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Abstract.  In this paper, we investigate the existence of mono-diroaaktraveling wave of a coupled thermo-
diffusive—kinetic model describing the propagation ofang flame in a polydisperse spray. We first present the model
which bridges the gap between the models used for realistigemical simulations and the ones used for mathematical
studies; it couples a thermo-diffusive model for the gasqmhase with a one-step finite rate chemistry with a kinetic
equation describing the vaporization of a polydispersagpthe vaporization rate of which depends on the local gas
temperature and fuel mass fraction. Such a mixed hyperpaliabolic system of equations offers two difficulties as
compared to previous works: first there is no spatial diffason the spray variables and second, if we look for a
traveling wave solution, the resulting system of equatsonat a system of ODE’s but a system of ODE’s coupled to
a partial differential equation. In order to tackle thesdfitiulties, we introduce some spatial diffusion, which can b
interpreted as the gas turbulent agitation, and discretimePDE in the size phase space using a multi-fluid model. We
can then use the topological degree for elliptic systemsimounded domains, and deduce the existence of the wave
for the modified and discretized system. We finally pass tlintlitedn zero spatial mass diffusion, subsequently, in the
droplet size discretization step, and conclude with theterice of a traveling wave for the initial system. It is a first
step in the study of the qualitative properties of polydisped spray flames.




1 Introduction

The propagation of plane premixed gaseous flames has beaunlifext of a very wide literature in the
past 50 years since the early works of Zeldovich and Frankteetskii [40], [41] who introduced the
principles of high activation energy asymptotics. The pgobhas been tackled using a great variety of tools
ranging from direct numerical simulations, asymptoticstapological degree theory in order to prove the
existence of traveling waves for reaction diffusion padiferential equations. Having physics, chemistry
and mathematics as various breeding grounds, the theorgroéfpropagation has provided fundamental
studies in order to capture the qualitative behavior of hpemeous flames and can be considered to have
reached maturity.

Such a conclusion can not be drawn at all for two-phase fla@es.can find articles published mainly in
the physics literature for both laminar and turbulent flaf3€3, [29], [15], [17], [31], [26], [20]. The main
purposes of these papers is either to develop new modelskofiént spray combustion or to characterize
the spray flame essential features (flame velocity, strectirlt is then difficult to precisely extract from the
complexity of the parameter space the relevant ones. On #tieematical side however, few studies have
been devoted to the subject since the structure of the syst@artial differential equations is essentially
more difficult to tackle. A very recent study has been devatethe subject [4] for monodisperse sprays
with a simplified model for the vaporization thus leading toiateresting flame stability investigation. It
was written at the same time as the present work and can b&eoed as complementary. In the present
paper, we aim at bridging the gap between the models usediar tw simulate realistic flames [1], [26],
[22] and simplified vaporization models from which too mudlygics has been extracted, and at conducting
a mathematical analysis of the existence of traveling wlaethe obtained fluid-kinetic model. This model
is obtained using the usual thermo-diffusive model with e-step finite rate chemistry where the fuel mass
fraction equation admits a source term coming from the masisamge between the phases. Since it can
have a strong effect on flame structures [26], [31], the pep@rsion in size of the spray is considered in
the model. The spray satisfies either an advection equatitimei size phase space, the velocity of which
depends nonlinearly on the local gas temperature and nad®fr and is related to the rate of vaporization,
or a generalized Fokker-Planck equation which is assatittea local turbulent agitation of zero mean
value.

Numerous studies have been devoted to the propagationred gieseous flames, as mono-dimensional
traveling wave for the thermo-diffusive model. More spexifiiy, the existence of such waves is proved, for
example in [3] for a one-step chemistry, in [35] for a comptemistry network of irreversible exothermic
reactions and in [12] for a complex chemistry network of reilde exothermic reactions and for detailed
transport. As far as the existence proofs are concernethugatools have been used such as the Leray-
Schauder degree in [3], [12] in order to prove the existemcbounded domain, the solution being then
extended to the whole real line, or such as the topologicgtegedirectly defined for unbounded domains
[35]. These tools are defined for elliptic operators, allialsles experiencing diffusion. For condensed
phase reaction fronts, a mass diffusion can then be firstdaddeorder to still use these tools, the mass
diffusion coefficient then approaching zero, as it was psepan [24] for a one-step chemistry and in [19]
for a complex chemistry network of irreversible exothermgactions. We here make use of the technique
developed in [19]: the existence proof is conducted for fptiel system of equation where mass diffusion
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can be related to a gaseous turbulent agitation. The tojgalodegree defined in [36] for elliptic operators
in unbounded domains can be used and we pass to the limit viakemass diffusion coefficient tends to
zero which is equivalent to let the turbulent kinetic enedggrease to zero.

The key point of the paper is the ability to treat the coupleidfkinetic system. The model for the
liquid phase is a kinetic model: the spray is described bgiggibution function, satisfying the Williams
equation, which is either of Boltzmann type [37], [38] or afkker-Planck type if we consider an averaged
distribution function with an underlying gaseous turbalagitation [10]. The corresponding phase space
is thus two dimensional and the second order ODE deduced thenthermo-diffusive model in order to
describe a traveling wave is coupled to a PDE, which makepribl@lem essentially more difficult.

In order to tackle this difficulty, we use a Eulerian disaation of the distribution function in the size
phase space: the multi-fluid model derived from the kineta@lel in [22]. For problems without dynamic
effect (the droplet are assumed to be motionless or thexethlby the gas velocity fluctuations around a
zero mean velocity) this model can be considered to be annapfiviite volume discretization in the droplet
size of the distribution function. The corresponding nucaranalysis is performed in [21], [18], showing
that the method is first order under some compatibility chmals. This numerical analysis allows us to get
back to the kinetic model, passing to the limit when the nunafesections tends to infinity, as long as we
are able to prove the existence of traveling wave for thedfiditnensional spray elliptic system coupled
to the elliptic thermo-diffusive model for the gas. We figationclude with the existence of plane flames
propagating in two-phase medium, for a Lewis numbey which is the rate between the heat diffusion
coefficient and the mass diffusion coefficient of the gasdoels greater than 1.

