$ for each p in $H^{-1}(0, \delta, 0, \ldots, 0)$ by Lemma 3.5. Hence $(0, \delta, 0, \ldots, 0)$ is a regular value of $H(F, G)$ and

$$
\operatorname{deg}_{0} H=\sum_{p \in H^{-1}(0, \delta, 0, \ldots, 0)} \operatorname{sign}[\operatorname{det} D H(F, G)(p)]
$$

Combining this with the above equalities and Lemma 3.5, we obtain the first equality. Let us study the critical points of $F_{\mid W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}}$. Thanks to Lemmas 3.11 and 3.12 , we can assume that we are in a good situation to apply Morse theory. We have :

$$
\chi\left(W_{\left(G-\delta, x_{0}\right)}^{\varepsilon} \cap\{F \geq 0\}\right)-\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)=\sum_{j \mid F\left(s_{j}\right)>0}(-1)^{\mu\left(s_{j}\right)}
$$

where $\left\{s_{j}\right\}$ is the set of Morse critical points of $F_{\mid W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}}$. Similarly, we have :

$$
\chi\left(W_{\left(G-\delta, x_{0}\right)}^{\varepsilon} \cap\{F \leq 0\}\right)-\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)=(-1)^{n-1} \sum_{j \mid F\left(s_{j}\right)>0}(-1)^{\mu\left(s_{j}\right)}
$$

Hence, we get :

$$
\begin{aligned}
& \chi\left(W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}\right)-\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)= \\
& \sum_{j \mid F\left(s_{j}\right)>0}(-1)^{\mu\left(s_{j}\right)}+(-1)^{n-1} \cdot \sum_{j \mid F\left(s_{j}\right)<0}(-1)^{\mu\left(s_{j}\right)} .
\end{aligned}
$$

Applying Lemma 3.10, this gives :

$$
\begin{aligned}
& \chi\left(W_{\left(G-\delta, x_{0}\right)}^{\varepsilon}\right)-\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)= \\
& \quad-\operatorname{sign}(-\delta)^{n} \cdot \sum_{j} \operatorname{sign}\left[F\left(s_{j}\right)\right] \cdot \operatorname{det} D I(F, G)\left(s_{j}\right)
\end{aligned}
$$

Similarly, we have :

$$
\begin{aligned}
& \chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)-\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)= \\
& \operatorname{sign}(-\delta)^{n} \cdot \sum_{i} \operatorname{sign}\left[x_{0}\left(p_{i}\right)\right] \cdot \operatorname{det} D H(F, G)\left(p_{i}\right) .
\end{aligned}
$$

But the sets $\left\{p_{i}\right\}$ and $\left\{s_{j}\right\}$ are exactly the preimages of $(0, \delta, 0, \ldots, 0)$ by $J(F, G)$. Furthermore, each p_{i} is a regular point of $J(F, G)$ and

$$
\operatorname{sign}\left[\operatorname{det} D J(F, G)\left(p_{i}\right)\right]=\operatorname{sign}\left[x_{0}\left(p_{i}\right) \cdot \operatorname{det} D H(F, G)\left(p_{i}\right)\right] .
$$

Each s_{j} is a regular value of $J(F, G)$ as well and

$$
\operatorname{sign}\left[\operatorname{det} D J(F, G)\left(s_{j}\right)\right]=\operatorname{sign}\left[F\left(s_{j}\right) \cdot \operatorname{det} D I(F, G)\left(s_{j}\right)\right]
$$

With all these informations, it is easy to conclude.
We want to apply these formulas when F and G are one-parameter deformations of two germs f and g. First let us define the function-germ $F_{0}:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ by $F_{0}\left(x_{1}, \ldots, x_{n}\right)=F\left(0, x_{1}, \ldots, x_{n}\right)$.
Lemma 3.13. Assume that the function-germ F_{0} has an isolated critical point at the origin.. Then for δ sufficiently small, $(0, \delta, 0)$ is a regular of $\left(F, G, x_{0}\right)$. Let us suppose that $\delta>0$, then for $0<\delta \ll \varepsilon \ll 1$, one has :
$W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\} \simeq \partial W_{F}^{\varepsilon} \cap\{G \geq 0\} \cap\left\{x_{0} \geq 0\right\} \simeq W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \geq 0\}$,
$W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\} \simeq \partial W_{F}^{\varepsilon} \cap\{G \geq 0\} \cap\left\{x_{0} \leq 0\right\} \simeq W_{\left(F, x_{0}+\delta\right)}^{\varepsilon} \cap\{G \geq 0\}$,
$W_{(F, G+\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\} \simeq \partial W_{F}^{\varepsilon} \cap\{G \leq 0\} \cap\left\{x_{0} \geq 0\right\} \simeq W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \leq 0\}$,
$W_{(F, G+\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\} \simeq \partial W_{F}^{\varepsilon} \cap\{G \leq 0\} \cap\left\{x_{0} \leq 0\right\} \simeq W_{\left(F, x_{0}+\delta\right)}^{\varepsilon} \cap\{G \leq 0\}$,
where \simeq means diffeomorphic to.
Proof. Let us prove the first line. It is just an adaptation to our case of the deformation argument given by Milnor [Mi,Lemma 11.3]. We can construct a vector field v_{1} on $W_{F}^{\varepsilon} \backslash\{G=0\}$ such that $\left\langle v_{1}(x), \nabla G(x)\right\rangle$ and $\left\langle v_{1}(x), x\right\rangle$ are both positive. Similarly there exists a vector field v_{2} on $W_{\left(F, x_{0}\right)}^{\varepsilon} \backslash\{G=0\}$ such that $\left\langle v_{2}(x), \nabla G(x)\right\rangle$ and $\left\langle v_{2}(x), x\right\rangle$ are both positive. Using a collar, we can extend v_{2} to a vector field $\tilde{v_{2}}$ defined in a neighborhood of $W_{\left(F, x_{0}\right)}^{\varepsilon} \backslash\{G=$ $0\}$ in $W_{F}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\} \backslash\{G=0\}$ such that $\left\langle\tilde{v}_{2}(x), \nabla G(x)\right\rangle$ and $\left\langle\tilde{v}_{2}(x), x\right\rangle$ are positive. Gluing v_{1} and \tilde{v}_{2} gives a new vector field w on $W_{F}^{\varepsilon} \cap\left\{x_{0} \geq\right.$ $0\} \backslash\{G=0\}$. The diffeomorphism between $W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}$ and $\partial W_{F}^{\varepsilon} \cap$ $\{G \geq 0\} \cap\left\{x_{0} \geq 0\right\}$ is obtained integrating the trajectories of w. Similarly $W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \geq 0\}$ is diffeomorphic to $\partial W_{F}^{\varepsilon} \cap\{G \geq 0\} \cap\left\{x_{0} \geq 0\right\}$ because, by Lemma 3.3, $F^{-1}(0) \cap G^{-1}(0)$ is smooth outside the origin.

