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ON THE REAL MILNOR FIBRE OF SOME MAPS FROM

R
n TO R

2

NICOLAS DUTERTRE

Abstract. We consider a real analytic map-germ (f, g) : (Rn, 0) →
(R2, 0). Under some conditions, we establish degree formulas for the
following quantities :

χ({f = α} ∩ {g = δ} ∩ B
n
ε ),

χ({f = α} ∩ {g ≥ δ} ∩ B
n
ε ) − χ({f = α} ∩ {g ≤ δ} ∩ B

n
ε ),

where (α, δ) is a regular value of (f, g) and 0 < |(α, δ)| ≪ ε ≪ 1.

1. Introduction

Let F = (f1, . . . , fk) : (Kn, 0) → (Kk, 0), with 0 < k < n and K = R or
C, be an analytic map-germ such that 0 is an isolated singularity of F−1(0),
i.e rank[DF (x)] = k at every x ∈ F−1(0) \ {0} close to the origin. Let
g : (Kn, 0) → (K, 0) be a function-germ. We are interested in studying
topological invariants associated with the mappings F and (F, g).

Let Bε ⊂ K
n be a closed ball centered at the origin of radius ε. For any

regular value δ ∈ K
k close to the origin, the Milnor fibre of F associated

with δ is the set F−1(δ) ∩ Bε, where 0 < |δ| ≪ ε ≪ 1. We will denote it by
W ε

F−δ.
In the complex case, the topology of the Milnor fibre is well known. Milnor

[Mi] (in the case k = 1) and Hamm [Ha] (in the case k > 1) proved that W ε
F−δ

has the homotopy type of a bouquet of µ(F ) spheres of dimension n − k.
This number µ(F ) is called the Milnor number of F and the Euler-Poincaré
characteristic of the Milnor fibre is given by χ(W ε

F−δ) = 1 + (−1)n−kµ(F ).
Minor also showed that, when k = 1, µ(F ) is equal to the topological degree
of the mapping ∇F

|∇F | : ∂Bε → S2n−1
1 . This gives the following algebraic

characterization of the Milnor number :

µ(F ) = dimC

OCn,0
(

∂f
∂x1

, . . . , ∂f
∂xn

) ,

where OCn,0 is the algebra of holomorphic function-germs at the origin.
This last formula was extended to the case k > 1 by Lê [Le] and Greuel

[Gr], who obtained the following formula :

µ(F ′) + µ(F ) = dimCOCn,0/I,
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where F ′ = (f1, . . . , fk−1) and I is the ideal generated by f1, . . . , fk−1 and the

minors ∂(f1,...,fk)
∂(xi1

,...,xik
) . Hence, proceeding by induction, one can get a formula

for µ(F ) in terms of dimensions of appropriate local algebras.
In the real case, the topology of the Milnor fibre depends on δ and can

not be as well described as in the complex case. Nevertheless, there exist
formulas similar to the ones mentionned above relating its Euler-Poincaré
characteristic to topological degrees of mapping defined in terms of F . For
instance, if k = 1, the Khimshiashvili formula [Kh] states that :

χ(W ε
F−δ) = 1 − sign(−δ)n · deg0∇F,

where deg0∇F is the topological degree of the mapping ∇F
|∇F | : ∂Bε → Sn−1

1 .

We proved in [Du2] that if (δ, α) is a regular value of (F, g) with 0 <
|α| ≪ |δ| ≪ ε ≪ 1 then :

χ(W ε
F−δ ∩ {g ≥ α}) − χ(W ε

F−δ ∩ {g ≤ α}) ≡

χ(W ε
(F−δ,g−α)) + χ(W ε

F−δ) ≡ dimRORn,0/I mod (2),

where ORn,0 is the ring of real analytic function-germs at the origin and I is

the ideal generated by f1, . . . , fk and the minors ∂(g,f1,...,fk)
∂(xi1

,...,xik+1
) . This formula

generalized the case g = x2
1 + · · · + x2

n already shown by Duzinski et al.
[DLNS]. This a mod 2 formula and one may ask if, as in the complex case,
it is possible to express the following quantities :

χ(W ε
F−δ ∩ {g ≥ α}) − χ(W ε

F−δ ∩ {g ≤ α}),

and
χ(W ε

F−δ),

in terms of topological degrees of mappings defined in terms of F and g.
When k = n−1 and g = x2

1 + · · ·+x2
n, Aoki et al. ([AFN1],[AFS]) proved

that : χ(W ε
F−δ) = deg0H and 2 × deg0H is the number of half-branches of

F−1(0), where H =
(

∂(g,f1,...,fn−1)
∂(x1,...,xn) , f1, . . . , fn−1

)

. They extended this result

to the case g = xn in [AFN2] and Szafraniec extended it to any g in [Sz1].
When k = 1 and g = x1, Fukui showed in [Fu] that :

χ(W ε
F−δ ∩ {x1 ≥ 0}) − χ(W ε

F−δ ∩ {x1 ≤ 0}) = −sign(−δ)n · deg0H,

where H = (F, ∂F
∂x1

, . . . , ∂F
∂xn

).

In [Du1], we proved that when n = 2, 4 or 8 and k = 1, it is possible to
construct a mapping H : (Rn, 0) → (Rn, 0) such that :

χ(W ε
F−δ ∩ {g ≥ α}) − χ(W ε

F−δ ∩ {g ≤ α}) = −deg0H.

This last result was generalized by Fukui and Khovanskii [FK]. In that paper,
the authors consider an analytic function-germ g : (Rn, 0) → (R, 0) that
satisfies the following condition (P ) : there exits C∞-vector fields v2, . . . , vn

which span the tangent space at x to g−1(g(x)), whenever x is a regular
point of g, and ∇g, v2, . . . , vn agree with the orientation of R

n. They define
a mapping H : (Rn, 0) → (Rn, 0) by H = (F, v2F, . . . , vnF ) and they prove
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that if 0 is isolated in H−1(0), if the set of critical points of g does not
intersect W ε

F−δ and if (δ, 0) is a regular value of (F, g) then :

χ(W ε
F−δ ∩ {g ≥ 0}) − χ(W ε

F−δ ∩ {g ≤ 0}) = sign(−δ)n · deg0H.

In this paper, we continue this work of computing Euler-Poincaré char-
acteristics of real Milnor fibres, especially for mappings with two compo-
nents. In Section 2, we give generalizations of Khimshiashvili’s formula.
We consider an analytic function-germ f : (Rn, 0) → (R, 0), with an iso-
lated critical point at 0, that satisfies the condition (P ) described above.
Let g : (Rn, 0) → (R, 0) be an other function-germ. We define a mapping
k(f, g) : (Rn, 0) → (Rn, 0) in terms of f and g and we assume that it has an
isolated zero at the origin. We prove (Theorem 2.1) that :

if n is even : χ(W ε
(f,g−δ)) = 1 − deg0∇f + sign(δ) · deg0k(f, g),

if n is odd : χ(W ε
(f,g−δ)) = 1 − deg0k(f, g).

We also show that if n is even :

χ(W ε
f−α ∩ {g ≥ δ}) − χ(W ε

f−α ∩ {g ≤ δ}) = deg0k(f, g),

where (α, δ) is an appropriate regular value of (f, g). Then we assume that
g has an isolated critical point at the origin as well and we define an other
mapping l(f, g). If it has an isolated zero at the origin, then we have (The-
orem 2.9) :

if n is even : χ(W ε
(f−δ,g)) = 1 − deg0∇g − sign(δ) · deg0l(f, g),

if n is odd : χ(W ε
f−δ ∩ {g ≥ 0}) − χ(W ε

f−δ ∩ {g ≤ 0}) =

deg0∇g + sign(δ) · deg0l(f, g),

where 0 < |δ| ≪ ε ≪ 1.
In Section 3, we give a generalization of the formula of Fukui men-

tionned above. We work in R
1+n equipped with the coordinate system

(x0, x1, . . . , xn) and we consider a function-germ F : (R1+n, 0) → (R, 0)
with an isolated critical point at 0. We assume that F satisfies the following
condition (Q) : there exists C∞ vector fields V2, . . . , Vn on R

1+n such that
V2(p), . . . , Vn(p) span the tangent space at p to F−1(F (p))∩x−1

0 (x0(p)) when-
ever p is a regular point of (F, x0) and such that (e0,∇F (p), V2(p), . . . , Vn(p))
agrees with the orientation of R

1+n. Here e0 is the vector (1, 0, . . . , 0). Let
G : (R1+n, 0) → (R, 0) be an other function-germ. We define three mappings
H(F,G), I(F,G) and J(F,G) : (R1+n, 0) → (R1+n, 0). We prove that if 0
is isolated in J(F,G)−1(0) and (0, δ, 0) is a regular value of (F,G, x0) then
(Theorem 3.1) :

deg0H(F,G) = sign(−δ)n ·
[

χ
(

W ε
(F,G−δ) ∩ {x0 ≥ 0}

)

−χ
(

W ε
(F,G−δ) ∩ {x0 ≤ 0}

)]

,

deg0J(F,G) = sign(−δ)n ·
[

χ
(

W ε
(F,G−δ)

)

− χ
(

W ε
(G−δ,x0)

)]

,
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where 0 < |δ| ≪ ε ≪ 1. Then we apply these formulas to the case where
F and G are one-parameter deformations of two function-germs f and g :
(Rn, 0) → (R, 0). Denoting by ft and gt the deformations given by ft(x) =
F (t, x) and gt(x) = G(t, x) and applying a deformation argument as Fukui
did in [Fu], we obtain degree formulas for χ(W ε

(ft,gt)
) and

χ(W ε
ft
∩ {gt ≥ 0}) − χ(W ε

ft
∩ {gt ≤ 0}),

where 0 < |t| ≪ ε ≪ 1 (Corollary 3.15). When the deformations of f and g
are of the form :

F (t, x) = f(x) − γ1(t) and G(t, x) = g(x) − γ2(t),

where γ = (γ1, γ2) : (R, 0) → (R2, 0) is an analytic arc such that γ(t) 6= 0 if
t 6= 0, γ′

1(t) 6= 0 if t 6= 0, and the image of γ consists of regular values of (f, g)
(except the origin in R

2 of course), we get formulas for χ(W ε
(f−γ1(t),g−γ2(t)))

and

χ(W ε
f−γ1(t) ∩ {g ≥ γ2(t)}) − χ(W ε

f−γ1(t) ∩ {g ≤ γ2(t)}),

where 0 < |t| ≪ ε ≪ 1 (Corollary 3.17).
In Section 4, we present different cases where we can apply the results of

the previous sections. There are two cases : when n = 2, 4 or 8 and when
∂f
∂x1

≥ 0 and ∂F
∂x1

≥ 0. In this last situation, we explain how the results
concerning the one-parameter deformations can be simplified with the aid
of Theorem 2.1 (see Corollaries 4.1 and 4.2).