The paper is organized as follow: the fluid-kinetic model Hreddiscretization by the multi-fluid method
are presented in Section 2. Some fundamentals on the topalaggree are recalled in Section 3. It shows
that, in order to use this tool, we have to add a diffusion tanmd some other terms controlled by a small
added parameter. For a Lewis number such that 1 + p, wherep > 0 only depends of the fuel vapor
saturated mass fraction function and of the temperaturkeofresh gas, some estimates on this system are
presented in Section 4, which will be useful in order to prexetence of solutions in Section 5 and to
pass to the limit when the small parameter and the diffusaafficient tend to zero in Section 6. Finally,
the numerical analysis conducted in [21] allows us to caelan the existence of a traveling wave for the
original system.

2 Polydispersed spray flame model

In this section, we introduce a reaction-diffusion-souncedel for the gaseous phase coupled to a kinetic
description of the polydisperse spray. We first considerohal model and then concentrate on traveling
waves.

2.1 Polydispersed spray flame

We investigate a polydispersed spray flame at constantypeeasd density. The spray of fuel droplets is
evaporating in the gaseous phase, with no dynamical effeetgas is at rest and droplets are motionless.
In order to describe such a problem, we use a simplified motalhatakes into account the main physical
characteristics of the configuration: a thermo-diffusivedel, with a one step chemistry, coupled with a

3



kinetic model of the liquid phase, describing the polydisp® of the spray. More precisely, in the gaseous
phase, only one exothermic reactibn— P takes place between the fuéland a producP, in the presence
of an inert gad, with constant mass fraction. The spray is supposed to btedihe liquid volume fraction
is much smaller than one) in such a way that the coupling osgiay with the gaseous phase only occurs
through added source terms in conservation equations.

The mass conservation implies thet py.s + piiq IS a constant, wherg,, is the gas mass density and
piiq 1S the liquid mass density per unit of total volume. We nBjgs = pgas/p andYi, = piiq/p-

The gas is multi-component arid,,; = Yr + Yp + Y; whereYr /Y, (respectivelyYp/Y,qs or
Y71/Y44s) is the mass fraction of fuel (respectively of prodiitor of inert gasr) in the gaseous phase. We
then havey};, + Yr + Yp = 1 — wif we setY; = w.

The thermo-diffusive model for this reaction-diffusioroptem can then be written:

O KAT = qh(T) Yy (1)

aa% — DAYrp=—k(T)Yrp +S™, 2
wheret is the time,x the space variable; ¢ R4, T the gas temperature, the thermal diffusivity, D
the diffusivity of the fuel. The functiork is close to the Arrhenius coefficient: in order to avoid thélco
boundary problem [40] [13], we introduce an ignition tengiareT,.. Sok(T) is a regular function of’;
it is zero forT €] — o0, T, increasing forl" € [T, T. + n] and equal to the Arrhenius coefficient for
T € [T. + n,+oo], with n a small positive real number. We assume that the vaporizatis a negligible
influence on the gas temperature, so that a source $&trmanly appears in the fuel conservation equation.
The expression of the source teSf¥ relies on a kinetic description of the spray.

Remark 1 Here, we use the equationignand not the equation oFp:

%Yp — DAYp = k(T)Yp + DAYy,

because the variabl&r is better adapted to our problem, even if it is not necesgaribnotone along
trajectories.

The dispersed phase is described by its distribution fancfi(¢, x, S) whereS is the surface of the
droplets. Because the droplets are motionless, the Waligguation describing the evolution ¢f[37]

reduces to the transport equation:
0 0
—_— —_— pr— 3
where Rs(T, Yr) is the rate of change of droplet surface, due to evaporatige.assume that thé® law
holds so thafRg is independent of the size of the droplets.
A model for the vaporization rate is given in [1]. In our ca$e@ro Reynolds number, and if we preclude

condensation, it reads:

Yrs(T) — YF

Rs(T,Yr) = ¢ n(1+ Bu(T,Yr))",  Bu(T,Yr) = 7 YeoD)

(4)



wherey is a positive constant and, for a real u™ is equal tou if u is positive and to zero otherwise.
The functionYy, represents the fuel vapor saturated mass fraction. It iscsgul to be equal to the fuel
vapor satured molar fractiong; and then only depends on the temperature, the pressuredmistant. It

is coherent with the system (1), (2), where the various molasses of the species have been taken equal
and the details of the chemical mechanism and compositive been neglected. The function(T) is
drawn, for heptane, in Fig. 1.
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Figure 1:Fuel vapor satured molar fraction for heptane, as a functithe temperature, at the atmospheric pressure.

The functionYx(T') is then assumed regular (at least) and such that:

if 0<T<Ty—v then Y5 (T) >0, Yg,(T)>0,
if T,—-v<T<T, then Y, (T)>0, Y/ /(T)<O0,
if T> Tep then YFS(T) =1- (5,

whereT,;, is the boiling temperature; is a small positive real number amdis a number such that <
0 < w < 1. Those assumptions correspond, for example, to the shdpadaiion x -, for heptane which is
drawn in Fig. 1 and used for practical applications [20]][26

Remark 2 The vaporization rate is bounded because the upperdbofYr,(T') is assumed to be strictly
smaller than one. It is coherent with physics of droplet vagation: the vaporization can not be instanta-
neous for large temperatures because of the presence duaidii layer.

The source term of fuel for the gaseous phase is then given by:

+oo
S0, T V) = 1= Rs(T.¥7) / SV2 f(t,2, S) dS. 5)
0

System (1), (2) and equation (3) are then coupled togetheagh bothS™ (¢, 2-) which is a non local term
and throughR (T, Yr) which depends on the local gas state.
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The complete system of partial differential equations é&nth

%—f -k AT =qk(T)Yrp,

(PDE) %—D AYr = —k(T) Yp + S™(t.2,T, Vi),
of of
E +RS(T7YF) % — 07

with the source term:

S™(t,x,T,Yr) = 2= Re(T, Yr) /%O SY2 f(t,z, S) dS.
4y 0
The purpose of the present paper is then to investigate thiepge of traveling wave solutions for the
system(PDE). The originality of this study is to use mathematical toalsts as the topological degree
for elliptic operator in unbounded domains in order to stadyystem of mixed type hyperbolic-parabolic
which, even if simplified, still preserves the details of thaporization process and its coupling with the
propagation of a flame.