We want to compute $\chi\left(W_{\left(F, G, x_{0}-\delta\right)}^{\varepsilon}\right)$. By the Mayer-Vietoris sequence, we know that:

$$
\begin{aligned}
& \chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon}\right)=\chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \geq 0\}\right)+ \\
& \quad \chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \leq 0\}\right)-\chi\left(W_{\left(F, G, x_{0}-\delta\right)}^{\varepsilon}\right) .
\end{aligned}
$$

Hence, by Lemma 3.13, we find that if $\delta>0$, then :

$$
\begin{aligned}
& \chi\left(W_{\left(F, G, x_{0}-\delta\right)}^{\varepsilon}\right)=\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)+ \\
& \chi\left(W_{(F, G+\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)-\chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon}\right), \\
& \chi\left(W_{\left(F, G, x_{0}+\delta\right)}^{\varepsilon}\right)=\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)+
\end{aligned}
$$

$$
\chi\left(W_{(F, G+\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)-\chi\left(W_{\left(F, x_{0}+\delta\right)}^{\varepsilon}\right)
$$

The Euler-Poincaré characteristic of $W_{\left(F, x_{0} \pm \delta\right)}^{\varepsilon}$ can be computed thanks to formulas established in [Fu], as explained in [Du3, Theorem 3.2]. More precisely, let $L(F):\left(\mathbb{R}^{1+n}, 0\right) \rightarrow\left(\mathbb{R}^{1+n}, 0\right)$ be the mapping defined by $L(F)=\left(F, F_{x_{1}}, \ldots, F_{x_{n}}\right)$. If $L(F)$ and ∇F_{0} have an isolated zero at the origin, then ∇F has an isolated zero at the origin and the following theorem explains how to compute $W_{\left(F, x_{0} \pm \delta\right)}^{\varepsilon}$.

Theorem 3.14. Let δ and ε be such that $0<|\delta| \ll \varepsilon \ll 1$. If n is even then:

$$
\chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} \nabla F_{0} .
$$

If n is odd then :

$$
\chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} \nabla F-\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} L(F) .
$$

Proof. See [Fu] and [Du3].
At this point, we have assumed that :
(1) F has an isolated critical point at the origin,
(2) $J(F, G)$ has an isolated zero at the origin,
(3) $(0, \delta, 0)$ is a regular value of $\left(F, G, x_{0}\right)$,
(4) F_{0} has an isolated critical point at the origin.

By the Curve Selection Lemma, the assumption (4) implies the assumption (3). Moreover, it means that 0 is isolated in $\left\{F=F_{x_{1}}=\cdots=F_{x_{n}}=\right.$ $\left.x_{0}=0\right\}$. Since this last set is equal to $\left\{F=F_{x_{1}}=\cdots=F_{x_{n}}=0\right\}$ near the origin thanks to the Curve Selection Lemma and the fact that $F^{-1}(0)$ has an isolated singularity, we have that (4) implies that 0 is isolated in $L(F)^{-1}(0)$. So, under the assumption (4), we can apply the above theorem.

It remains to compute $\chi\left(W_{(F, G \pm \delta)}^{\varepsilon} \cap\left\{x_{0} ? 0\right\}\right), ? \in\{\leq, \geq\}$. By the MayerVietoris sequence, we have :

$$
\begin{aligned}
\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)=\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right. & \left.\cap\left\{x_{0} \geq 0\right\}\right)+ \\
& \chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)-\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)
\end{aligned}
$$

But Theorem 2.1 enables us to compute $\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)$ and $\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)$. Let $G_{0}:\left(\mathbb{R}^{n+1}, 0\right) \rightarrow(\mathbb{R}, 0)$ be defined by $G_{0}\left(x_{1}, \ldots, x_{n}\right)=G\left(0, x_{1}, \ldots, x_{n}\right)$ and let us assume that it has an isolated critical point at the origin. Then using Theorem 3.1 and Khimshiashvili's formula, we find that:

$$
\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)=1+\operatorname{sign}(-\delta)^{n} \cdot\left[\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}\right] .
$$

Now observe that, since F satisfies the condition $(Q), F_{0}$ satisfies the condition (P) of Section 2 with the vector fields $V_{2}^{0}, \ldots, V_{n}^{0}$ given by :

$$
V_{i}^{0}\left(x_{1}, \ldots, x_{n}\right)=V_{i}\left(0, x_{1}, \ldots, x_{n}\right) .
$$

Let $k\left(F_{0}, G_{0}\right):\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ be defined by :

$$
k\left(F_{0}, G_{0}\right)=\left(F_{0}, V_{2}^{0} G_{0}, \ldots, V_{n}^{0} G_{0}\right) .
$$

By Theorem 2.1, we have :
if n is even $: \chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} \nabla F_{0}+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)$,
if n is odd : $\chi\left(W_{\left(F, G-\delta, x_{0}\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)$.
Let us focus first on the case n even. We have :

$$
\begin{aligned}
& \chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)-\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)=\operatorname{deg}_{0} H(F, G), \\
& \chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)+\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)= \\
& \quad 2+\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}-\operatorname{deg}_{0} \nabla F_{0}+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} k\left(F_{0}, G_{0}\right) .
\end{aligned}
$$