We will use the following notations. Some of them have already appeared
in this introduction :

(1) if H : (Rn, 0) → (Rn, 0) is a mapping with an isolated zero at the
origin then deg0H is the topological degree of H

|H| : Sn−1
ε → Sn−1

1

where Sn−1
ε is the sphere of radius ε centered at the origin,

(2) if F : R
n → R

k is a mapping then W ε
F denotes the set F−1(0) ∩Bn

ε ,
where Bn

ε is the ball of radius ε centered at the origin and ∂W ε
F is

F−1(0) ∩ Sn−1
ε ,

(3) if f : R
n → R is a smooth function then fxi

denotes the partial

derivative ∂f
∂xi

and ∇f is the gradient of f ,

(4) if F = (F1, . . . , Fk) : R
n → R

k, 0 < k ≤ n, is a smooth mapping then

DF (x) is its Jacobian matrix at x and ∂(F1,...,Fk)
∂(xi1

,...,xik
) is the determinant

of the following k × k minors of DF (x) :






F1xi1
· · · F1xik

...
. . .

...
Fkxi1

· · · Fkxik






.

2. Generalizations of Khimshiashvili’s formula

In this section, we prove formulas similar to Khimshiashvili’s one for the
fibre of a function on a hypersurface with an isolated singularity. We need
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to put the same conditon (P ) as Fukui and Khovanskii’s condition (P ) [FK],
either on the function or on the function defining the hypersurface.

Let (x1, . . . , xn) be a coordinate system in R
n and let f : (Rn, 0) → (R, 0)

be an analytic function-germ with an isolated critical point at the origin.
We assume that f satisfies the following condition (P ) : there exists C∞

vector fields v2, . . . , vn on R
n such that v2(x), . . . , vn(x) span the tangent

space at x to f−1(f(x)), whenever x is a regular point of f , and such that
the orientation of (∇f(x), v2(x), . . . , vn(x)) agrees with the orientation of
R

n.
Let g : (Rn, 0) → (R, 0) be an other analytic function-germ. We define a

mapping k(f, g) : (Rn, 0) → (R, 0) in the following way :

k(f, g) = (f, v2g, . . . , vng).

We will prove the following theorem :

Theorem 2.1. If 0 is an isolated critical point of f and is isolated in
k(f, g)−1(0), then we have :

if n is even : χ(W ε
(f,g−δ)) = 1 − deg0∇f + sign(δ) · deg0k(f, g),

if n is odd : χ(W ε
(f,g−δ)) = 1 − deg0k(f, g),

where 0 < |δ| ≪ ε ≪ 1. Furthermore, if n is even, we also have :

χ(W ε
f−α ∩ {g ≥ δ}) − χ(W ε

f−α ∩ {g ≤ δ}) = deg0k(f, g),

where 0 ≤ |δ| ≪ |α| ≪ ε ≪ 1 and (α, δ) is a regular value of (f, g).

To establish this theorem, we need a series of lemmas. From now on,
we will assume that the hypothesis of Theorem 2.1 are fullfilled. For all

(i, j) ∈ {1, . . . , n}2, we will set mij = ∂(g,f)
∂(xi,xj)

.

Lemma 2.2. For δ 6= 0 sufficiently small, (0, δ) is a regular value of (f, g).

Proof. Since f has an isolated critical point, f−1(0) \ {0} is smooth (or
empty). By the Curve Selection Lemma, the critical points of g|f−1(0)\{0} lie

in g−1(0). �

Lemma 2.3. Let p be a regular point of f . The function g|f−1(f(p)) has a
critical point at p if and only if vig(p) = 0 for all i ∈ {2, . . . , n}.

Proof. If p is a regular point of f then v2(p), . . . , vn(p) span the tangent
space at f−1(f(p)). Therefore g|f−1(f(p)) has a critical point at p if and only
if 〈vi(p),∇g(p)〉 = 0 for all i ∈ {2, . . . , n}. �

Lemma 2.4. The origin is an isolated singularity of f−1(0)∩ g−1(0) if and
only if 0 is isolated in k(f, g)−1(0).

Proof. A point p, distinct from the origin, is in k(f, g)−1(0) if and only if
g|f−1(0)\{0} has a critical point at p. But, as noticed above, such a point lies

in g−1(0). �
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Lemma 2.5. Let α 6= 0 be a small regular value of f . Let p be a point
in f−1(α). The function g|f−1(α) has a non-degenerate critical point at p if
and only if k(f, g)(p) = (α, 0, . . . , 0) and detDk(f, g)(p) 6= 0. Furthermore
if λ(p) is the Morse index of g|f−1(α) at p then one has :

(−1)λ(p) = sign [detDk(f, g)(p)] .

Proof. Since α is a regular value of f , there exists j such that fxj
(p) 6= 0.

Assume that j = 1. From [Sz2,p349-350], p is a non-degenerate critical point
of g|f−1(α) if and only if :

det

[

∇f(p)
∇m1i(p)

]

2≤i≤n

6= 0.

Furthermore, we have :

(−1)λ(p) = (−1)n−1 · sign(fx1(p))n · det

[

∇f(p)
∇m1i(p)

]

.

We have to relate det

[

∇f(p)
∇m1i(p)

]

to det

[

∇f(p)
∇vig(p)

]

. For i ∈ {2, . . . , n},

let ui(p) be the vector (fxi
(p), 0, . . . , 0,−fx1(p), 0, . . . , 0), where −fx1(p) is

the i-th coordinate. Then (u2(p), . . . , un(p)) is a basis of Tpf
−1(α) and it is

not difficult to see that :

det(∇f(p), u2(p), . . . , un(p)) = (−1)n−1 · fx1(p)n−2 · (
n
∑

i=1

f2
xi

(p)).

Hence there exists a (n − 1) × (n − 1) matrix B(p) such that :
(

∇f(p)
ui(p)

)

=

(

1 0
0 B(p)

)

·

(

∇f(p)
vi(p)

)

,

with sign[detB(p)] = (−1)n−1sign[fx1(p)n−2]. Hence, for i ∈ {2, . . . , n} :

ui(p) =

n
∑

j=2

Bij(p) · vj(p),

and :

m1i(p) = uig(p) =
n
∑

j=2

Bij(p) · vjg(p).

Since vjg(p) = 0, we have :

∇m1i(p) =

n
∑

j=2

Bij(p) · ∇vjg(p),

and :
(

∇f(p)
∇m1i(p)

)

=

(

1 0
0 B(p)

)

·

(

∇f(p)
∇vig(p)

)

.

With this equality, it is easy to conclude. �
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To prove Theorem 2.1, we will use Morse theory for manifolds with cor-
ners. The reader may refer to [Du4,Section 2] for a brief description of this
theory. The following lemma deals with the critical points of g|∂W ε

f−α
.

Lemma 2.6. For all α and ε such that 0 < |α| ≪ ε ≪ 1, one has :

• at all correct critical points of g|∂W ε
f−α

with g > 0, ∇g|f−1(α) points

outwards,
• at all correct critical points of g|∂W ε

f−α
with g < 0, ∇g|f−1(α) points

inwards,
• there are no correct critical points of g|∂W ε

f−α
in g−1(0).

Proof. The proof is the same as [Du1], Lemma 4.1. �

Lemma 2.7. We can choose α small enough and we can perturbe g into g̃
in such a way that g̃|W ε

f−α
has only Morse critical points.

Proof. Let (x; t) = (x1, . . . , xn; t1, . . . , tn) be a coordinate system of R
2n

and let ḡ(x, t) = g(x) + t1x1 + · · · tnxn. For (i, j) ∈ {1, . . . , n}2, we define

Mij(x, t) by Mij(x, t) = ∂(f,ḡ)
∂(xi,xj)

(x, t). Notice that :

Mij(x, t) = mij(x, t) + fxi
(x)tj − tifxj

(x).

Let Γ be defined by :

Γ =
{

(x, t) ∈ R
2n | Mij(x, t) = 0 for (i, j) ∈ {1, . . . , n}2

}

.

At a point p, if f does not vanish then there exists i ∈ {1, . . . , n} such that
fxi

(p) 6= 0. This implies that Γ\{f = 0} is a smooth manifold (or empty) of
dimension n + 1. Actually if p belongs to Γ \ {f = 0}, then one can assume
that fx1(p) 6= 0. In this case, around p, Γ is defined by the vanishing of
M12, . . . ,M1n and the gradient vector fields of these functions are linearly
independent. Let π be the following mapping :

π : Γ \ {f = 0} → R
1+n

(x, t) 7→ (f(x), t).