2.2 Solutions as mono-dimensional traveling waves

We investigate mono-dimensional plane polydispersed/dfames as traveling waves for the syst€MDE).
We then consider (¢, z), Yr(t,z) andf(t, z,.) as functions ot = = — ct, with given boundary conditions
at infinity. More precisely, we assume thatjato, a cold gas at temperatuflgg and a polydisperse spray
coexist. The gas is only composed of fuel and inert gas, wiksfractionsY /> = Yp,(Tp) andYs = w,
respectively. The distribution function of the spray isegivby a functionf,, assumed regular (at leaSe
onR™) and of compact supportfy(S) = 0 for S > Sy, It is consistent with distribution which can be
experimentally obtained [26] [20]. An example of such a timrtis given on Fig. 2. We also noﬁe};;w
the total liquid mass density atco and we have:

Yliq = 6\/7_T/O S fo(S)dS, Y +Yliq —1—w.
fo

‘ S
Smax

Figure 2:Distribution function of droplets at-co.

At —oo, the liquid phase is completely vaporized and all the fuetdasumed. So, there is only a
gaseous phase, at hot temperatlire> T, composed of the product and the inert gis{—o0) = 0 and
Y; = w. A sketch of the configuration is given on Fig. 3.
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— burnedgasYy =0 — fuel : Yp = Y@°
— inertgasY; =4 — inertgasY; =6
— temperature 7. — temperature 7y
¢ no liquid phase : e liquid phase ¥;, = Y37
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Figure 3:Sketch of the plane polydispersed spray flame.

We then defind, o andy, the reduced temperature, mass fraction of fuel and disimibb function such
that:

T(t,x) =Ty + (Tx — Tp) O(z — ct), (6)
Yr(t,z) = (1 —w)alx — ct), @)
ft,z,8) = (1 —w)(z —ct,S), (8)

The distribution function at-oc in the new variables is then denoteg (with fo = (1 — w)vy). Let us also
introduce the limit ofx at 4-oc:
_

1—w

aOO

We then have: -
o P 3/2 ds =1
a™ + 6ﬁ/0 524 (S)dS = 1.
The reduced ignition temperaturefisand the reduced boiling temperat#g, with:

_TC_TO Hb_TEb_TO
e

6, = = .
T, Ty T, — Ty

For each functiorh of T', Yz or f, we noteh the same function of, o or 1. The functionBM(H, «) then
reads: _
~ Yrs(0) — (1 —w)a

1—Yp(0)

BM(Q, Oé)
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The reduced chemical rat€6) = k(T') vanishes fo¥ < 6. We assume that. €]0,1[ andf,, > 1. We
could eventually také. = 0 as in [25] or [5], but it is not the subject of this paper.

We obtain the syster(8):

k0" +c0 +k(B)a=
(80) Do +ca — k() a Sm(z 0,a) =
O + Rg(0, ) dstp = 520,

with the source term:

+o0o
5™ (2,6, a) = Rs(6,a) / 5124 (2, 8) dS,
0

i

and with the boundary conditions at infinity:

(Lo) O(+0) =0, a(+o0)=a>
O(—o0) =1, a(—o0) =0, P(—o00,5) = 0.

Remark 3 An integration of the equations (1), (2) and (3) with R and S € R* shows thafl}, — T =

q(Y > + Ylj('loo) It's the reason why disappears in the first equation of systé$g).

Compared to the usual system of equations for mono-dimealslmomogeneous gaseous flames [19],
the system is more complex because of shéependence of the functian. But the equation oy being
hyperbolic, an analytical solution for this function canfband, introducing the characteristiés.

U S) = (X (8), X8 =S+ [ Rs0w).a)dy

The system(§y) can then be rewritten:

(8)) k6" +ct + k(@) a=0,
0 Do’ +cd — k(@) a+ S™(z,0,a) =0,

with the source term and the characteristics:

§™(2,0,0) = 4\/_R5(9 ) /OOOSl/Qq/JO(X(z,S))dS,

X(z8) =5+ [ Rs0w).aw)dy

and with the boundary conditions at infinity:



However, the source teri$i” is then non local: it depends on all the vaporizationzintoo[. In order
to avoid this problem and apply techniques developed in, [tt@] system(S) is approximated by a finite
dimensional one, which corresponds to a discretization a$ a function of5.

2.3 Use of a Eulerian multi-fluid model for the spray

Several type of methods have been developed in order toetlizeithe distribution function, tacking into
account the polydispersion of the spray. But a Eulerian@ggr is needed here, in order to reintroduce local
source terms. A fully Eulerian approach has been describedi@rived from the kinetic level of description
in [22]: multi-fluid models. Moreover, the numerical anasysonducted in [21] shows that, in our mono-
dimensional case without neither dynamic nor thermal &ff@anulti-fluid vaporizing model provides an
approximation of order 1 of the kinetic equation. It can bersas a discretization of the continuous size
phase space, using a finite volume formulation, the sizevialte being called the sections in reference to
[14]. We can call such a method a multi-fluid method in thatdiepersed phase is described as a set of
continuous media: “fluids”, each “fluid” corresponding totatsstical average in a section: the cell defined
by two fixed droplet sizes. The evolution of these coupledices or “fluids” is governed by conservation
equations for mass, momentum and enthalpy. In all previeiesences, only evaporation is considered and
not condensation, thus resulting in a predefined upwindreehi is consistent with the model used .

Let us apply this multi-fluid method to our problem. We knovattlthe functiom)(z, S) is equal to
zero if S > Sp.. and we take a uniform partition d0, Sy,..]: S; = ¢ AS with ¢ € {0,...,N} and
AS = Spa:/N. The sections are then the intervéf_,, S;]. Let ii; denote the reduced mass density of
theit" section:

S;
/:Li<z>:6% 3 S3/2 (2, 9) dS. )

As in [21], theji; are approximated by the; such that:
Vie{l,....,N},  cuj(2) = Rs(0,0) [(Mi + F}) pi(2) — Fig1 piva(2)] = 0. (10)

The term with)/; is the mass flux between the sectioand the gas and the term wiffj is the mass flux
between the sectiohand the section — 1 (Fiv11 = 0). If we choose to approximate by a function ofS
constant in each section, then the constant coefficiehtand F; are [21]:

S 1/2 3/2
3|at oedo S
Vi€ {1,...,N}, Mizfi:l—, Fi=—"L (11)
2 fSiil o3/2do fS;l o3/2do
The boundary conditions are given by:
Pl 54 2
pi(+00) = p® = S¥24o(S)dS,  pi(—o0) = 0. (12)

N

It is useless to consider a last section with 0 mass densiypat because the mass density in this section
would then be identically equal to 0. We then assume that piperubounds,,,., has been chosen as the
first point beyond whicly, vanishes. Itimplies thai}y is positive.