This gives:

$$
\begin{aligned}
\chi\left(W _ { (F , G - \delta) } ^ { \varepsilon } \cap \left\{x_{0}\right.\right. & \geq 0\})=1+\frac{1}{2}\left[\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}\right. \\
& \left.-\operatorname{deg}_{0} \nabla F_{0}+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)+\operatorname{deg}_{0} H(F, G)\right] \\
\chi\left(W _ { (F , G - \delta) } ^ { \varepsilon } \cap \left\{x_{0}\right.\right. & \leq 0\})=1+\frac{1}{2}\left[\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}\right. \\
& \left.-\operatorname{deg}_{0} \nabla F_{0}+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)-\operatorname{deg}_{0} H(F, G)\right] .
\end{aligned}
$$

Collecting all these informations, we obtain :

$$
\begin{aligned}
& \chi\left(W_{\left(F, G, x_{0}-\delta\right)}^{\varepsilon}\right)=1+\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} H(F, G), \\
& \chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \geq 0\}\right)-\chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \leq 0\}\right)=\operatorname{deg}_{0} k\left(F_{0}, G_{0}\right) .
\end{aligned}
$$

If n is odd, we have :

$$
\begin{gathered}
\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)-\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)=-\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} H(F, G), \\
\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)+\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)= \\
2-\operatorname{sign}(\delta) \cdot\left[\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}\right]-\operatorname{deg}_{0} k\left(F_{0}, G_{0}\right) .
\end{gathered}
$$

This gives :

$$
\begin{aligned}
& \chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \geq 0\right\}\right)=1-\frac{1}{2}\left[\begin{array}{r}
\\
\operatorname{sign}(\delta) \cdot\left(\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}\right. \\
\left.\left.\quad+\operatorname{deg}_{0} H(F, G)\right)+\operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)\right]
\end{array}\right. \\
& \begin{array}{r}
\chi\left(W_{(F, G-\delta)}^{\varepsilon} \cap\left\{x_{0} \leq 0\right\}\right)=1-\frac{1}{2}\left[\operatorname { s i g n } (\delta) \cdot \left(\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla G_{0}\right.\right. \\
\left.\left.-\operatorname{deg}_{0} H(F, G)\right)+\operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)\right] .
\end{array}
\end{aligned}
$$

Finally we find :

$$
\begin{aligned}
& \chi\left(W_{\left(F, G, x_{0}-\delta\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)-\operatorname{deg}_{0} \nabla F-\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} L(F) \\
& \begin{array}{l}
\chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \geq 0\}\right)-\chi\left(W_{\left(F, x_{0}-\delta\right)}^{\varepsilon} \cap\{G \leq 0\}\right)= \\
\quad-\operatorname{deg}_{0} J(F, G)+\operatorname{deg}_{0} \nabla G_{0}-\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} H(F, G) .
\end{array}
\end{aligned}
$$

Here, we have to remark that :
$\chi\left(W_{\left(F, G, x_{0}-\delta\right)}^{\varepsilon}\right)=\frac{1}{2} \chi\left(\partial W_{\left(F, G, x_{0}-\delta\right)}^{\varepsilon}\right)=\frac{1}{2} \chi\left(\partial W_{\left(F, G, x_{0}\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k\left(F_{0}, G_{0}\right)$,
by Corollary 2.8. Hence, we get that $\operatorname{deg}_{0} \nabla F=\operatorname{deg}_{0} L(F)=0$.

We can reformulate these results in terms of one-parameter deformations of function-germs. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a coordinate system of \mathbb{R}^{n}. Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a function-germ with an isolated critical point at the origin. Let $g:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a function-germ with an isolated critical point at the origin such that the mapping $k(f, g):\left(\mathbb{R}^{n}, 0\right) \rightarrow\left(\mathbb{R}^{n}, 0\right)$ has an isolated zero where $k(f, g)$ is defined as in Section 2. Let $\left(\lambda, x_{1}, \ldots, x_{n}\right)$ be a coordinate system in \mathbb{R}^{1+n} and let $F:\left(\mathbb{R}^{1+n}, 0\right) \rightarrow(\mathbb{R}, 0)$ (resp. $\left.G:\left(\mathbb{R}^{1+n}, 0\right) \rightarrow(\mathbb{R}, 0)\right)$ be a one-parameter deformation of f (resp $\left.g\right)$, i.e $F(0, x)=f(x)$ (resp. $G(0, x)=g(x))$. We will use the notations $f_{t}(x)=F(t, x)$ and $g_{t}(x)=G(t, x)$. We assume that :
(1) F has an isolated critical point at the origin,
(2) the mapping $J(F, G)$ has an isolated zero at the origin,
(3) F satisfies the condition (Q) (which implies that f satisfies the condition $(P))$.
We note that F_{0} and G_{0} have an isolated critical point because $F_{0}=f$ and $G_{0}=g$. So we are in situation to apply the above process.

Corollary 3.15. For t and ε with $0<|t| \ll \varepsilon \ll 1$, we have :

- if n is odd :

$$
\begin{aligned}
& \chi\left(W_{\left(f_{t}, g_{t}\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k(f, g), \\
& \begin{array}{l}
\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \geq 0\right\}\right)-\chi\left(W_{\left.f_{t}\right)}^{\varepsilon} \cap\left\{g_{t} \leq 0\right\}\right)= \\
\quad-\operatorname{deg}_{0} J(F, G)+\operatorname{deg}_{0} \nabla g-\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G),
\end{array}
\end{aligned}
$$

- if n is even :

$$
\begin{aligned}
& \chi\left(W_{\left(f_{t}, g_{t}\right)}^{\varepsilon}\right)=1+\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla g+\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G) \\
& \chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \geq 0\right\}\right)-\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \leq 0\right\}\right)=\operatorname{deg}_{0} k(f, g)
\end{aligned}
$$

Let us consider the following deformations of f and g :

$$
F(\lambda, x)=f(x)-\gamma_{1}(\lambda) \text { and } G(\lambda, x)=g(x)-\gamma_{2}(\lambda),
$$

where $\gamma=\left(\gamma_{1}, \gamma_{2}\right):(\mathbb{R}, 0) \rightarrow\left(\mathbb{R}^{2}, 0\right)$ is an analytic arc such that $\gamma(t) \neq 0$ if $t \neq 0$ and $\gamma_{1}^{\prime}(t) \neq 0$ if $t \neq 0$. With this last condition, the function F has an isolated critical point at the origin. Furthermore, we assume that f satisfies the condition (P). This implies that F satisfies the condition (Q) with $V_{i}(\lambda, x)=v_{i}(x)$ for $i=2, \ldots, n$. Let us denote by $\operatorname{Disc}(f, g)$ the discriminant of the mapping (f, g). The following lemma tells us when the points in the image of γ are regular value of (f, g) near the origin.
Lemma 3.16. The origin $(0,0)$ is isolated in $H(F, G)^{-1}(0)$ if and only if 0 is isolated in $\operatorname{Disc}(f, g) \cap \gamma(I)$, where I is a small open interval in \mathbb{R} containing 0.