By the Bertini-Sard theorem, we can choose (α, s) close to 0 in R
1+n such

that π is regular at each point in π−1(α, s) close to the origin. If we denote
by g̃ the function defined by g̃(x) = ḡ(x, s), this means that g̃|f−1(α) admits
only Morse critical points in a neighborhood of the origin. �

Proof of Theorem 2.1. Let ω : R
n → R be the distance function to the

origin. Let ε > 0 be sufficiently small so that g|f−1(0)\{0} has no critical

point in f−1(0) \ {0} ∩ {ω < ε}. Let δ be such that 0 < |δ| ≪ ε ≪ 1. We
want to express χ(W ε

(f,g−δ)) in terms of deg0k(f, g). Let α be a regular value

of f such that 0 < |α| ≪ |δ| and the following properties are satisfied :

(1) W ε
(f−α,g−δ) is diffeomorphic to W ε

(f,g−δ),

(2) the critical points of g|f−1(α)∩{ω<ε} lie in {|g| < δ} ∩ {ω < ε
2}.
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Hence the critical points of g|∂W ε
f−α

are correct. Furthermore by the previous

lemmas, we can assume that g|f−1(α)∩{ω<ε} has only Morse critical points,
that at the correct critical points of g|W ε

f−α
lying in {g > 0} (resp. {g < 0}),

∇g|W ε
f−α

points outwards (resp. inwards) and that there are no correct

critical points of g|W ε
f−α

in g−1(0).

We assume that δ > 0 and we apply Morse theory for manifolds with
boundary to obtain :

χ(W ε
f−α ∩ {g ≥ −δ},W ε

(f−α,g+δ)) =
∑

i

(−1)λ(pi),

where {pi} is the set of critical points of g|f−1(α)∩{ω<ε}, and :

χ(W ε
f−α ∩ {g ≤ −δ},W ε

(f−α,g+δ)) = 0.

Summing these equalities and using the Mayer-Vietoris sequence gives :

χ(W ε
f−α) − χ(W ε

(f−α,g+δ)) =
∑

i

(−1)λ(pi).

By Lemma 2.5,
∑

i(−1)λ(pi) is equal to deg0k(f, g). By Khimshiashvili’s
formula, χ(W ε

f−α) = 1 − sign(−α)n · deg0∇f . Now by Proposition 1.1 in

[FK], we know that deg0∇f = 0 if n is odd. This gives the result for the
fibre W ε

(f,g−δ) with δ < 0. The formula for the fibre W ε
(f,g−δ) with δ > 0 is

obtained replacing g with −g. It remains to prove the third formula. Let δ
be such that (α, δ) is a regular value of (f, g) and 0 ≤ |δ| ≪ |α| ≪ ε. Since
n is even, we have :

χ(W ε
f−α ∩ {g ≥ δ}) − χ(W ε

(f−α,g−δ)) =
∑

i|g(pi)>δ

(−1)λ(pi),

χ(W ε
f−α ∩ {g ≤ δ}) − χ(W ε

(f−α,g−δ)) = −
∑

i|g(pi)<δ

(−1)λ(pi).

Making the difference and using Lemma 2.5 leads to the result. �

Corollary 2.8. If 0 is an isolated critical point of f and is isolated in
k(f, g)−1(0), then one has :

if n is odd : χ(∂W ε
(f,g)) = 2 − 2deg0k(f, g),

if n is even : χ(∂W ε
f ∩ {g ≥ 0}) − χ(∂W ε

f ∩ {g ≤ 0}) = 2deg0k(f, g).

Proof. The first point is easy. For the second point, see [Du1], Theorem
5.2. �

Now let us suppose that g also has an isolated critical point at the origin
and consider the mapping l(f, g) : (Rn, 0) → (Rn, 0) defined by :

l(f, g) = (g, v2g, . . . , vng).

In [FK], Theorem 4.1, Fukui and Khovanskii prove that if 0 is isolated in
l(f, g)−1(0) and if the set of critical points of f does not intersect W ε

g−δ then:

deg0l(f, g) = −sign(−δ)n ·
{

χ(W ε
g−δ ∩ {f ≥ 0}) − χ(W ε

g−δ ∩ {f ≤ 0})
}

.
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In our situation the second condition is fullfilled because f has an isolated
critical point. We want to give an other interpretation to this degree. We
will prove the following theorem.

Theorem 2.9. If f and g have an isolated critical point at the origin and
0 is isolated in l(f, g)−1(0) then :

if n is even : χ(W ε
(f−δ,g)) = 1 − deg0∇g − sign(δ) · deg0l(f, g),

if n is odd : χ(W ε
f−δ ∩ {g ≥ 0}) − χ(W ε

f−δ ∩ {g ≤ 0}) =

deg0∇g + sign(δ) · deg0l(f, g),

where 0 < |δ| ≪ ε ≪ 1.

The proof of this theorem goes nearly like the proof of Theorem 2.1. We
need some lemmas.

Lemma 2.10. For δ 6= 0 sufficiently small, (δ, 0) is a regular value of (f, g).

Lemma 2.11. Let p be a regular point of g. The function f|g−1(g(p)) has a
critical point at p if and only if vig(p) = 0 for all i ∈ {2, . . . , n}.

Proof. The function f|g−1(g(p)) has a critical point at p if and only if
∇f(p) and ∇g(p) are colinear. Since these two vectors are non zero, this is
equivalent to the fact that g|f−1(f(p)) has a critical point at p. It is enough
to use Lemma 2.3. �

Lemma 2.12. The origin is an isolated singularity of f−1(0) ∩ g−1(0) if
and only if 0 is isolated in l(f, g)−1(0).

Lemma 2.13. Let α 6= 0 be a small regular value of g. Let p be a point in
g−1(α). The function f|g−1(α) has a non-degenerate critical point at p if and
only if l(f, g)(p) = (α, 0, . . . , 0) and detDl(f, g)(p) 6= 0. Furthermore if λ(p)
is the Morse index of f|g−1(α) at p and if µ(p) is the real number such that
∇f(p) = µ(p) · ∇g(p) then we have :

(−1)λ(p) = (−1)n−1 · sign [µ(p)n · detDl(f, g)(p)] .

Proof. Since α is a regular value of g, there exists j such that gxj
(p) 6= 0.

Assume that j = 1. From [Sz2,p349-350], p is a non-degenerate critical point
of f|g−1(α) if and only if :

det

[

∇g(p)
−∇m1i(p)

]

2≤i≤n

6= 0.

Furthermore, we have :

(−1)λ(p) = (−1)n−1 · sign

(

gx1(p)n · det

[

∇g(p)
−∇m1i(p)

])

.

Since gx1(p) 6= 0, fx1(p) does not vanish for otherwise µ(p) and ∇f(p) would
vanish as well. Then the computations done in Lemma 2.5 show that :

sign

(

det

[

∇g(p)
−∇vig(p)

])

= sign

(

fx1(p)n−2 · det

[

∇g(p)
−∇m1i(p)

])

,
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and it is easy to conclude. �

The following lemma deals with the critical points of f|∂W ε
g−α

.

Lemma 2.14. For all α and ε such that 0 < |α| ≪ ε ≪ 1, one has :

• at all correct critical points of f|∂W ε
g−α

with f > 0, ∇f|g−1(α) points

outwards,
• at all correct critical points of f|∂W ε

g−α
with f < 0, ∇f|g−1(α) points

inwards,
• there are no correct critical points of f|∂W ε

g−α
in f−1(0).

Similarly, we have :

Lemma 2.15. For ε sufficiently small, one has :

• at all correct critical points of f|Sn−1
ε

with f > 0, ∇f points outwards,

• at all correct critical points of f|Sn−1
ε

with f < 0, ∇f points inwards,

• there are no correct critical points of f|Sn−1
ε

in f−1(0).

Lemma 2.16. We can choose α small enough and we can pertube g into g̃
in such a way that f|W ε

g̃−α
has only Morse critical points.

Proof. With the method of Lemma 2.7, we can prove that there exists
a small perturbation g̃ of g such that f|W ε

g̃−α
has only Morse critical points

outside {f = 0}. But Lemma 2.2 states that (0, α) is a regular value of (f, g̃)
for α small enough. �

Proof of Theorem 2.9. The case n even is proved as in Theorem 2.1. So
let us assume that n is odd. Let ω : R

n → R be the distance function to
the origin. Let ε > 0 be sufficiently small so that f|g−1(0)\{0} has no critical

point in g−1(0) \ {0} ∩ {ω < ε}. Let (δ, α) be a regular value of (f, g) such
that :

(1) 0 < |α| ≪ |δ| ≪ ε,
(2) the critical points of f|g−1(α) lie in {|f | < δ} ∩ {ω < ǫ

2},
(3) {g?0}∩W ε

f−δ is diffeomorphic to {g?α}∩W ε
f−δ , where ? ∈ {≤,=,≥}.

Thanks to the three previous lemmas, we can assume as in Theorem 2.1
that we are in a good situation to apply Morse theory for manifolds with
corners. Let us assume that δ > 0. By Morse Theory, we obtain :

χ({g ≥ α} ∩ {f ≥ δ} ∩ Bn
ε ) − χ({g ≥ α} ∩ W ε

f−δ) = 0, (1)

χ({g ≥ α} ∩ {f ≤ δ} ∩ Bn
ε ) − χ({g ≥ α} ∩ W ε

f−δ) =
∑

i|µ(pi)<0

(−1)λ(pi), (2)

χ({g ≤ α} ∩ {f ≥ δ} ∩ Bn
ε ) − χ({g ≤ α} ∩ W ε

f−δ) = 0, (3)

χ({g ≤ α} ∩ {f ≤ δ} ∩ Bn
ε ) − χ({g ≤ α} ∩ W ε

f−δ) =

−deg0∇f +
∑

i|µ(pi)>0

(−1)λ(pi). (4)
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In the equality (4), the terms −deg0∇f appears because we can pertube
f in such a way that its critical points lie in {|g| ≤ α} ∩ {|f | ≤ δ}. The
combination (1)+ (2)− (3)− (4) together with the Mayer-Vietoris sequence
gives :

χ({g ≥ α} ∩ Bn
ε ) − χ({g ≤ α} ∩ Bn

ε ) − χ({g ≥ α} ∩ W ε
f−δ)

+χ({g ≤ α} ∩ W ε
f−δ) = −

∑

i

signµ(pi) · (−1)λ(pi) + deg0∇f.