9



The techniques developed in [19] are then applied to thesysiy ):

k0"+ cb +k(0) o =0,
(8n) Do/ +cd —k(0) a+Rs(0,a) 3 M; — 0,
C 4 —Rs(0, ) [(M; + F)) i — Fi1 piga]=0,

with the boundary conditions:

0(+00)
(L) { 8(—o0) =

0, a("'oo) =a™, ,LLZ'(—FOO) = #ZQO’
1, 0,

a(—00) = pi(=00) =0

The scheme is of order 1 in the surface sfef, as shown in [21] and we will be able to recover the fluid-
kinetic formulation(8y), from the systemSy ), by taking the limitNn — oo (see section 6). We want to
use the topological degree theory in order to prove the @xist of solutiong, 6, o andy; for the system
(8n). However, the topological degree is defined for elliptic raper [36], and the operator corresponding
to the systen{S ) is mixed hyperbolic/elliptic because there is no dropléudion. We then introduce a
small diffusion coefficient,, and, as in [19], we will study the limit when this diffusionefficient tends to
zero. The system with diffusion then reads:

kO"+ cb +k(0) o =0,
(8¢) Do +co’ —k(0) a+Rs(0,0) S M; i =0,
Qi+ cpy —Rs(0,0) [(M; + F}) i — Fi1 piga]=0,

with the boundary condition§ ). We remark in the next subsection that the added diffusion e
interpreted as due to a small turbulent mixing.

2.4 Introducing turbulence and diffusion

When the droplets have their own dynamics, the distribuimction f depends also on the droplet velocity
up: f(t,z,S,u;). The transport equation then reads [37], [38]:

of ORs f

wherer" is the drag acceleration. If we consider a Stokes drag, dscea

+ Vi (F f) =0, (13)

F = %(u — ),

whereu is the gas velocity and is a constant. The functioRg is assumed to be independentwgfthus

neglecting the convective correction term [39], [22].
For turbulent flows, the gas velocity can be divided betwegraverage valu@ and a fluctuation.’
which is of Gaussian typer = @ + «’. As shown in [27] and [7], an equation on the averdgs f reads:
of
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where the averaged drag force reads:

F = %(ﬂ - ul).

The random fluctuations in the gas velocity then generatayerage, a diffusion process in the phase space.

As in [22], we make an assumption on the shapgoin this article, the probability density function
of the spray is supposed to be such that at a given size, themgyi one characteristic velocity, with no
dispersion around it. But the considered flames were lamithere, we have to consider a dispersion around
the characteristic velocity, because of the turbulencew&assume [28]:

f(t> z, S, Ul) = n(tv x, S) Po(t,x,S) (’LL[ - ﬂl(t> Z, S))a
whereyp,, is a Gaussian of dispersiaen

Yoll) = (47102)3/2 *p 402 )"

From the equation (14), we obtain a semi-kinetic model usethe multi-fluid method [28]:

on _ ORsn
o + V. - (ngy) + 35 0 (15)
8n’L_L1 _ _ 2 9 8R5nﬂl_ « _ _
5 +Vx-<nul®ul+n§a>+T— Sn(u ) — Dy Van (16)
9 W 2 5 9 ai S\ _ e
E[n <7—|—J>]+Vx-<n§cr a +$ Rsn 5 to ——g(u—ul)-ul an
—2n%02—Dme-(nﬂl)—|—3nDul

In the caser? = 0 and D, = D,,, = 0, we recover the equations used in the laminar case [22].

Remark 4 We can also remark that,, introduces a source term in the? equation:
2 2

o _ 9 2 4 _ [os «

n——+nu -V n-0°Vy -t + Rsn—5 = —2n

R A A TS S

So, taker? = 0 and D, # 0 or D,,, # 0 is incoherent.

0% — DynVy - + 3n Dy,

In the case of very small dropletB,, takes the following asymptotic expression:
2 «
T = 5 K ga
wherex is the turbulent kinetic energy and the 3 comes from the sgamension. The source term in the
equation of momentum conservation then reads:

D

2
—% (nﬂl —nu+ glivxn> .

So, taking the formal singular limit of sma8l, we obtain:

niy ~nu— gﬁvxn,
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and the mass conservation equation can be rewritten:

2—7; + Vg - (nu) — g;‘{A’I’L—F aggn
We then have a spatial diffusion coupled to the vaporizatiomconstant being the turbulent kinetic energy
of the gas.

If the averaged velocity of the droplets is equal to zero, nhéti-fluid model corresponding to the

kinetic model (18) reads

= 0. (18)

on ORgsn
o —(An+ 53

with ¢ = 2. This equation is linear im. So, multiplying (19) by6%53/2 and integrating it between
S;—1 andS;, we obtain a multi-fluid model which is exactly the equatioryg in the systen(8,) Thus, the
diffusion process on the mass variables has a physicapietation and it allows us to apply the topological
degree theory to this elliptic system.

=0, (19)

3 Topological degree

In order to prove the existence of traveling waves, the tgiohl degree is a useful tool. It is defined as
follow (see, e. g. [6]): letk; and E5 be two Banach spaces. Suppose we are given a glagsperators
acting fromE; to E» and a clas$7 of homotopies, i.e., maps.(u) : By x [0,1] — Es, 7 € [0,1],u € E;
such that for any € [0, 1] fixed, A-(u) € ¢. Assume moreover that for any bounded open/set £; and
any operatord € ¢ such thatA(u) # 0 for u € 9D (0D denotes the boundary of the 98}, there is an
integer~ (A, D) satisfying the following conditions:

1. Homotopy invariancelLet A, (u) € H andA,(u) # 0 for u € 0D andr € [0,1]. Then, we have:

V(Ao, D) = v(A1, D).

2. Additivity. Let D C FE; be an arbitrary open set iy, and Dy, Ds C D be open sets such that
D1 N Dy = (). Suppose thatl € ¢ does not vanish for € D \ (D; U D). Then, we have:

3. Normalization There exists a bounded linear operalor £; — FE- with a bounded inverse defined
on Es such that for any bounded open getC £y with 0 € D, v(J,D) = 1.

The integery(A, D) is called the topological degree.