Proof. The point $(0,0)$ is isolated in $H(F, G)^{-1}(0)$ if and only if for all $(t, x) \neq(0,0)$ such that $F(t, x)=G(t, x)=0$, there exists $i \in\{2, \ldots, n\}$ such that $v_{i} G(t, x) \neq 0$. Let us remark that if $x \neq 0$ is such that $F(0, x)=$ $G(0, x)=0$ then $v_{i} G(0, x) \neq 0$ for some i in $\{2, \ldots, n\}$ because $f^{-1}(0) \cap$
$g^{-1}(0)$ has an isolated singularity. Therefore the point $(0,0)$ is isolated in $H(F, G)^{-1}(0)$ if and only if for all (t, x) with $t \neq 0$ such that $F(t, x)=$ $G(t, x)=0$ there exists $i \in\{2, \ldots, n\}$ such that $v_{i} G(t, x) \neq 0$. This is equivalent to the fact that for all $t \neq 0$ and for all x such that $f(x)=\gamma_{1}(t)$ and $g(x)=\gamma_{2}(t), \nabla f(x)$ and $\nabla g(x)$ are not colinear.

Corollary 3.15 can be restated in this situation.
Corollary 3.17. Assume that f and g have an isolated singularity and that $\gamma_{1}^{\prime}(t) \neq 0$ if $t \neq 0$. Assume that $J(F, G)$ and $k(f, g)$ have an isolated zero at the origin then for t and ε with $0<|t| \ll \varepsilon \ll 1$, we have :

- if n is odd :

$$
\begin{aligned}
& \chi\left(W_{\left(f-\gamma_{1}(t), g-\gamma_{2}(t)\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k(f, g) \\
& \begin{array}{l}
\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \geq \gamma_{2}(t)\right\}\right)-\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \leq \gamma_{2}(t)\right\}\right)= \\
\quad-\operatorname{deg}_{0} J(F, G)+\operatorname{deg}_{0} \nabla g-\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G)
\end{array}
\end{aligned}
$$

- if n is even :

$$
\begin{aligned}
& \chi\left(W_{\left(f-\gamma_{1}(t), g-\gamma_{2}(t)\right)}^{\varepsilon}\right)=1+\operatorname{deg}_{0} J(F, G)-\operatorname{deg}_{0} \nabla g+\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G), \\
& \chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g_{t} \geq \gamma_{2}(t)\right\}\right)-\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \leq \gamma_{2}(t)\right\}\right)=\operatorname{deg}_{0} k(f, g)
\end{aligned}
$$

Let us examine the situation when $\lambda_{1}(t)=t$ and $\lambda_{2}(t)=0$. In this case, we can check that $\operatorname{deg}_{0} J(F, G)=0$ and that $\operatorname{deg}_{0} H=-\operatorname{deg}_{0} l(f, g)$, where $l(f, g)$ is defined in Section 2. Hence, we recover the results of Theorem 2.9.

4. Explicit formulas

In this section, we present some situations where the conditions (P) and (Q) are satisfied.
4.1. Case $n=2,4$ or 8 . As explained in [FK], when $n=2,4$ or 8 , the condition (P) is satisfied for any function-germ $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$. If $\partial_{x_{i}}$ denotes the vector $e_{i}=(0, \ldots, 0,1,0 \ldots, 0)$ where 1 is the i-th coordinate, then the vectors v_{2}, \ldots, v_{n} are given by, if $n=2$:

$$
v_{2}=-f_{x_{2}} \partial_{x_{1}}+f_{x_{1}} \partial_{x_{2}}
$$

if $n=4$:

$$
\begin{aligned}
& v_{2}=-f_{x_{2}} \partial_{x_{1}}+f_{x_{1}} \partial_{x_{2}}-f_{x_{4}} \partial_{x_{3}}+f_{x_{3}} \partial_{x_{4}}, \\
& v_{3}=-f_{x_{3}} \partial_{x_{1}}+f_{x_{4}} \partial_{x_{2}}+f_{x_{1}} \partial_{x_{3}}-f_{x_{2}} \partial_{x_{4}}, \\
& v_{4}=-f_{x_{4}} \partial_{x_{1}}-f_{x_{3}} \partial_{x_{2}}+f_{x_{2}} \partial_{x_{3}}+f_{x_{1}} \partial_{x_{4}},
\end{aligned}
$$

if $n=8$:
$v_{2}=-f_{x_{2}} \partial_{x_{1}}+f_{x_{1}} \partial_{x_{2}}-f_{x_{4}} \partial_{x_{3}}+f_{x_{3}} \partial_{x_{4}}$ $-f_{x_{6}} \partial_{x_{5}}+f_{x_{5}} \partial_{x_{6}}+f_{x_{8}} \partial_{x_{7}}-f_{x_{7}} \partial_{x_{8}}$,
$v_{3}=-f_{x_{3}} \partial_{x_{1}}+f_{x_{4}} \partial_{x_{2}}+f_{x_{1}} \partial_{x_{3}}-f_{x_{2}} \partial_{x_{4}}$

$$
-f_{x_{7}} \partial_{x_{5}}-f_{x_{8}} \partial_{x_{6}}+f_{x_{5}} \partial_{x_{7}}+f_{x_{6}} \partial_{x_{8}}
$$