We have already seen that deg0∇f = 0. Moreover, by the remark after
Theorem 3.2 in [Du3], we have :

χ({g ≥ α} ∩ Bn
ε ) − χ({g ≤ α} ∩ Bn

ε ) = deg0∇g.

Using Lemma 2.13, we find that :

χ({g ≥ 0} ∩ W ε
f−δ) − χ({g ≤ 0} ∩ W ε

f−δ) = deg0∇g + deg0l(f, g).

The proof for δ negative is obtained replacing f with −f . �

3. A generalization of Fukui’s formula

In this section, we present a generalization of Fukui’s formula mentionned
in the introduction. As in the previous section, we need to put a condition.
More precisely, let (x0, x1, . . . , xn) be a coordinate system in R

1+n and let
F : (R1+n, 0) → (R, 0) be an analytic function-germ with an isolated critical
point at the origin. We assume that F satisfies the following condition (Q) :
there exists C∞ vector fields V2, . . . , Vn on R

1+n such that V2(p), . . . , Vn(p)
span the tangent space at p to F−1(F (p)) ∩ x−1

0 (x0(p)) whenever p is a
regular point of (F, x0) and such that (e0,∇F (p), V2(p), . . . , Vn(p)) agrees
with the orientation of R

1+n. Here e0 is the vector (1, 0, . . . , 0).
Let G : (R1+n, 0) → (R, 0) be an other analytic function-germ. We define

three mappings H(F,G), I(F,G) and J(F,G) : (R1+n, 0) → (R1+n, 0) by :

H(F,G) = (F,G, V2G, . . . , VnG),

I(F,G) = (x0, G, V2G, . . . , VnG),

J(F,G) = (x0F,G, V2G, . . . , VnG).

Our first aim is to prove the following theorem :

Theorem 3.1. If F has an isolated critical point at the origin, 0 is isolated
in J(F,G)−1(0) and (0, δ, 0) is a regular value of (F,G, x0), then 0 is isolated
in H(F,G)−1(0) and we have :

deg0H(F,G) = sign(−δ)n ·
[

χ
(

W ε
(F,G−δ) ∩ {x0 ≥ 0}

)

−χ
(

W ε
(F,G−δ) ∩ {x0 ≤ 0}

)]

,

deg0J(F,G) = sign(−δ)n ·
[

χ
(

W ε
(F,G−δ)

)

− χ
(

W ε
(G−δ,x0)

)]

,

where 0 < |δ| ≪ ε ≪ 1.
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To establish this theorem, we need a series of lemmas. From now on, we
will assume that the three assumptions of Theorem 3.1 are fullfilled. For all

(i, j) ∈ {1, . . . , n}2, we will set Mij = ∂(F,G)
∂(xi,xj)

.

Lemma 3.2. For δ 6= 0 sufficiently small, (0, δ) is a regular value of (F,G).

Lemma 3.3. The origin is an isolated singularity of F−1(0) ∩ G−1(0).

Lemma 3.4. Let δ 6= 0 be sufficiently small so that F−1(0) ∩ G−1(δ) is
smooth submanifold (or empty) of codimension 2 near the origin. Let p be a
point in F−1(0)∩G−1(δ). The function x0|F−1(0)∩G−1(δ) has a critical point
at p if and only if H(F,G)(p) = (0, δ, 0, . . . , 0).

Proof. The function x0|F−1(0)∩G−1(δ) has a critical point at p if and only
if F (p) = 0, G(p) = δ and

rank





1 0 . . . 0
Fx0(p) Fx1(p) . . . Fxn(p)
Gx0(p) Gx1(p) . . . Gxn(p)



 < 3.

First let us suppose that p is a critical point of x0|F−1(0)∩G−1(δ) and remark
that necessarly x0(p) 6= 0 because (0, δ, 0) is a regular value of (F,G, x0).
This implies that p is a regular point of (F, x0) for the critical points
of x0|F−1(0)\{0} lie in {x0 = 0} by the Curve Selection Lemma and, so,

(V2(p), . . . , Vn(p)) is a basis of Tp[F
−1(0) ∩ x−1

0 (x0(p))]. Since ∇G(p) be-

longs to the normal space at p to F−1(0)∩x−1
0 (x0(p)), we find that for each

i ∈ {2, . . . , n}, 〈Vi(p),∇G(p)〉 = 0.
Let us show the inverse implication. Let p be such that H(F,G)(p) =

(0, δ, 0, . . . , 0). If (F, x0) is not regular at p then x0(p) = 0 and (0, δ, 0) is not
a regular value of (F,G, x0), which is impossible. Hence (V2(p), . . . , Vn(p)) is
a basis of Tp[F

−1(0)∩ x−1
0 (x0(p))] and ∇G(p) is normal to this last tangent

space. �

Lemma 3.5. Under the assumptions of Lemma 3.4, x0|F−1(0)∩G−1(δ) has a
non-degenerate critical point at p if and only if H(F,G)(p) = (0, δ, 0, . . . , 0)
and detDH(F,G)(p) 6= 0. Furthermore if λ(p) is the Morse index of this
function at p then :

(−1)λ(p) = (−1)n · sign

[(

G(p)

x0(p)

)n

· detDH(F,G)(p)

]

.

Proof. First observe that, since (0, δ) is a regular value of (F,G) and
the Mij’s, i, j ∈ {1, . . . , n}, vanish at p, there exists k ∈ {1, . . . , n} such

that ∂(F,G)
∂(x0,xk)(p) 6= 0. Assume that k = 1. This implies that Fx1(p) 6= 0 for

otherwise Gx1(p) 6= 0 and Fxj
(p) = 0 for j ∈ {2, . . . , n}, which means that

p is not a regular point of (F, x0) and x0(p) = 0.
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From [Sz2,p349-350], p is a Morse critical point of x0|F−1(0)∩G−1(δ) if and
only if

det





∇F (p)
∇G(p)
∇Ni(p)





2≤i≤n

6= 0,

where Ni = ∂(x0,F,G)
∂(x0,x1,xi)

= M1i. Moreover, one has :

(−1)λ(p) = sign



det





∇F (p)
∇G(p)
∇M1i(p)



 ·
∂(F,G)

∂(x0, x1)
(p)n



 .

Let us relate det(∇F (p),∇G(p),∇M1i(p)) to det(∇F (p),∇G(p),∇ViG(p)).
For i ∈ {2, . . . , n}, let Ui(p) be the vector :

(0, Fxi
(p), 0, . . . , 0,−Fx1(p), 0, . . . , 0),

where −Fx1(p) is the (i + 1)-th coordinate. Then (U2(p), . . . , Un(p)) is a
basis Tp[F

−1(0) ∩ x−1
0 (x0(p))] and

det(e0,∇F (p), U2(p), . . . , Un(p)) = (−1)n−1 · Fx1(p)n−2 ·

(

n
∑

i=1

Fxi
(p)2

)

.

Hence there exists a (n − 1) × (n − 1)-matrix B(p) such that :




e0

∇F (p)
Ui(p)



 =





1 0 0
0 1 0
0 0 B(p)



 ·





e0

∇F (p)
Vi(p)



 ,

with sign[detB(p)] = (−1)n−1 · sign[Fx1(p)n−2]. As we proceed in Lemma
2.5, we have :

sign [det (e0,∇F (p),∇UiG(p))] =

(−1)n−1 · sign
[

Fx1(p)n−2 · det (e0,∇F (p),∇ViG(p))
]

.

Since e0 is a linear combination of ∇F (p) and ∇G(p), it is easy to see that :

sign [det (∇F (p),∇G(p),∇UiG(p))] =

(−1)n−1 · sign
[

Fx1(p)n−2 · det (∇F (p),∇G(p),∇ViG(p))
]

.

Using the fact that UiG(p) = −M1i(p), we find that :

(−1)λ(p) = sign



det





∇F (p)
∇G(p)
∇ViG(p)



 ·
∂(F,G)

∂(x0, x1)
(p)n · Fx1(p)n−2



 .

It remains to study the sign of ∂(F,G)
∂(x0,x1)

(p). By the Curve Selection Lemma,

we can assume that p is on the image of an analytic arc γ :]0, ε[→ F−1(0)
such that Mij(γ(t)) = 0 for t ∈]0, ε[ and (i, j) ∈ {1, . . . , n}2. One has
∑n

i=1 Fxi
(γ) · γ′

i = 0 since F ◦ γ = 0 and (G ◦ γ)′ =
∑n

i=1 Gxi
(γ) · γ′

i.
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Multiplying the first equality by Gx1 , the second by Fx1 and making the
difference leads to :

Fx0Gx1 − Gx0Fx1 = −
(G ◦ γ)′

γ′
0

· Fx1 .

Hence if δ 6= 0 is small enough, sign
(

∂(F,G)
∂(x0,x1)

n
· Fn−2

x1

)

= −sign
(

G
x0

)

at p. �

The following lemma deals with the critical points of x0|∂W ε
(F,G−δ)

.