Since we consider a problem in unbounded domains, the L&chguder theory [23] cannot be directly
applied. However the topological degree theory for ellipfperators can be extended to unbounded domains
[8], [9], [34], [33], [36]. One of the approaches is based ba theory of Fredholm operators [11], [16],
[32]. Here, we use the topological degree constructed ihff8¢elliptic, Fredholm and proper operators in
unbounded domain and weighted Holder spaces. This thewmgtlyi applies when the domain is the whole
real line.
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The topological degree is useful in order to investigateethistence of solution because, for an operator
A € ¢ without zero at the boundaries of a bounded oper’xséf the topological degree ofA, D) is not
equal to zero, then the problesv = 0 admits a solution. Moreover, the topological degree carniteettly
calculated for simple operators: for exampledit ¢ admits only one zera and if the linearized operator
A’(w) has no zero eigenvalue, then, for a bounded opesethich containsw, the topological degree
of (A, D) is 1 or -1. The invariance by homotopy allows us to evaluatettipological degree for more
complex operators.

The aim of this section is not to describe the constructiotheftopological degree or to present the
whole theory. For the sake of legibility, we only present #pplication of the theory to traveling wave
systems.

3.1 General reaction-diffusion operator

We introduce weighted Holder spacg$ ™ (R) = {u : uu € CIT9(R)}. The topological degree is con-
structed [36] in the weighted Hdélder spaces, so that theabper are proper and, generically, it cannot be
constructed in spaces without weight [2]. As a weight, weetakpolynomial function:(z) = 1 + 22
We note that functions exponentially decreasing at infib#jong to these spaces. The following type of
reaction-diffusion operators:

Aw = aw” + c(w)w' + F(w),

operate fromk; = Cfﬁ‘; (R) onto By = Oz(R), whereq is a diagonal matrix, with positive, constant terms
on the diagonal and’ vanishes atv* andw™, with wt # w~. The functionw belongs toF, a set of
functionsu such that: — (1 — ®)w™ — dw™ € Ey, where®(z) is aC* function which is identically equal
to 1 for z €] — o0, 0] and identically equal to O fot € [1,+o0[. The functionalc(w), which replaces the
wave velocity, is defined by:

c(w) = ln/]R lw(z) —w|?o(2)dz, (20)

whereo is an increasing function oR, of limit 0 at —oo and 1 at+-oo and such tha;ffoo o(z)dx < oo.
This functional is such that, if we notey, (z) = w(z + h), ¢(wy,) is a decreasing bijection froi to R, as a
function ofh. Itis also such that, for a solutian of Aw = 0: < ¢/(w),w’ >+ 0. It was introduced in order
to solve some problems due to the invariance by translatehzaro eigenvalue problem [36]. Suppose
that we have the constaatand not the functional. If there exists a solutiofz) of the problemAw = 0
with w € E, then the functionu;,(z) = w(z + h) is also a solution, for alk € R. The weighted norm
() (w— (1 —®)wt — Pw™)|| tends to infinity as tends to+-oo. Therefore, a bounded domainin the
setE’ does not contain any solution or the branch of solutiongs$etes its boundary. So, the degree cannot
be used. Moreover, if is a solution ofAw = 0, then zero is an eigenvalue of the linearized operatéw)
(with the eigenvectorv’) and it is not easy to evaluate the topological degred.offhe functionalization
of the parametet allows us to solve these problems. It also moves the zeronafiee of the linearized
problem about a traveling wave to the left half-plane, argihigjles out one particular element of the family
of solutions [35]. Moreover it eliminates the unknown camtfrom the problem.

Then, if the condition

©):  YA=0, VeeR, det(—a&®+c(w)ié+ F'(w) —AI)#0 (21)
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is realized, we can define the topological degree for theatpeA.

3.2 Introduction of a perturbed system

The topological degree can not be defined for the operatoesponding to the syste(8.), (L ). Indeed,
this operator is not regular because the functit(8, o) = In(1 + By (6,a))* is notC'. Moreover
the condition(C) is not valid, neither at-oo, nor at+oo. The system(S;) is then perturbed, so that
the topological degree can be defined for the operator gmnesng to the new system. First, we replace

Rs (6, ) by R, (6, «) such that:

R,(6,a) = ¢ <1 -0 <w>> In(1+ B (6, a)),

wherer is a small positive parameter with at leas 1 and®(z) is aC® function such that:

forz <0 O(z) =1,
foro<z<1 ®(z) <0, (22)
forz>1 P(z) =0.

The functionR, tends toRs whenr tends to zero and we then dendtg = Rg. Second, we add a small
positive parameter and introduce the perturbed system:

k0" +c0' +k(0) o +ek(8) (1 — 60— a)=0,
(S¢er) Do"+c 0/—127(9) a+R-(0,a) > M; p; =0,
Cui +ew —R.(0,0) [(M; + F) i — Fip1 pia]—e k() s =0,

with the boundary condition§C ). After a change of variable which will be defined later, ane fianc-
tionalization (20) ofc, we can define and use the topological degree for the comdgmp operator.

Contrary to what was made in preceding studies, as in [38]atided terms are defined from functions
already existing in the initial systefi§), as in [19]. It allows us to preserve the monotonicity of aafes,
as it will be shown in the next section. Moreover, it makesménthe homotopies which transform the
system to one for which the topological degree can be ewsduat

As shown in Fig. 4, the sketch of the existence proof is ag¥idl we use the topological degree in
order to prove the existence of solutions {8 . ) (Section 5) and we take the limits— 0, ¢ — 0 and
¢ — 0in order to prove existence of solutions @y ) (Section 6). These steps require a priori estimates,
independent of the homotopy parametefor the first step and independent ofe and ¢ for the second
step. These estimates have a common part. Consequentlyegire With general estimates (Section 4),
independent of all parametersr, e and(.
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(So) +(Lo)
K0+l 4+ k(0) a=0,

Da"+ca —k(f)a+ S™ =0,
c0,1) + Rg(0,0)dsth =0, S >0.