$v_{4}=-f_{x_{4}} \partial_{x_{1}}-f_{x_{3}} \partial_{x_{2}}+f_{x_{2}} \partial_{x_{3}}+f_{x_{1}} \partial_{x_{4}}$

$$
\begin{aligned}
&-f_{x_{8}} \partial_{x_{5}}+f_{x_{7}} \partial_{x_{6}}-f_{x_{6}} \partial_{x_{7}}-f_{x_{5}} \partial_{x_{8}}, \\
& v_{5}=-f_{x_{5}} \partial_{x_{1}}+f_{x_{6}} \partial_{x_{2}}+f_{x_{7}} \partial_{x_{3}}+ f_{x_{8}} \partial_{x_{4}} \\
&+f_{x_{1}} \partial_{x_{5}}-f_{x_{2}} \partial_{x_{6}}-f_{x_{3}} \partial_{x_{7}}-f_{x_{4}} \partial_{x_{8}}, \\
& v_{6}=-f_{x_{6}} \partial_{x_{1}}-f_{x_{5}} \partial_{x_{2}}+f_{x_{8}} \partial_{x_{3}}- f_{x_{7}} \partial_{x_{4}} \\
&+f_{x_{2}} \partial_{x_{5}}+f_{x_{1}} \partial_{x_{6}}+f_{x_{4}} \partial_{x_{7}}-f_{x_{3}} \partial_{x_{8}}, \\
& v_{7}=-f_{x_{7}} \partial_{x_{1}}-f_{x_{8}} \partial_{x_{2}}-f_{x_{5}} \partial_{x_{3}}+ f_{x_{6}} \partial_{x_{4}} \\
&+f_{x_{3}} \partial_{x_{5}}-f_{x_{4}} \partial_{x_{6}}+f_{x_{1}} \partial_{x_{7}}+f_{x_{2}} \partial_{x_{8}}, \\
& v_{8}=-f_{x_{8}} \partial_{x_{1}}+f_{x_{7}} \partial_{x_{2}-f_{x_{6}} \partial_{x_{3}}-} f_{x_{5}} \partial_{x_{4}}+f_{x_{3}} \partial_{x_{6}}-f_{x_{2}} \partial_{x_{7}}+f_{x_{1}} \partial_{x_{8} .}
\end{aligned}
$$

The condition (Q) is also fullfilled, the vectors V_{i} being given by, if $n=2$:
$V_{2}=-F_{x_{2}} \partial_{x_{1}}+F_{x_{1}} \partial_{x_{2}}$,
if $n=4$:

$$
\begin{aligned}
& V_{2}=-F_{x_{2}} \partial_{x_{1}}+F_{x_{1}} \partial_{x_{2}}-F_{x_{4}} \partial_{x_{3}}+F_{x_{3}} \partial_{x_{4}}, \\
& V_{3}=-F_{x_{3}} \partial_{x_{1}}+F_{x_{4}} \partial_{x_{2}}+F_{x_{1}} \partial_{x_{3}}-F_{x_{2}} \partial_{x_{4}}, \\
& V_{4}=-F_{x_{4}} \partial_{x_{1}}-F_{x_{3}} \partial_{x_{2}}+F_{x_{2}} \partial_{x_{3}}+F_{x_{1}} \partial_{x_{4}},
\end{aligned}
$$

if $n=8$:

$$
\begin{aligned}
V_{2}=-F_{x_{2}} \partial_{x_{1}}+F_{x_{1}} \partial_{x_{2}}-F_{x_{4}} \partial_{x_{3}} & +F_{x_{3}} \partial_{x_{4}} \\
& -F_{x_{6}} \partial_{x_{5}}+F_{x_{5}} \partial_{x_{6}}+F_{x_{8}} \partial_{x_{7}}-F_{x_{7}} \partial_{x_{8}}, \\
V_{3}=-F_{x_{3}} \partial_{x_{1}}+F_{x_{4}} \partial_{x_{2}}+F_{x_{1}} \partial_{x_{3}} & -F_{x_{2}} \partial_{x_{4}} \\
& -F_{x_{7}} \partial_{x_{5}}-F_{x_{8}} \partial_{x_{6}}+F_{x_{5}} \partial_{x_{7}}+F_{x_{6}} \partial_{x_{8}}, \\
V_{4}=-F_{x_{4}} \partial_{x_{1}}-F_{x_{3}} \partial_{x_{2}}+F_{x_{2}} \partial_{x_{3}} & +F_{x_{1}} \partial_{x_{4}} \\
& -F_{x_{8}} \partial_{x_{5}}+F_{x_{7}} \partial_{x_{6}}-F_{x_{6}} \partial_{x_{7}}-F_{x_{5}} \partial_{x_{8}}, \\
V_{5}=-F_{x_{5}} \partial_{x_{1}}+F_{x_{6}} \partial_{x_{2}}+F_{x_{7}} \partial_{x_{3}} & +F_{x_{8}} \partial_{x_{4}} \\
& +F_{x_{1}} \partial_{x_{5}}-F_{x_{2}} \partial_{x_{6}}-F_{x_{3}} \partial_{x_{7}}-F_{x_{4}} \partial_{x_{8}}, \\
V_{6}=-F_{x_{6}} \partial_{x_{1}}-F_{x_{5}} \partial_{x_{2}}+F_{x_{8}} \partial_{x_{3}} & -F_{x_{7}} \partial_{4} \\
& +F_{x_{2}} \partial_{x_{5}}+F_{x_{1}} \partial_{x_{6}}+F_{x_{4}} \partial_{x_{7}}-F_{x_{3}} \partial_{x_{8}}, \\
V_{7}=-F_{x_{7}} \partial_{x_{1}}-F_{x_{8}} \partial_{x_{2}}-F_{x_{5}} \partial_{x_{3}} & +F_{x_{6}} \partial_{x_{4}} \\
& +F_{x_{3}} \partial_{x_{5}}-F_{x_{4}} \partial_{x_{6}}+F_{x_{1}} \partial_{x_{7}}+F_{x_{2}} \partial_{x_{8}}, \\
& \\
\partial_{x_{1}}+F_{x_{7}} \partial_{x_{2}}-F_{x_{6}} \partial_{x_{3}} & -F_{x_{5}} \partial_{x_{4}}-F_{x_{2}} \partial_{x_{7}}+F_{x_{1}} \partial_{x_{8}} .
\end{aligned}
$$

So all the results of Section 2 and Section 3 can be applied. Note also that the vector fields v_{i} and V_{i} are analytic.
4.2. Case $f_{x_{1}} \geq 0$ and $F_{x_{1}} \geq 0$. The condition (P) is satisfied for a function-germ $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ such that $f_{x_{1}} \geq 0$ (see [FK,p151]). The
vectors v_{2}, \ldots, v_{n} are defined by:

$$
v_{i}=-f_{x_{i}} \partial_{x_{1}}-\sum_{j=2}^{n}\left(f_{x_{i}} f_{x_{j}}-\delta_{i, j} T\right) \partial_{x_{j}}
$$

where $T=f_{x_{1}}+\sum_{j=2}^{n} f_{x_{j}}^{2}$ and $\delta_{i, j}$ is the Kronecker symbol. Here we notice that there is a mistake in the computation of the determinant of the matrix M defined p. 151 in [FK]. This determinant is $(-1)^{n} T^{n-1} \sum_{i=0}^{n} g_{x_{i}}^{2}$. That is why our v_{i} 's are the opposite of the v_{i} 's defined by Fukui and Khovanskii.