Lemma 3.6. Assume that (0, δ, 0) is a regular value of (F,G, x0) for δ
sufficiently small. Then, for ε and δ such that 0 < |δ| ≪ ε ≪ 1 :

• the vector ∇x0|F−1(0)∩G−1(δ) points outwards at all correct critical
points of x0|∂W ε

(F,G−δ)
with x0 > 0,

• the vector ∇x0|F−1(0)∩G−1(δ) points inwards at all correct critical
points of x0|∂W ε

(F,G−δ)
with x0 < 0,

• there are no correct critical points of x0|∂W ε
(F,G−δ)

in {x0 = 0}.

Proof. The proof is the same as [Du1], Lemma 4.1. �

Lemma 3.7. If for δ small enough (0, δ, 0) is a regular value of (F,G, x0),

then we can perturbe G into G̃ in such a way that x0|W ε

(F,G̃−δ)
has only Morse

critical points in W ε
(F,G̃−δ)

\ {x0 = 0}.

Proof. The proof is similar to the proofs of Lemma 2.7 and Lemma 4.2
in [Du1]. Let us describe it briefly. Let (x0, . . . , xn; t1, . . . , tn) = (x; t) be a
coordinate system of R

2n+1 and let

Ḡ(x, t) = G(x) + t1x1 + · · · + tnxn.

For (i, j) ∈ {1, . . . , n}2, we define Mij(x, t) by Mij(x, t) = ∂(F,Ḡ)
∂(xi,xj)

. Note

that Mij(x, t) = mij(x) + Fxi
tj − Fxj

ti. Let Γ be defined by :

Γ =
{

(x, t) ∈ R
2n+1 | F (x) = 0 and Mij(x, t) = 0 for (i, j) ∈ {1, . . . , n}2

}

.

In the same way as in Lemma 2.7 and Lemma 4.2, we can prove that Γ\{x0 =
0} is a smooth manifold (or empty) of dimension n + 1. Then we conclude
with the following mapping :

π : Γ \ {x0 = 0} → R
1+n

(x, t) 7→ (Ḡ(x, t), t).

�

Lemma 3.8. The function G|{x0=0} has an isolated critical point at the
origin.

Proof. Since J(F,G) has an isolated zero at 0, the point (0, 0, 0) is isolated
in I(F,G)−1(0). This would not be the case if 0 in R

n was not an isolated
critical point of G|{x0=0}. �
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Lemma 3.9. Let δ 6= 0 be sufficiently small so that {x0 = 0} ∩G−1(δ) is a
smooth submanifold of codimension 2 (or empty) near the origin. Let s be
a point in {x0 = 0} ∩ G−1(δ). The function F|{x0=0}∩G−1(δ) has a critical
point at s if and only if I(F,G)(s) = (0, δ, 0, . . . , 0).

Proof. Since (0, δ, 0) is a regular value of (F,G, x0), we can apply the
proof of Lemma 2.11. �

Lemma 3.10. Under the assumptions of Lemma 3.9, F|G−1(δ)∩x−1
0 (0) has a

non-degenerate critical point at s if and only if I(F,G)(s) = (0, δ, 0, . . . , 0)
and detDI(F,G)(s) 6= 0. Furthermore if µ(s) is the Morse index of this
function at s then :

(−1)µ(s) = (−1)n−1 · sign

[(

G(s)

F (s)

)n

· detDI(F,G)(s)

]

.

Proof. The proof is the same as Lemmas 2.5, 2.13 and 3.5. We leave it to
the reader. �

The following lemma deals with the critical points of F|∂W ε
(G−δ,x0)

.

Lemma 3.11. Assume that (0, δ, 0) is a regular value of (F,G, x0) for δ
sufficiently small. Then, for ε such that 0 < |δ| ≪ ε ≪ 1 :

• the vector ∇F|x−1
0 (0)∩G−1(δ) points outwards at all correct critical

points of F|W ε
(G−δ,x0)

with F > 0,

• the vector ∇F|x−1
0 (0)∩G−1(δ) points inwards at all correct critical points

of F|W ε
(G−δ,x0)

with F < 0,

• there are no correct critical points of F|W ε
(G−δ,x0)

in F−1(0).

Lemma 3.12. We can perturbe G into G̃ in such a way that F|W ε

(G̃−δ,x0)
has

only Morse critical point.

Proof. The same method as Lemma 2.16 can be applied, because we have
assumed that (0, δ, 0) is a regular value of (F,G, x0). �

Proof of Theorem 3.1. It is easy to see that 0 is isolated in H(F,G)−1(0)
and I(F,G)−1(0). Let ω : R

1+n → R be the distance function to the
origin. Because 0 is isolated in H(F,G)−1(0), x0|F−1(0)∩G−1(0)\{0} has no
critical point and then, choosing δ sufficiently small, we can assume that

x0|F−1(0)∩G−1(δ)∩{ω<ε} admits its critical points in W
ε/4
(F,G−δ). Thus the crit-

ical points of x0|∂W ε
(F,G−δ)

are correct. By Lemmas 3.6 and 3.7, we can

suppose that x0|W ε
(F,G−δ)

is a correct Morse function, that its critical points

lie in Bε/2, that at the correct critical points of x0|W ε
(F,G−δ)

lying in {x0 > 0}

(resp. in {x0 < 0}), ∇x0|F−1(0)∩G−1(δ) points outwards (resp. inwards) and
that there are no correct critical points of x0|Fδ

in {x0 = 0}. Applying Morse
Theory for manifolds with boundary, we find :

χ(W ε
(F,G−δ) ∩ {x0 ≥ 0},W ε

(F,G−δ,x0)) =
∑

i|x0(pi)>0

(−1)λ(pi),
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where {pi} is the set of Morse critical points of x0|W ε
(F,G−δ)

. Similarly, we

have :

χ(W ε
(F,G−δ){x0 ≤ 0},W ε

(F,G−δ,x0)) = (−1)n−1
∑

i|x0(pi)<0

(−1)λ(pi).

By Lemma 3.4, p is a critical point of x0|W ε
(F,G−δ)

if and only if

H(F,G)(p) = (0, δ, 0, . . . , 0).

Hence H(F,G)−1(0, δ, 0, . . . , 0) is the set of critical points of x0|W ε
(F,G−δ)

.

Since x0|W ε
(F,G−δ)

is a Morse function, detDH(F,G)(p) 6= 0 for each p in

H−1(0, δ, 0, . . . , 0) by Lemma 3.5. Hence (0, δ, 0, . . . , 0) is a regular value of
H(F,G) and

deg0H =
∑

p∈H−1(0,δ,0,...,0)

sign [detDH(F,G)(p)] .

Combining this with the above equalities and Lemma 3.5, we obtain the first
equality. Let us study the critical points of F|W ε

(G−δ,x0)
. Thanks to Lemmas

3.11 and 3.12, we can assume that we are in a good situation to apply Morse
theory. We have :

χ(W ε
(G−δ,x0)

∩ {F ≥ 0}) − χ(W ε
(F,G−δ,x0)

) =
∑

j|F (sj)>0

(−1)µ(sj ),

where {sj} is the set of Morse critical points of F|W ε
(G−δ,x0)

. Similarly, we

have :

χ(W ε
(G−δ,x0)

∩ {F ≤ 0}) − χ(W ε
(F,G−δ,x0)

) = (−1)n−1
∑

j|F (sj)>0

(−1)µ(sj ).

Hence, we get :

χ(W ε
(G−δ,x0)

) − χ(W ε
(F,G−δ,x0)

) =
∑

j|F (sj)>0

(−1)µ(sj ) + (−1)n−1 ·
∑

j|F (sj)<0

(−1)µ(sj ).

Applying Lemma 3.10, this gives :

χ(W ε
(G−δ,x0)

) − χ(W ε
(F,G−δ,x0)

) =

−sign(−δ)n ·
∑

j

sign[F (sj)] · detDI(F,G)(sj).

Similarly, we have :

χ(W ε
(F,G−δ)) − χ(W ε

(F,G−δ,x0)
) =

sign(−δ)n ·
∑

i

sign[x0(pi)] · detDH(F,G)(pi).
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But the sets {pi} and {sj} are exactly the preimages of (0, δ, 0, . . . , 0) by
J(F,G). Furthermore, each pi is a regular point of J(F,G) and

sign [detDJ(F,G)(pi)] = sign [x0(pi) · detDH(F,G)(pi)] .

Each sj is a regular value of J(F,G) as well and

sign [detDJ(F,G)(sj)] = sign [F (sj) · detDI(F,G)(sj)] .

With all these informations, it is easy to conclude. �

We want to apply these formulas when F and G are one-parameter de-
formations of two germs f and g. First let us define the function-germ
F0 : (Rn, 0) → (R, 0) by F0(x1, . . . , xn) = F (0, x1, . . . , xn).

Lemma 3.13. Assume that the function-germ F0 has an isolated critical
point at the origin.. Then for δ sufficiently small, (0, δ, 0) is a regular of
(F,G, x0). Let us suppose that δ > 0, then for 0 < δ ≪ ε ≪ 1, one has :

W ε
(F,G−δ) ∩ {x0 ≥ 0} ≃ ∂W ε

F ∩ {G ≥ 0} ∩ {x0 ≥ 0} ≃ W ε
(F,x0−δ) ∩ {G ≥ 0},

W ε
(F,G−δ) ∩ {x0 ≤ 0} ≃ ∂W ε

F ∩ {G ≥ 0} ∩ {x0 ≤ 0} ≃ W ε
(F,x0+δ) ∩ {G ≥ 0},

W ε
(F,G+δ) ∩ {x0 ≥ 0} ≃ ∂W ε

F ∩ {G ≤ 0} ∩ {x0 ≥ 0} ≃ W ε
(F,x0−δ) ∩ {G ≤ 0},

W ε
(F,G+δ) ∩ {x0 ≤ 0} ≃ ∂W ε

F ∩ {G ≤ 0} ∩ {x0 ≤ 0} ≃ W ε
(F,x0+δ) ∩ {G ≤ 0},

where ≃ means diffeomorphic to.