N — oo T l discretization: Multi—fluid model

(Sn) +(Lw)
KO+ O +k(0) =0,
Da"+ca! = k(0) o+ Rs(0,0) > Myp; =0,
ct — Rs(0, ) [(M; + Fy)p; — Fipapign]= 0.
" ?) addition of a diffusion (turbulent mixing)
Zj 0 and small parameters
(S¢er) + (Ln)
k0" +cl +ka + ek (1 —6—a)=0,
Da"—kca'—l;a—FRTZMipdi =0,
G +cp — Ry [(M; + Fy)pi = Figapipa] — ek o =0,

w = (Ceacaa CMI) v JCI’LN)

| l change of variables
functionnalization of ¢

(Srd) a topological degree can be defined and used

Figure 4:Sketch of the proof.
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4 A priori estimates

Here, we give a priori estimates independent of all the patarar, ¢ and{ and also of the homotopy
parameter- which will be introduced in the Section 5. We then considerftiilowing system:

k0" +cb +ka t+ek(1—60—a)=0,
(SC7E,T’,T) DOZ”-FCO/-]; a+(1 — T)Rr Z MZ J2% = 07
Cui +e —(1 = 7)R, [(M; + Fy) i — Figr pisa]—€k =0,

with the boundary conditiongC ), with 0 < 7 < 1, with a small non negative parametemwith a small
positive parametef and with a Lewis numbele = /D larger thanl + p, wherep is a non negative real
and will be defined later, in order to prevent the condensgittenomena. Estimates given in this Section
are general enough, so that they are used to have a prioriatss in the weighted Holder spacé™’ (R)
independent of in order to prove existence of solution of systé®a . ,.) in Section 5 and to have a priori
estimates in the Holder spac&+°(R) independent of, e and¢ (or of e and¢ for » = 0) in order to pass
to the limitsr — 0, ¢ — 0 and{ — 0 in Section 6.

4.1 Preliminary lemmas

To prove monotonicity of functions or to determine a pricstimates, we use properties of differential
equations given by the two following lemmas:

Lemma 4.1 Let I be the interval — oo, b] or | — oo, b[. Letu be a function inC'*9(R) anda a positive
constant. Ifu/(z) + au(z) is non negative for € I thenu(z) is non negative foe € I. If, moreover,
u'(2) + au(z) is positive forz €] — oo, zo[ with ¢ € I, thenu(z) is positive forz € I.

Proof. — We introduce the functiol(z) = u(z) exp (a z) defined forz € I. This function isC'* with
zero limit at—oo andI”(z) = [u/(z) + au(z)] exp (a z). Studying the variations df, we prove the lemma.
O

Lemma 4.2 Let a be a positive numbeg(z) a non negative continuous function defined foe R and
F(z,v) a continuous function defined f¢¢, v) € R2. The functionF is assumed to be of the same sign as
v and such that:

Vo>=0 VzeR F(z,v) < f(2)v,
wheref(z) is a non negative continuous function. kebe a function inC>*%(R) with non negative limits
u* at +oo and solution of the equation:

VzeR  u'(2) +au/(2) — F(z,u(z)) + g(z) = 0. (23)

We make one of these assumptions:
1. g is the null function and,™ or ™ is not equal to zero.
2. g is not the null function.

Thenu is positive.
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Proof. — First, we show that: is non negative. If it is not true, thenreaches its negative minimum in
arealz,,. So, in this point, we have:

' (zm) = F(zm, u(zm)) — 9(zm), u"(zm) = 0, u(zm) < 0.

Thenu”(z,,) is equal to zero. Let us suppose thatis the biggest real for which reaches its minimum.
Then, for a small positive realand forz €]z, z,, + b], u(z) is negative and/(z) is positive. So, because
of the equation (23)y”(z) is negative and thew'(z) is a decreasing function far €|z,,, z,,, + b]. Butitis
inconsistent with the inequality’(z,,,) = 0 < «/(z,,, + b) andu is necessarily non negative.

We can apply the maximum principle tobecause this function satisfies the inequality:

u’(2) + av/(2) — f(2)u(z) + g(2) = F(z,u(2)) — f(2)u(z) < 0.

If » vanishes in a point, themis identically equal to 0 angl is the null function. It is inconsistent with the
assumptions and the lemma is proved. d

4.2 Monotonicity

First, we give monotonicity properties of solutions(8f .. -). Let introduce the variably,, the partial
sumsS; and their limitsSy° at +oo:

K

N N
- (1-0)— = . co _ oo
SGa D(l—e)( ) «, S ]Z_:i:uj Sz jz_;'u]

We also introduce the numbgrefined by:

Oy} (0) v : v
= ma. ~787 O < 9 < 98 - |f 98 >
P { v7.(0) "I "o

T.— Ty

First, we give result of monotonicity for some variables:

Proposition 4.3 If, for 7 € [0,1], 7 € [0,1], e > 0and0 < { < D < &, such that and(1 — 7) # 0, there
exists a scalar: and functiond), o and p1; in C2+°(R) solution of(S¢ . ,..), then:

c >0, 0<a<l, Vi ;> 0, Vi Si>0, 0’ <0, Spo > 0.

K ~
Moreover, ifD < —— thenBy; (6, «) > 0.
T Mm(0, )
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Proof. — Let us first prove that is positive. Becausé. is positive, there exists a real such
that for = > z., 6(z) is smaller thard.. Then the equation off’ can be solved foe > z.: 6'(z) =
0'(z.) exp(—c(z—z.)/k). Butthis function tends to zero wheriends to+oo and because of the uniqueness
for the corresponding Cauchy problem, we hé{fe.) # 0. Thenc is positive. Because of the invariance
by translation, we can assume without lost of generality @@ = 6. and:

Vz >0, 0(z) = 0. exp (—%z) . (24)

We now prove that thes; are positive. The functiomR,(6(z), a(z)) of z is continuous and tends to
¢In(1/5) > 0 asz tends to—oco. We can apply Lemma 4.2, first fary, then forpuy_q, down topu,. It
proves that the:; are positive.

Then, we prove tha$; is an increasing function. This function satisfies the fwlltg equation:

N
(S/+¢Si=(1-mRe(0,0) Y M;p;+ (1—71)R(0,0) F; i + k(6) S;.
Jj=t

Consequently, the quantityS!” + ¢S} is nonnegative and also positive for sufficiently smallwhere
R,(8(2),a(z)) andk(f(z)) are positive. Making use of Lemma 4.1, we obtain thais positive.

Applying Lemma 4.2 tax, we show thatx is positive. We now prove that — o« — (/D S; is non
negative. This function is denoted The equations on andy; of (S¢ ., -) are integrated betweenand
+o0 and added. We obtain, for alle R:

+oo
D/ (z) + cu(z) = / E(0(x)) [a(x) + € Si(z)]dz + ¢ <1 — %) Si(z) <0.

Lemma 4.1 then shows thatis non negative. So, we have the inequality:

¢
<1-28 <1
@ D7 S

Let us then show thdt is a decreasing function, smaller thandl:< 0 andéd < 1. If there exists a real
2z, such tha¥’(z,) > 0 andf(z,) < 1, then we havé”(z,) < 0 because of the first equation @ . . ;). So
¢’ is decreasing aroung,. It is then easy to see théf(z) is decreasing and positive afi¢t) is increasing
and smaller than 1 for < z,. Itis inconsistent with the limit of at—oco. So, if6(z) is smaller or equal to
1 then it is decreasing. We also have to get rid of the case:

0(z) >1 for z < z,,
0(z) <1, €#(2)<0 forz> z,.