If $F_{x_{1}} \geq 0$, the condition (Q) is satisfied with the vectors V_{i} 's defined by :

$$
V_{i}=-F_{x_{1}} \partial_{x_{1}}-\sum_{j=2}^{n}\left(F_{x_{i}} F_{x_{j}}-\delta_{i, j} T^{\prime}\right) \partial_{x_{j}}
$$

where $T^{\prime}=F_{x_{1}}+\sum_{j=2}^{n} F_{x_{j}}^{2}$. Let us remark that in this situation the computation of $\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)$ can be simplified thanks to Theorem 2.1. Actually, the function F satisfies the condition (P) with the following vectors :

$$
\begin{gathered}
Z_{0}=F_{x_{0}} \partial_{x_{1}}+\sum_{j=0 \mid j \neq 1}^{n}\left(F_{x_{i}} F_{x_{j}}-\delta_{i, j} S\right) \partial_{x_{j}} \\
Z_{i}=-F_{x_{i}} \partial_{x_{1}}-\sum_{j=0 \mid j \neq 1}^{n}\left(F_{x_{i}} F_{x_{j}}-\delta_{i, j} S\right) \partial_{x_{j}}, i=2, \ldots, n
\end{gathered}
$$

where $S=F_{x_{1}}+F_{x_{0}}^{2}+\sum_{j=2}^{n} F_{x_{j}}^{2}$. Let $K(F, G):\left(\mathbb{R}^{n+1}, 0\right) \rightarrow\left(\mathbb{R}^{n+1}, 0\right)$ be defined by :

$$
K(F, G)=\left(F, Z_{0} G, Z_{2} G, \ldots, Z_{n} G\right)
$$

Since $F^{-1}(0) \cap G^{-1}(0)$ has an isolated singularity at the origin (Lemma 3.3) then $K(F, G)$ has an isolated zero at the origin (Lemma 2.4). Hence, by Theorem 2.1 and since $\operatorname{deg}_{0} \nabla F=0$ for $F_{x_{1}} \geq 0$, we have :
if n is odd : $\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)=1+\operatorname{sign}(\delta) \cdot \operatorname{deg}_{0} K(F, G)$,
if n is even : $\chi\left(W_{(F, G-\delta)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} K(F, G)$.
So Corollary 3.15 can be rewritten without the assumption that g has an isolated critical point at the origin. Namely, with the obvious assumptions, we obtain :

Corollary 4.1. For t and ε with $0<|t| \ll \varepsilon \ll 1$, we have :

- if n is odd :

$$
\begin{aligned}
& \chi\left(W_{\left(f_{t}, g_{t}\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k(f, g) \\
& \begin{array}{l}
\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \geq 0\right\}\right)-\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \leq 0\right\}\right)= \\
\\
\quad+\operatorname{deg}_{0} K(F, G)-\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G)
\end{array}
\end{aligned}
$$

- if n is even:

$$
\chi\left(W_{\left(f_{t}, g_{t}\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} K(F, G)+\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G)
$$

$$
\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \geq 0\right\}\right)-\chi\left(W_{f_{t}}^{\varepsilon} \cap\left\{g_{t} \leq 0\right\}\right)=\operatorname{deg}_{0} k(f, g) .
$$

If the deformation (F, G) of (f, g) is of the form $F(\lambda, x)=f(x)-\gamma_{1}(\lambda)$, $G(\lambda, x)=f(x)-\gamma_{2}(\lambda)$, then we just need to suppose that $f_{x_{1}} \geq 0$. Therefore Corollary 3.17 becomes :

Corollary 4.2. Assume that f and g have an isolated singularity and that $\gamma_{1}^{\prime}(t) \neq 0$ if $t \neq 0$. Assume that $J(F, G)$ and $k(f, g)$ have an isolated zero at the origin then for t and ε with $0<|t| \ll \varepsilon \ll 1$, we have :

- if n is odd :

$$
\begin{aligned}
& \chi\left(W_{\left(f-\gamma_{1}(t), g-\gamma_{2}(t)\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} k(f, g), \\
& \chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \geq \gamma_{2}(t)\right\}\right)-\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \leq \gamma_{2}(t)\right\}\right)= \\
& \quad+\operatorname{deg}_{0} K(F, G)-\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G),
\end{aligned}
$$

- if n is even:

$$
\begin{aligned}
& \chi\left(W_{\left(f-\gamma_{1}(t), g-\gamma_{2}(t)\right)}^{\varepsilon}\right)=1-\operatorname{deg}_{0} K(F, G)+\operatorname{sign}(t) \cdot \operatorname{deg}_{0} H(F, G), \\
& \chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g_{t} \geq \gamma_{2}(t)\right\}\right)-\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \leq \gamma_{2}(t)\right\}\right)=\operatorname{deg}_{0} k(f, g) .
\end{aligned}
$$

Let us end with an example. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}$ and $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}$. These functions have an isolated critical point at the origin and $\operatorname{deg}_{0} \nabla f=-1$ and $\operatorname{deg}_{0} \nabla g=1$. The mappings $k(f, g)$ and $l(f, g)$ of Section 2 are :

$$
\begin{gathered}
k(f, g)(x)=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}, 2 x_{1}^{2}-2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2},-4 x_{2} x_{3}, 4 x_{2} x_{4}\right), \\
l(f, g)(x)=\left(x_{1} x_{2}+x_{3} x_{4}, 2 x_{1}^{2}-2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2},-4 x_{2} x_{3}, 4 x_{2} x_{4}\right) .
\end{gathered}
$$