Proof. Let us prove the first line. It is just an adaptation to our case of the
deformation argument given by Milnor [Mi,Lemma 11.3]. We can construct
a vector field v1 on W ε

F \{G = 0} such that 〈v1(x),∇G(x)〉 and 〈v1(x), x〉 are
both positive. Similarly there exists a vector field v2 on W ε

(F,x0)
\ {G = 0}

such that 〈v2(x),∇G(x)〉 and 〈v2(x), x〉 are both positive. Using a collar, we
can extend v2 to a vector field ṽ2 defined in a neighborhood of W ε

(F,x0)
\{G =

0} in W ε
F ∩ {x0 ≥ 0} \ {G = 0} such that 〈ṽ2(x),∇G(x)〉 and 〈ṽ2(x), x〉

are positive. Gluing v1 and ṽ2 gives a new vector field w on W ε
F ∩ {x0 ≥

0}\{G = 0}. The diffeomorphism between W ε
(F,G−δ) ∩{x0 ≥ 0} and ∂W ε

F ∩

{G ≥ 0} ∩ {x0 ≥ 0} is obtained integrating the trajectories of w. Similarly
W ε

(F,x0−δ) ∩{G ≥ 0} is diffeomorphic to ∂W ε
F ∩{G ≥ 0}∩{x0 ≥ 0} because,

by Lemma 3.3, F−1(0) ∩ G−1(0) is smooth outside the origin. �

We want to compute χ(W ε
(F,G,x0−δ)). By the Mayer-Vietoris sequence, we

know that :

χ(W ε
(F,x0−δ)) = χ(W ε

(F,x0−δ) ∩ {G ≥ 0})+

χ(W ε
(F,x0−δ) ∩ {G ≤ 0}) − χ(W ε

(F,G,x0−δ)).

Hence, by Lemma 3.13, we find that if δ > 0, then :

χ(W ε
(F,G,x0−δ)) = χ(W ε

(F,G−δ) ∩ {x0 ≥ 0})+

χ(W ε
(F,G+δ) ∩ {x0 ≥ 0}) − χ(W ε

(F,x0−δ)),

χ(W ε
(F,G,x0+δ)) = χ(W ε

(F,G−δ) ∩ {x0 ≤ 0})+
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χ(W ε
(F,G+δ) ∩ {x0 ≤ 0}) − χ(W ε

(F,x0+δ)).

The Euler-Poincaré characteristic of W ε
(F,x0±δ) can be computed thanks to

formulas established in [Fu], as explained in [Du3, Theorem 3.2]. More
precisely, let L(F ) : (R1+n, 0) → (R1+n, 0) be the mapping defined by
L(F ) = (F,Fx1 , . . . , Fxn). If L(F ) and ∇F0 have an isolated zero at the
origin, then ∇F has an isolated zero at the origin and the following theorem
explains how to compute W ε

(F,x0±δ).

Theorem 3.14. Let δ and ε be such that 0 < |δ| ≪ ε ≪ 1. If n is even
then :

χ(W ε
(F,x0−δ)) = 1 − deg0∇F0.

If n is odd then :

χ(W ε
(F,x0−δ)) = 1 − deg0∇F − sign(δ) · deg0L(F ).

Proof. See [Fu] and [Du3]. �

At this point, we have assumed that :

(1) F has an isolated critical point at the origin,
(2) J(F,G) has an isolated zero at the origin,
(3) (0, δ, 0) is a regular value of (F,G, x0),
(4) F0 has an isolated critical point at the origin.

By the Curve Selection Lemma, the assumption (4) implies the assumption
(3). Moreover, it means that 0 is isolated in {F = Fx1 = · · · = Fxn =
x0 = 0}. Since this last set is equal to {F = Fx1 = · · · = Fxn = 0} near
the origin thanks to the Curve Selection Lemma and the fact that F−1(0)
has an isolated singularity, we have that (4) implies that 0 is isolated in
L(F )−1(0). So, under the assumption (4), we can apply the above theorem.

It remains to compute χ(W ε
(F,G±δ) ∩ {x0?0}), ? ∈ {≤,≥}. By the Mayer-

Vietoris sequence, we have :

χ(W ε
(F,G−δ)) = χ(W ε

(F,G−δ) ∩ {x0 ≥ 0})+

χ(W ε
(F,G−δ) ∩ {x0 ≤ 0}) − χ(W ε

(F,G−δ,x0)
).

But Theorem 2.1 enables us to compute χ(W ε
(F,G−δ)) and χ(W ε

(F,G−δ,x0)
).

Let G0 : (Rn+1, 0) → (R, 0) be defined by G0(x1, . . . , xn) = G(0, x1, . . . , xn)
and let us assume that it has an isolated critical point at the origin. Then
using Theorem 3.1 and Khimshiashvili’s formula, we find that :

χ(W ε
(F,G−δ)) = 1 + sign(−δ)n · [deg0J(F,G) − deg0∇G0] .

Now observe that, since F satisfies the condition (Q), F0 satisfies the con-
dition (P ) of Section 2 with the vector fields V 0

2 , . . . , V 0
n given by :

V 0
i (x1, . . . , xn) = Vi(0, x1, . . . , xn).

Let k(F0, G0) : (Rn, 0) → (Rn, 0) be defined by :

k(F0, G0) = (F0, V
0
2 G0, . . . , V

0
n G0).
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By Theorem 2.1, we have :

if n is even : χ(W ε
(F,G−δ,x0)

) = 1 − deg0∇F0 + sign(δ) · deg0k(F0, G0),

if n is odd : χ(W ε
(F,G−δ,x0)

) = 1 − deg0k(F0, G0).

Let us focus first on the case n even. We have :

χ(W ε
(F,G−δ) ∩ {x0 ≥ 0}) − χ(W ε

(F,G−δ) ∩ {x0 ≤ 0}) = deg0H(F,G),

χ(W ε
(F,G−δ) ∩ {x0 ≥ 0}) + χ(W ε

(F,G−δ) ∩ {x0 ≤ 0}) =

2 + deg0J(F,G) − deg0∇G0 − deg0∇F0 + sign(δ) · deg0k(F0, G0).

This gives :

χ(W ε
(F,G−δ) ∩ {x0 ≥ 0}) = 1 +

1

2
[deg0J(F,G) − deg0∇G0

−deg0∇F0 + sign(δ) · deg0k(F0, G0) + deg0H(F,G)] ,

χ(W ε
(F,G−δ) ∩ {x0 ≤ 0}) = 1 +

1

2
[deg0J(F,G) − deg0∇G0

−deg0∇F0 + sign(δ) · deg0k(F0, G0) − deg0H(F,G)] .

Collecting all these informations, we obtain :

χ(W ε
(F,G,x0−δ)) = 1 + deg0J(F,G) − deg0∇G0 + sign(δ) · deg0H(F,G),

χ(W ε
(F,x0−δ) ∩ {G ≥ 0}) − χ(W ε

(F,x0−δ) ∩ {G ≤ 0}) = deg0k(F0, G0).

If n is odd, we have :

χ(W ε
(F,G−δ)∩{x0 ≥ 0})−χ(W ε

(F,G−δ)∩{x0 ≤ 0}) = −sign(δ)·deg0H(F,G),

χ(W ε
(F,G−δ) ∩ {x0 ≥ 0}) + χ(W ε

(F,G−δ) ∩ {x0 ≤ 0}) =

2 − sign(δ) · [deg0J(F,G) − deg0∇G0] − deg0k(F0, G0).

This gives :

χ(W ε
(F,G−δ) ∩ {x0 ≥ 0}) = 1 −

1

2
[sign(δ) · (deg0J(F,G) − deg0∇G0

+deg0H(F,G)) + deg0k(F0, G0)] ,

χ(W ε
(F,G−δ) ∩ {x0 ≤ 0}) = 1 −

1

2
[sign(δ) · (deg0J(F,G) − deg0∇G0

−deg0H(F,G)) + deg0k(F0, G0)] .

Finally we find :

χ(W ε
(F,G,x0−δ)) = 1 − deg0k(F0, G0) − deg0∇F − sign(δ) · deg0L(F ),

χ(W ε
(F,x0−δ) ∩ {G ≥ 0}) − χ(W ε

(F,x0−δ) ∩ {G ≤ 0}) =

−deg0J(F,G) + deg0∇G0 − sign(δ) · deg0H(F,G).

Here, we have to remark that :

χ(W ε
(F,G,x0−δ)) =

1

2
χ(∂W ε

(F,G,x0−δ)) =
1

2
χ(∂W ε

(F,G,x0)
) = 1 − deg0k(F0, G0),

by Corollary 2.8. Hence, we get that deg0∇F = deg0L(F ) = 0.
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We can reformulate these results in terms of one-parameter deformations
of function-germs. Let (x1, . . . , xn) be a coordinate system of R

n. Let
f : (Rn, 0) → (R, 0) be a function-germ with an isolated critical point at the
origin. Let g : (Rn, 0) → (R, 0) be a function-germ with an isolated critical
point at the origin such that the mapping k(f, g) : (Rn, 0) → (Rn, 0) has an
isolated zero where k(f, g) is defined as in Section 2. Let (λ, x1, . . . , xn)
be a coordinate system in R

1+n and let F : (R1+n, 0) → (R, 0) (resp.
G : (R1+n, 0) → (R, 0)) be a one-parameter deformation of f (resp g),
i.e F (0, x) = f(x) (resp. G(0, x) = g(x)). We will use the notations
ft(x) = F (t, x) and gt(x) = G(t, x). We assume that :

(1) F has an isolated critical point at the origin,
(2) the mapping J(F,G) has an isolated zero at the origin,
(3) F satisfies the condition (Q) (which implies that f satisfies the con-

dition (P )).