In such a case, we denatethe functiond + « + > u; — 1. This functiony(z) is positive forz < z, and
its sign is not constant because of the equaﬁﬁ@(@(m))w(m)dm = 0, obtained through the integration on
R and the sum of the equations @ ., ). So, we can introduce the first poimtwhere vanishes. The
system(S¢ . -) is integrated betweenoo anda and we sum all equations, thus giving:

a

D/(a) + cy(a) = e/ l%(@(w))z/;(x) dr — (k — D) (a) + (D — ¢)S}(a) > 0.

— 00
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Sincey(a) = 0, we obtainy’(a) > 0. But(z) is positive forz < a and vanishes for = a. The
assumption made was then false &rid decreasing.

We then prove that is strictly decreasing. Indeeddf(z) vanishes, the”(z) is equal to zero. Because
of the first equation ofS; ., -) and because of the preceding results, we necessarilydtaye< 6. and
z < 0. Itis inconsistent with the equation (24). $6js negative.

Multiplying the first equation ofS. ., ) by 1/(1 — ¢) and adding the second equation, we obtain the
equation forSy,,:

DS 48y, =———0 (2% -1
o T €200 1—c¢ (D )+1—6
So, the quantityD Sy (z) + ¢Sy, (z) is non negative and positive far < 0. Applying Lemma 4.2, we
obtainSy,, > 0.

Let notey(z) = Yr,(A(z)) — (1 —w)a(z). We want to prove that this function is positiveli < %
p

E(0)(1—6)+ (1—7)Re(6,0) > Mip.

It satisfies the equation:
Dy (z) + cy/(2) — F(z,y(2)) + 9(2) = 0,

with
F(zv) = <1 + % }7198(9(,2))> k(6(z)v
4 (1—7)(1 - w)pln <1 + #M) <1 — 9 <7“(1 ~ ?;’8(9(2)))» éM 1i(2),
and

o) =0/ | DI TE 00 + ¢ (1= 2 ) Thl62)

# R0 [Tra0) (14 GED2 7,060 ) + 2 (1- 06:) T 00:)|.

An integration of thed equation between and+oo shows that ¢’ + c6 > 0. We can then give a lower
bound forg, independent of:

01) > 0 | S5 DT 006)) = DY O(:) | + FOG)Trn(002).

ForD < % the g function is non negative and is not the zero function since k(0)Yr4 (). We then
can apply Lemma 4.2 which show thats positive. Consequently, the proposition is proved. d

4.3 General estimates
From this subsectiony™ is supposed to be greater tharand we introduce a reah €]0, 1[, such that
0. < Ba™ < a™, (25)

This assumption is not very restrictive becaisean be chosen as small as we want affd> 0. Estimates
independent of, ¢, e andr, and also inequalities, useful for Section 6, are given aftlowing theorem:
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1+
there exists constant® > 0, ¢; > 0 andc™ independent of, ¢, e and and M, > 0 independent of, ¢

and T such that, if there exists a scalarnd functions), « and ; in C**(R) solution of(S ) then:

Theorem4.4ForO<r<1,0<C<D<Lp,0<e<1—6and0<7<1suchthate(1—r)7é0,

10llcorsm) < Me,  Nlalleorsm < Mg palleersmy < Mg e Se<c,

and, forr = 0:
10]lc2+6m) < M, lallcotomy S M [pillozrom) < M.

If we choos&(0) = 6., we also have the inequalities:

(1-¢)(@* —a) <0, (26)
N N E,

vie{t,...N} > ]I <1+ﬁ><u§°—m>>o, (27)
j=i k=j+1 k

VzeRT, Vie{l,...,N}, 0<85>X—-5;< <1+%> 0(z) — a™ + a(z)), (28)

Vz € RT, 0(z) + a(z) + S1(2) = 1. (29)

Proof. — We already know, because of Proposition (4.3), thiatpositive,f and)  x; are monotone
anda and all theu; are positive and bounded.
We now give an estimate fa¥, distinguishing two cases: > 1 andc < 1. If ¢ is bigger than 1, then
0’ (z) reaches its minimum at = z,, and for allz € R, we have:
_ 1—¢€- €~

0" ()] < 10" (zin)l = | =——k(O(zm))a(zm) = “k(0(zm))[1 = O(zm)]| < k(D).

Thus, this involves that’| is smaller thark(1).

If ¢is smaller than 1, suppose thétz) > k(1), for az € R. We definez, as the biggest real, smaller than
z and such thalf’(z,)| = k(1). So, forz € [z, 2], |¢'(z)| is bigger thank((z)). The first equation of
(8¢,e,r,r) is then integrated betweep andz:

c 1— Z . z
0 = [6'z0) = £180:) ~ 00z0)) 5 [ ROty - £ [ FO@)(A - )], @0)
The term|¢/(z,)| is upperly bounded bi(1), c by 1,]6(z) —6(z,)| by 1,|a(y)| by 1 andk(6(y)) by |6/ (y)|.
Then, in all the case$'| is upperly bounded by(1) + 2.

As in the proof of Proposition 4.3, we choog@) = 6.. Thenc can be evaluated from{(0):

With what precedes, we have the upper bound for the waveityloc

L kE(1)+2

2 (31)
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In order to have a lower bound fer we first show the inequalit§ + (1 — €)a > (1 — €)a®°. The first
equation of(S¢ . ,. -) and the second multiplied by— ¢ are integrated betweenand-+oo and added. With
u=060+(1—¢€)(a—a>), we obtain:

Du' +cu>—(k—D)§ > 0.
Because of Lemma 4.1, is necessarily non negative afd- (1 — e)a > (1 — €)a™. So:
(1—-ea=>[(1-ea™ -0t

The first equation of8. . ) is then multiplied byy’ and integrated ofR. With the preceding inequality,
we obtain:

c/(@'(m))de > —/ E(0(x)[(1 — e)a™ — 0(2)] 10 (2)dx — e/ k(0(x)(1 — 0(x))0 (x)d,
R R R
(1—e)a™> _ 1.
> /0 k()1 — e)a™ —yldy + 6/0 k(y)(1 —y)dy.