It is not difficult to see that 0 is an isolated root of $k(f, g)$ and $l(f, g)$. Furthermore, $\operatorname{deg}_{0} k(f, g)=0$ because $k(f, g)^{-1}(0, \beta, 0,0)=\emptyset$ if $\beta<0$. If $\beta<0$ then $l(f, g)^{-1}(0, \beta, 0,0)$ consists of the points $p_{1}=\left(0, \sqrt{-\frac{\beta}{2}}, 0,0\right)$ and $p_{2}=\left(0,-\sqrt{-\frac{\beta}{2}}, 0,0\right)$. Since $\operatorname{det}\left[D l(f, g)\left(p_{i}\right)\right]>0, \operatorname{deg}_{0} l(f, g)$ is equal to 2. By Theorem 2.1 and Theorem 2.9, we get that $\chi\left(W_{(f, g-\delta)}^{\varepsilon}\right)=2$, $\chi\left(W_{(f-\delta, g)}^{\varepsilon}\right)=-2$ if $\delta>0$ and $\chi\left(W_{(f-\delta, g)}^{\varepsilon}\right)=2$ if $\delta<0$. By Corollary 3.17, we have :

$$
\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g_{t} \geq \gamma_{2}(t)\right\}\right)-\chi\left(W_{f-\gamma_{1}(t)}^{\varepsilon} \cap\left\{g \leq \gamma_{2}(t)\right\}\right)=0,
$$

for an appropriate analytic $\operatorname{arc}\left(\gamma_{1}, \gamma_{2}\right)$.
Let us compute $\chi\left(W_{(f-t, g-t)}^{\varepsilon}\right)$ using Corollary 3.17. The mappings H and J of Section 3 are given by :

$$
\begin{aligned}
& H(t, x)=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}-t, x_{1} x_{2}+x_{3} x_{4}-t,\right. \\
& \left.2 x_{1}^{2}-2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2},-4 x_{2} x_{3}, 4 x_{2} x_{4}\right), \\
& J(t, x)=\left(t \cdot\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}-t\right), x_{1} x_{2}+x_{3} x_{4}-t,\right. \\
& \\
& \left.2 x_{1}^{2}-2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2},-4 x_{2} x_{3}, 4 x_{2} x_{4}\right) .
\end{aligned}
$$

Let us search the points (t, x) such that $H(t, x)=0$. If $x_{2}=0$ then clearly $x_{1}=x_{3}=x_{4}=t=0$. If $x_{2} \neq 0$ then $x_{3}=x_{4}=0$ and :

$$
\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}-t=0 \\
x_{1} x_{2}-t=0 \\
2 x_{1}^{2}-2 x_{2}^{2}=0
\end{array}\right.
$$

This implies that $t^{2}=4 x_{2}^{4}=x_{2}^{4}$, which is a contradiction. Hence H admits an isolated zero at the origin. Furthermore $\operatorname{deg}_{0} H=0$. To see this, let (t, x) be such that $H(t, x)=(0,0, \beta, 0,0)$ where $\beta<0$. Necessarly $x_{2} \neq 0$ and $x_{3}=x_{4}=0$. Hence x_{1}, x_{2} and t satisfy the system :

$$
\left\{\begin{array}{l}
x_{1}^{2}+x_{2}^{2}-t=0 \\
x_{1} x_{2}-t=0 \\
2 x_{1}^{2}-2 x_{2}^{2}=\beta
\end{array}\right.
$$

Putting $\gamma=\frac{\beta}{2}$, we find that $x_{1}^{2}=\frac{t+\gamma}{2}, x_{2}^{2}=\frac{t-\gamma}{2}$ and $t^{2}=\frac{t^{2}-\gamma^{2}}{4}$. This last equality is equivalent to $3 t^{2}=-\gamma^{2}$, which is impossible.

Let us search the points (t, x) such that $J(t, x)=0$. As above, if $x_{2}=0$ then $x_{1}=x_{3}=x_{4}=t=0$. If $x_{2} \neq 0$ then $x_{3}=x_{4}=0$ and

$$
\left\{\begin{array}{l}
t\left(x_{1}^{2}+x_{2}^{2}-t\right)=0 \\
x_{1} x_{2}-t=0 \\
2 x_{1}^{2}-2 x_{2}^{2}=0
\end{array}\right.
$$

If $t=0$ then $x_{1}=x_{2}=0$, which is a contradiction. The case $x_{1}^{2}+x_{2}^{2}-t=0$ is also impossible as we have already explained. Hence J admits an isolated zero at the origin. Let $\beta<0$ and let us search the points (t, x) such that $J(t, x)=\left(\frac{\beta^{2}}{8}, 0, \beta, 0,0\right)$. Necessarly $x_{2} \neq 0$ and $x_{3}=x_{4}=0$. Hence x_{1}, x_{2} and t satisfy the system :

$$
\left\{\begin{array}{l}
t\left(x_{1}^{2}+x_{2}^{2}-t\right)=\frac{\beta^{2}}{8} \\
x_{1} x_{2}-t=0 \\
2 x_{1}^{2}-2 x_{2}^{2}=\beta
\end{array}\right.
$$

Furthermore, $t>0$ because $t\left(x_{1}^{2}+x_{2}^{2}\right)=t^{2}+\frac{\beta^{2}}{8}$ and x_{1} and x_{2} have the same sign. Putting $\gamma=\frac{\beta}{2}$ and $\lambda=t+\frac{\beta^{2}}{8 t}$, we find that $x_{1}^{2}=\frac{\lambda+\gamma}{2}, x_{2}^{2}=\frac{\lambda-\gamma}{2}$ and $t^{2}=\frac{\lambda^{2}-\gamma^{2}}{4}$. Hence, we get that $3 t^{4}=\frac{\beta^{4}}{64}$. Thus $\left(\frac{\beta^{2}}{8}, 0, \beta, 0,0\right)$ has two preimages $q_{1}=\left(t_{0}, a_{1}, b_{1}, 0,0\right)$ and $q_{2}=\left(t_{0}, a_{2}, b_{2}, 0,0\right)$, where $t_{0}>0$, $a_{1}, b_{1}>0$ and $a_{2}, b_{2}<0$. An easy computation shows that $\operatorname{DJ}\left(q_{i}\right)=$ $-128 b_{i}^{2} t_{0}\left(a_{i}-b_{i}\right)^{2}$. Finally we find that $\operatorname{deg}_{0} J=-2$. Corollary 3.17 gives that $\chi\left(W_{(f-t, g-t)}^{\varepsilon}\right)=-2$.