We note that F0 and G0 have an isolated critical point because F0 = f and
G0 = g. So we are in situation to apply the above process.

Corollary 3.15. For t and ε with 0 < |t| ≪ ε ≪ 1, we have :
- if n is odd :

χ(W ε
(ft,gt)

) = 1 − deg0k(f, g),

χ(W ε
ft
∩ {gt ≥ 0}) − χ(W ε

ft)
∩ {gt ≤ 0}) =

−deg0J(F,G) + deg0∇g − sign(t) · deg0H(F,G),

- if n is even :

χ(W ε
(ft,gt)

) = 1 + deg0J(F,G) − deg0∇g + sign(t) · deg0H(F,G),

χ(W ε
ft
∩ {gt ≥ 0}) − χ(W ε

ft
∩ {gt ≤ 0}) = deg0k(f, g).

Let us consider the following deformations of f and g :

F (λ, x) = f(x) − γ1(λ) and G(λ, x) = g(x) − γ2(λ),

where γ = (γ1, γ2) : (R, 0) → (R2, 0) is an analytic arc such that γ(t) 6= 0
if t 6= 0 and γ′

1(t) 6= 0 if t 6= 0. With this last condition, the function F
has an isolated critical point at the origin. Furthermore, we assume that
f satisfies the condition (P ). This implies that F satisfies the condition
(Q) with Vi(λ, x) = vi(x) for i = 2, . . . , n. Let us denote by Disc(f, g) the
discriminant of the mapping (f, g). The following lemma tells us when the
points in the image of γ are regular value of (f, g) near the origin.

Lemma 3.16. The origin (0, 0) is isolated in H(F,G)−1(0) if and only if
0 is isolated in Disc(f, g) ∩ γ(I), where I is a small open interval in R

containing 0.

Proof. The point (0, 0) is isolated in H(F,G)−1(0) if and only if for all
(t, x) 6= (0, 0) such that F (t, x) = G(t, x) = 0, there exists i ∈ {2, . . . , n}
such that viG(t, x) 6= 0. Let us remark that if x 6= 0 is such that F (0, x) =
G(0, x) = 0 then viG(0, x) 6= 0 for some i in {2, . . . , n} because f−1(0) ∩
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g−1(0) has an isolated singularity. Therefore the point (0, 0) is isolated in
H(F,G)−1(0) if and only if for all (t, x) with t 6= 0 such that F (t, x) =
G(t, x) = 0 there exists i ∈ {2, . . . , n} such that viG(t, x) 6= 0. This is
equivalent to the fact that for all t 6= 0 and for all x such that f(x) = γ1(t)
and g(x) = γ2(t), ∇f(x) and ∇g(x) are not colinear. �

Corollary 3.15 can be restated in this situation.

Corollary 3.17. Assume that f and g have an isolated singularity and that
γ′
1(t) 6= 0 if t 6= 0. Assume that J(F,G) and k(f, g) have an isolated zero at

the origin then for t and ε with 0 < |t| ≪ ε ≪ 1, we have :
- if n is odd :

χ(W ε
(f−γ1(t),g−γ2(t))) = 1 − deg0k(f, g),

χ(W ε
f−γ1(t) ∩ {g ≥ γ2(t)}) − χ(W ε

f−γ1(t) ∩ {g ≤ γ2(t)}) =

−deg0J(F,G) + deg0∇g − sign(t) · deg0H(F,G),

- if n is even :

χ(W ε
(f−γ1(t),g−γ2(t))) = 1 + deg0J(F,G) − deg0∇g + sign(t) · deg0H(F,G),

χ(W ε
f−γ1(t) ∩ {gt ≥ γ2(t)}) − χ(W ε

f−γ1(t) ∩ {g ≤ γ2(t)}) = deg0k(f, g).

Let us examine the situation when λ1(t) = t and λ2(t) = 0. In this case,
we can check that deg0J(F,G) = 0 and that deg0H = −deg0l(f, g), where
l(f, g) is defined in Section 2. Hence, we recover the results of Theorem 2.9.

4. Explicit formulas

In this section, we present some situations where the conditions (P ) and
(Q) are satisfied.

4.1. Case n = 2, 4 or 8. As explained in [FK], when n = 2, 4 or 8, the
condition (P ) is satisfied for any function-germ f : (Rn, 0) → (R, 0). If ∂xi

denotes the vector ei = (0, . . . , 0, 1, 0 . . . , 0) where 1 is the i-th coordinate,
then the vectors v2, . . . , vn are given by, if n = 2 :

v2 = −fx2∂x1 + fx1∂x2,

if n = 4 :

v2 = −fx2∂x1 + fx1∂x2 − fx4∂x3 + fx3∂x4 ,

v3 = −fx3∂x1 + fx4∂x2 + fx1∂x3 − fx2∂x4 ,

v4 = −fx4∂x1 − fx3∂x2 + fx2∂x3 + fx1∂x4 ,

if n = 8 :

v2 = −fx2∂x1 + fx1∂x2 − fx4∂x3 + fx3∂x4

−fx6∂x5 + fx5∂x6 + fx8∂x7 − fx7∂x8,

v3 = −fx3∂x1 + fx4∂x2 + fx1∂x3 − fx2∂x4

−fx7∂x5 − fx8∂x6 + fx5∂x7 + fx6∂x8,

v4 = −fx4∂x1 − fx3∂x2 + fx2∂x3 + fx1∂x4
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−fx8∂x5 + fx7∂x6 − fx6∂x7 − fx5∂x8,

v5 = −fx5∂x1 + fx6∂x2 + fx7∂x3 + fx8∂x4

+fx1∂x5 − fx2∂x6 − fx3∂x7 − fx4∂x8,

v6 = −fx6∂x1 − fx5∂x2 + fx8∂x3 − fx7∂x4

+fx2∂x5 + fx1∂x6 + fx4∂x7 − fx3∂x8,

v7 = −fx7∂x1 − fx8∂x2 − fx5∂x3 + fx6∂x4

+fx3∂x5 − fx4∂x6 + fx1∂x7 + fx2∂x8,

v8 = −fx8∂x1 + fx7∂x2 − fx6∂x3 − fx5∂x4

+fx4∂x5 + fx3∂x6 − fx2∂x7 + fx1∂x8.

The condition (Q) is also fullfilled, the vectors Vi being given by, if n = 2 :

V2 = −Fx2∂x1 + Fx1∂x2,

if n = 4 :

V2 = −Fx2∂x1 + Fx1∂x2 − Fx4∂x3 + Fx3∂x4 ,

V3 = −Fx3∂x1 + Fx4∂x2 + Fx1∂x3 − Fx2∂x4 ,

V4 = −Fx4∂x1 − Fx3∂x2 + Fx2∂x3 + Fx1∂x4 ,

if n = 8 :

V2 = −Fx2∂x1 + Fx1∂x2 − Fx4∂x3 + Fx3∂x4

−Fx6∂x5 + Fx5∂x6 + Fx8∂x7 − Fx7∂x8,

V3 = −Fx3∂x1 + Fx4∂x2 + Fx1∂x3 − Fx2∂x4

−Fx7∂x5 − Fx8∂x6 + Fx5∂x7 + Fx6∂x8,

V4 = −Fx4∂x1 − Fx3∂x2 + Fx2∂x3 + Fx1∂x4

−Fx8∂x5 + Fx7∂x6 − Fx6∂x7 − Fx5∂x8,

V5 = −Fx5∂x1 + Fx6∂x2 + Fx7∂x3 + Fx8∂x4

+Fx1∂x5 − Fx2∂x6 − Fx3∂x7 − Fx4∂x8,

V6 = −Fx6∂x1 − Fx5∂x2 + Fx8∂x3 − Fx7∂x4

+Fx2∂x5 + Fx1∂x6 + Fx4∂x7 − Fx3∂x8,

V7 = −Fx7∂x1 − Fx8∂x2 − Fx5∂x3 + Fx6∂x4

+Fx3∂x5 − Fx4∂x6 + Fx1∂x7 + Fx2∂x8,

V8 = −Fx8∂x1 + Fx7∂x2 − Fx6∂x3 − Fx5∂x4

+Fx4∂x5 + Fx3∂x6 − Fx2∂x7 + Fx1∂x8.

So all the results of Section 2 and Section 3 can be applied. Note also that
the vector fields vi and Vi are analytic.

4.2. Case fx1 ≥ 0 and Fx1 ≥ 0. The condition (P ) is satisfied for a
function-germ f : (Rn, 0) → (R, 0) such that fx1 ≥ 0 (see [FK,p151]). The
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vectors v2, . . . , vn are defined by :

vi = −fxi
∂x1 −

n
∑

j=2

(fxi
fxj

− δi,jT )∂xj
,

where T = fx1 +
∑n

j=2 f2
xj

and δi,j is the Kronecker symbol. Here we notice
that there is a mistake in the computation of the determinant of the matrix
M defined p.151 in [FK]. This determinant is (−1)nT n−1

∑n
i=0 g2

xi
. That is

why our vi’s are the opposite of the vi’s defined by Fukui and Khovanskii.
If Fx1 ≥ 0, the condition (Q) is satisfied with the vectors Vi’s defined by :

Vi = −Fx1∂x1 −
n
∑

j=2

(Fxi
Fxj

− δi,jT
′)∂xj

,

where T ′ = Fx1 +
∑n

j=2 F 2
xj

. Let us remark that in this situation the com-

putation of χ(W ε
(F,G−δ)) can be simplified thanks to Theorem 2.1. Actually,

the function F satisfies the condition (P ) with the following vectors :

Z0 = Fx0∂x1 +
n
∑

j=0 | j 6=1

(Fxi
Fxj

− δi,jS)∂xj
,

Zi = −Fxi
∂x1 −

n
∑

j=0 | j 6=1

(Fxi
Fxj

− δi,jS)∂xj
, i = 2, . . . , n,

where S = Fx1 + F 2
x0

+
∑n

j=2 F 2
xj

. Let K(F,G) : (Rn+1, 0) → (Rn+1, 0) be

defined by :

K(F,G) = (F,Z0G,Z2G, . . . , ZnG).

Since F−1(0)∩G−1(0) has an isolated singularity at the origin (Lemma 3.3)
then K(F,G) has an isolated zero at the origin (Lemma 2.4). Hence, by
Theorem 2.1 and since deg0∇F = 0 for Fx1 ≥ 0, we have :

if n is odd : χ(W ε
(F,G−δ)) = 1 + sign(δ) · deg0K(F,G),

if n is even : χ(W ε
(F,G−δ)) = 1 − deg0K(F,G).

So Corollary 3.15 can be rewritten without the assumption that g has an
isolated critical point at the origin. Namely, with the obvious assumptions,
we obtain :

Corollary 4.1. For t and ε with 0 < |t| ≪ ε ≪ 1, we have :
- if n is odd :

χ(W ε
(ft,gt)

) = 1 − deg0k(f, g),

χ(W ε
ft
∩ {gt ≥ 0}) − χ(W ε

ft
∩ {gt ≤ 0}) =

+deg0K(F,G) − sign(t) · deg0H(F,G),

- if n is even :

χ(W ε
(ft,gt)

) = 1 − deg0K(F,G) + sign(t) · deg0H(F,G),
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χ(W ε
ft
∩ {gt ≥ 0}) − χ(W ε

ft
∩ {gt ≤ 0}) = deg0k(f, g).

If the deformation (F,G) of (f, g) is of the form F (λ, x) = f(x) − γ1(λ),
G(λ, x) = f(x)−γ2(λ), then we just need to suppose that fx1 ≥ 0. Therefore
Corollary 3.17 becomes :

Corollary 4.2. Assume that f and g have an isolated singularity and that
γ′
1(t) 6= 0 if t 6= 0. Assume that J(F,G) and k(f, g) have an isolated zero at

the origin then for t and ε with 0 < |t| ≪ ε ≪ 1, we have :
- if n is odd :

χ(W ε
(f−γ1(t),g−γ2(t))) = 1 − deg0k(f, g),

χ(W ε
f−γ1(t) ∩ {g ≥ γ2(t)}) − χ(W ε

f−γ1(t) ∩ {g ≤ γ2(t)}) =

+deg0K(F,G) − sign(t) · deg0H(F,G),

- if n is even :

χ(W ε
(f−γ1(t),g−γ2(t))) = 1 − deg0K(F,G) + sign(t) · deg0H(F,G),

χ(W ε
f−γ1(t) ∩ {gt ≥ γ2(t)}) − χ(W ε

f−γ1(t) ∩ {g ≤ γ2(t)}) = deg0k(f, g).

Let us end with an example. Let f(x1, x2, x3, x4) = x2
1 +x2

2 +x2
3 −x2

4 and
g(x1, x2, x3, x4) = x1x2 + x3x4. These functions have an isolated critical
point at the origin and deg0∇f = −1 and deg0∇g = 1. The mappings
k(f, g) and l(f, g) of Section 2 are :

k(f, g)(x) = (x2
1 + x2

2 + x2
3 − x2

4, 2x
2
1 − 2x2

2 + 2x2
3 + 2x2

4,−4x2x3, 4x2x4),

l(f, g)(x) = (x1x2 + x3x4, 2x
2
1 − 2x2

2 + 2x2
3 + 2x2

4,−4x2x3, 4x2x4).

It is not difficult to see that 0 is an isolated root of k(f, g) and l(f, g).
Furthermore, deg0k(f, g) = 0 because k(f, g)−1(0, β, 0, 0) = ∅ if β < 0. If

β < 0 then l(f, g)−1(0, β, 0, 0) consists of the points p1 = (0,
√

−β
2 , 0, 0)

and p2 = (0,−
√

−β
2 , 0, 0). Since det[Dl(f, g)(pi)] > 0, deg0l(f, g) is equal

to 2. By Theorem 2.1 and Theorem 2.9, we get that χ(W ε
(f,g−δ)) = 2,

χ(W ε
(f−δ,g)) = −2 if δ > 0 and χ(W ε

(f−δ,g)) = 2 if δ < 0. By Corollary 3.17,

we have :

χ(W ε
f−γ1(t) ∩ {gt ≥ γ2(t)}) − χ(W ε

f−γ1(t) ∩ {g ≤ γ2(t)}) = 0,

for an appropriate analytic arc (γ1, γ2).
Let us compute χ(W ε

(f−t,g−t)) using Corollary 3.17. The mappings H and

J of Section 3 are given by :

H(t, x) = (x2
1 + x2

2 + x2
3 − x2

4 − t, x1x2 + x3x4 − t,

2x2
1 − 2x2

2 + 2x2
3 + 2x2

4,−4x2x3, 4x2x4),

J(t, x) = (t · (x2
1 + x2

2 + x2
3 − x2

4 − t), x1x2 + x3x4 − t,

2x2
1 − 2x2

2 + 2x2
3 + 2x2

4,−4x2x3, 4x2x4).
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Let us search the points (t, x) such that H(t, x) = 0. If x2 = 0 then clearly
x1 = x3 = x4 = t = 0. If x2 6= 0 then x3 = x4 = 0 and :







x2
1 + x2

2 − t = 0
x1x2 − t = 0
2x2

1 − 2x2
2 = 0

This implies that t2 = 4x4
2 = x4

2, which is a contradiction. Hence H admits
an isolated zero at the origin. Furthermore deg0H = 0. To see this, let (t, x)
be such that H(t, x) = (0, 0, β, 0, 0) where β < 0. Necessarly x2 6= 0 and
x3 = x4 = 0. Hence x1, x2 and t satisfy the system :







x2
1 + x2

2 − t = 0
x1x2 − t = 0
2x2

1 − 2x2
2 = β

Putting γ = β
2 , we find that x2

1 = t+γ
2 , x2

2 = t−γ
2 and t2 = t2−γ2

4 . This last

equality is equivalent to 3t2 = −γ2, which is impossible.
Let us search the points (t, x) such that J(t, x) = 0. As above, if x2 = 0

then x1 = x3 = x4 = t = 0. If x2 6= 0 then x3 = x4 = 0 and






t(x2
1 + x2

2 − t) = 0
x1x2 − t = 0
2x2

1 − 2x2
2 = 0

If t = 0 then x1 = x2 = 0, which is a contradiction. The case x2
1 +x2

2− t = 0
is also impossible as we have already explained. Hence J admits an isolated
zero at the origin. Let β < 0 and let us search the points (t, x) such that

J(t, x) = (β2

8 , 0, β, 0, 0). Necessarly x2 6= 0 and x3 = x4 = 0. Hence x1, x2

and t satisfy the system :






t(x2
1 + x2

2 − t) = β2

8
x1x2 − t = 0
2x2

1 − 2x2
2 = β

Furthermore, t > 0 because t(x2
1 + x2

2) = t2 + β2

8 and x1 and x2 have the

same sign. Putting γ = β
2 and λ = t + β2

8t , we find that x2
1 = λ+γ

2 , x2
2 = λ−γ

2

and t2 = λ2−γ2

4 . Hence, we get that 3t4 = β4

64 . Thus (β2

8 , 0, β, 0, 0) has
two preimages q1 = (t0, a1, b1, 0, 0) and q2 = (t0, a2, b2, 0, 0), where t0 > 0,
a1, b1 > 0 and a2, b2 < 0. An easy computation shows that DJ(qi) =
−128b2

i t0(ai − bi)
2. Finally we find that deg0J = −2. Corollary 3.17 gives

that χ(W ε
(f−t,g−t)) = −2.

Let us now compute χ(W ε
(f−t,g− 1

4
t)
). The mappings H and J are :

H(t, x) = (x2
1 + x2

2 + x2
3 − x2

4 − t, x1x2 + x3x4 −
1

4
t,

2x2
1 − 2x2

2 + 2x2
3 + 2x2

4,−4x2x3, 4x2x4),
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J(t, x) = (t · (x2
1 + x2

2 + x2
3 − x2

4 − t), x1x2 + x3x4 −
1

4
t,

2x2
1 − 2x2

2 + 2x2
3 + 2x2

4,−4x2x3, 4x2x4).

We use the same technics as in the previous example. We find that H
and J have an isolated root at the origin. If β < 0 then (0, 0, β, 0, 0) has
two preimages by H : p1 = (t0, a1, b1, 0, 0) and p2 = (t0, a2, b2, 0, 0) where
t0 > 0, a1, b1 > 0 and a2, b2 < 0. A computation gives that DH(pi) =
−48b2

i t0, which implies that deg0H = −2. Let us search the preimages of

(β2

8 , 0, β, 0, 0), β < 0, by J . If (t, x) is such a preimage then necessarly
x2 6= 0, x3 = x4 = 0 and t > 0. Moreover x1, x2 and t satisfy the system :







t(x2
1 + x2

2 − t) = β2

8
x1x2 −

1
4t = 0

2x2
1 − 2x2

2 = β

This gives that −3
4t2 = β4

63t2
, a contradiction. We have proved that deg0J =

0. Applying Corollary 3.17, we obtain that χ(W ε
(f−t,g

−

1
4
t)
) = −2 if t > 0

and χ(W ε
(f−t,g− 1

4
t)
) = 2 if t < 0.
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