Let us now compute $\chi\left(W_{\left(f-t, g-\frac{1}{4} t\right)}^{\varepsilon}\right)$. The mappings H and J are :

$$
\begin{aligned}
H(t, x)=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}-\right. & t, x_{1} x_{2}+x_{3} x_{4}-\frac{1}{4} t \\
& \left.2 x_{1}^{2}-2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2},-4 x_{2} x_{3}, 4 x_{2} x_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
J(t, x)=\left(t \cdot\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{4}^{2}-t\right)\right. & , x_{1} x_{2}+x_{3} x_{4}-\frac{1}{4} t \\
& \left.2 x_{1}^{2}-2 x_{2}^{2}+2 x_{3}^{2}+2 x_{4}^{2},-4 x_{2} x_{3}, 4 x_{2} x_{4}\right)
\end{aligned}
$$

We use the same technics as in the previous example. We find that H and J have an isolated root at the origin. If $\beta<0$ then $(0,0, \beta, 0,0)$ has two preimages by $H: p_{1}=\left(t_{0}, a_{1}, b_{1}, 0,0\right)$ and $p_{2}=\left(t_{0}, a_{2}, b_{2}, 0,0\right)$ where $t_{0}>0, a_{1}, b_{1}>0$ and $a_{2}, b_{2}<0$. A computation gives that $D H\left(p_{i}\right)=$ $-48 b_{i}^{2} t_{0}$, which implies that $\operatorname{deg}_{0} H=-2$. Let us search the preimages of $\left(\frac{\beta^{2}}{8}, 0, \beta, 0,0\right), \beta<0$, by J. If (t, x) is such a preimage then necessarly $x_{2} \neq 0, x_{3}=x_{4}=0$ and $t>0$. Moreover x_{1}, x_{2} and t satisfy the system :

$$
\left\{\begin{array}{l}
t\left(x_{1}^{2}+x_{2}^{2}-t\right)=\frac{\beta^{2}}{8} \\
x_{1} x_{2}-\frac{1}{4} t=0 \\
2 x_{1}^{2}-2 x_{2}^{2}=\beta
\end{array}\right.
$$

This gives that $-\frac{3}{4} t^{2}=\frac{\beta^{4}}{63 t^{2}}$, a contradiction. We have proved that $\operatorname{deg}_{0} J=$ 0 . Applying Corollary 3.17, we obtain that $\chi\left(W_{\left(f-t, g_{\left.-\frac{1}{4} t\right)}^{\varepsilon}\right)}^{\varepsilon}\right)=-2$ if $t>0$ and $\chi\left(W_{\left(f-t, g-\frac{1}{4} t\right)}^{\varepsilon}\right)=2$ if $t<0$.

References

[AFN1] AOKI, K., FUKUDA, T., NISHIMURA. T. : On the number of branches of the zero locus of a map germ $\left(\mathbf{R}^{n}, 0\right) \rightarrow\left(\mathbf{R}^{n-1}, 0\right)$. Topology and Computer Science: Proceedings of the Symposium held in honor of S. Kinoshita, H. Noguchi and T. Homma on the occasion of their sixtieth birhtdays (1987), 347-363.
[AFN2] AOKI, K., FUKUDA, T., NISHIMURA. T. : An algebraic formula for the topological types of one parameter bifurcation diagrams, Archive for Rational Mechanics and Analysis 108 (1989), 247-265.
[AFS] AOKI, K., FUKUDA, T., SUN, W.Z. : On the number of branches of a plane curve germ, Kodai Math. Journal 9 (1986), 179-187.
[DLNS] DUDZINSKI, P., LECKI, A., NOWAK-PRZYGODZKI, P., SZAFRANIEC, Z. : On the topological invariance of the Milnor number mod 2, Topology 32 (1993), 573-576.
[Du1] DUTERTRE, N. : Degree formulas for a topological invariant of bifurcations of function germs, Kodai Mathematical Journal 23, no. 3 (2000), 442-461.
[Du2] DUTERTRE, N. : On the Milnor fibre of a real map-germ, Hokkaido Mathematical Journal 31 (2002), 301-319.
[Du3] DUTERTRE, N. : Courbures et singularités réelles, Commentarii Mathematici Helvetici 77 (2002), 846-863.
[Du4] DUTERTRE, N. : On topological invariants associated with a polynomial with isolated critical points, Glasg. Math. J. 46, no. 2 (2004), 323-334.
[Fu] FUKUI, T. : An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, in Stratifications, singularities, and differential equations, II (Marseille, 1990; Honolulu, HI, 1990), Travaux en cours 55, Hermann, Paris, 45-54 1997.
[FK] FUKUI, T., KHOVANSKII, A. : Mapping degree and Euler characteristic, Kodai Math. J. 29, no. 1 (2006), 144-162.
[Gr] GREUEL, G.M. : Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständingen Durschnitten, Math. Annalen 214 (1975), 235-266.
[Ha] HAMM, H. : Lokale topologische Eigenschaften komplexer Raume, Math. Ann. 191 (1971), 235-252.
[Kh] KHIMSHIASHVILI, G.M. : On the local degree of a smooth map, Soobshch. Akad. Nauk Gruz. SSR 85 (1977), 309-311.
[Le] LE DUNG TRANG : Calcul du nombre de Milnor d'une singularité isolée d'intersection complète, Funct. Anal. Appl. 8 (1974), 45-52.
[Mi] MILNOR, J. : Singular points of complex hypersurfaces, Ann. Math. Stud. 61, Princeton University Press (1968).
[Sz1] SZAFRANIEC, Z. : On the number of branches of a 1-dimensional semi-analytic set, Kodai Math. Journal 11 (1988), 78-85.
[Sz2] SZAFRANIEC, Z. : A formula for the Euler characteristic of a real algebraic manifold, Manuscripta Mathematica 85 (1994), 345-360.

Université de Provence, Centre de Mathématiques et Informatique, 39 rue Joliot-Curie, 13453 Marseille Cedex 13, France.

E-mail address: dutertre@cmi.univ-mrs.fr