With the assumption (25) and the estimateg’ofve find the lower bound far:

K

Ba™>
036 = g /@ F(y)[Ba™ — yldy > 0. (32)

In order to have estimates @?+9(R), we can give here estimates @+ (R), because the solutions in
C?+o(R) of (8, ¢.») are necessarily regular. With the lower bound:aind bounds of, ¢, « andp;, it is
then easy to prove that, 1.}, o, 8" and#” are bounded independently 1f¢, e andr. We also prove that
w! has bounds independent afe andr, but dependent of. Forr > 0, we have to derive the equations
ona andy; and to give a bound, independentrot andr of the R,.(6(z), a(z)) derivative in order to have
estimates of”” andy”. This function can be rewritten:

B(0(2).a(2)) = ot (Bu(0(=),a(2))). ¥,(a) = (1= @ (%)) In(1 + ).

T

But By (6(z), a(z)) is positive and smaller thah+ 1 and its derivative is bounded independently of all
parameters. Moreovey;,. () is bounded independently offor z € [0,1 + 3]:

1—®(2
0< ¢;(ZE) = TS:T) - §<I>/ <w> L(lx—’_ x)

T

<1+ max{y®'(y), y € [0,1]} x max{w, x € }0,1 + H }
It allows us to prove the first estimates of the theorem.

Forr = 0, because3,; > 0, the functionRy(#(z), a(z)) is regular forz € R and it is easy to prove
thata”, !, ! are bounded independently @fe andr (for 1./, 1), we use the first and second derivative
of the u; equation and we evaluate the maximum and the minimum of thesions), thus showing the
second estimates of the theorem.
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The inequality (27) is proved thanks to Lemma 4.1. Indeddjsaelenote

:i H < Alzk)(u‘f—uj)-

J=t k=j+1

Ey,

nd integratin
Mk) and integrating

N
Multiplying the equations on thg; of (S¢ ., ;) for the index: to N by H <1
k=j+1

there sum betweenand+oo, the equation om appears:

N Fk +oo
Cu'(2) + e(u(+o0) —u(2)) = (M; + F) [ | (1 + E) (1-7) R (0(y), aly)) pi(y) dy = 0
k=1 z

and the inequality is shown.
Let us then show inequality (28). Let us denete) the function defined by:

M;

v(z) = T (S° — Si(2)) + > —a(z) — 0(z).

We then multiply by the equations op; in (8¢ ¢ -) for the index: to V, integrate these equations

as well as first and second equationg &f . . -) betweenz and+o0, and sum up all these equations. We
finally get the following equation fow:

+oo
D/(2) + ev(z) + ¢ / K6 v(y) dy = (= D)Y'(2) + (¢~ D)o Si(e)

i—1

; 400 B
B geo s Zu?] e / F(0(y)) dy
k=1 Z

F; + M;
oo i-1 N F
—(1—7)/ Ry (0(y), a(y)) [ZMkuk(y)+ > 7 +MMkuk( y)| dy.
z k=1 k=i+1

Becausd) and .S; are decreasing and because of the inequdlity D < &, the function defined by the
left hand side of the preceding equation is then non positfve(0) is positive, then/(0) is negative, and
necessarilyp(z) is positive and decreasing for< 0. It is impossible becausehas a non positive limit at
—00. So,v(0) is non positive, and fot > 0, we haveD v/(z) + cv(z) < 0. As for Lemma 4.1, introducing
the functionI'(z) = u(z) exp (a z), we prove thav(z) < 0 for z > 0 and inequality (28) is proved.

Let us now turn to inequality (29). We note= 1 — # — o — 5. Integrating the equations 8. ., )
between: and+o0, and adding, the equation anyields:

+oo
Duw'(z) + cw(z) + 6/ k(0(y)) w(y) dy = (k — D)b'(2) — (D = ()S1(2) < 0

As for v, we then prove thab(z) < 0 for z > 0. The theorem is then proved. O
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4.4 Behavior of solutions at infinity

We have suggested in the section 3, that a change of varialildse done in order to be able to define
the topological degree. This change of variable is defindtiensubsection 5.3. But for that, we have to
show that the functiong, « andy;, solutions of(8. ., -) are exponentially decreasing; this behavior is
characterized in the following Proposition:

Proposition 4.5 If the scalarc and the function#, o and pi; in C2+°(R) are solution of(S¢ .. ,), then, for
z greater thanz. = 6~1(6,), we have:
(z — zc)> )

0(z) < 0.exp (— (z — zc)> , |a™ — az)| < max {%,N} 6, exp <—
L(z-2).

Z_ZC>7

Proof. — We have already remarked that, for> z., 0(z) = 6.exp(—c(z — z.)/x) and the first
inequality is proved, thanks to Theorem 4.4.

Theorem 4.4 also gives the resultl — €)(a>™ — «) < 6. Because of Proposition 4.3, we have:
o —a® < Ypy(0) — Yre(0) < N6. The second inequality is then proved.

The third inequality is easy to prove from (28) and the lasgimlity is due tqu; = S; — S;11. O

N |®Q|
i |®Q|

o

F;
Vie{l,...,N}, 0<S§°—Si(z)<(1+3\f)<1+ﬁ>9 exp<—
. o Fi | Fip
Vi N1k ()] < (2 ety

P\“|@|

K
)(1+N)b. exp(

With N = sup Yp(z).
z€[0,1]

5 Existence result for the systen{S; . ,.)

In this section, the parametefse andr are supposed fixed such that:

0<(<D<-—" 0<e<1-8, O0<r<l
1+p

Moreover, we denot@, a C* function with the property (22), an#, the space:
E = {v, ®—ve C’ﬁM(R)}.

We then want to prove the existence of a solution of the sys&m,). For that, we evaluate the
topological degree of the corresponding operator of th&tesy, using two continuous transformations,
leading us to a simpler system. The first transformation fisdd by the operatod ;:

0 k0" 0’ k(0) o+ ek(0)(1—0 — )
a Da" o —k@)a+ (1 —7)R.(0,0) 3> M; g

Acl o | =] ¢ | He| wh |+ (0= 7)Re(0,)[(My + Fy) . — Fy o] — €k(0) i | - (33)
N Cuy Iy —(1 = 7)R.(0,0)(My + Fn) pyv — €k(0) pn
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The second transformation is defined by the oper&tor

0 k6" o' kE@)a+e k(0)(1—60—a)
a D. " o —k(0) o
Brl o | =] Gl |+ ph | +] —e /;(9) 11 , (34)
1N Gty Iy —e- k(0) pn

withe, =7+ (1 —7)e, Dr = k7 + (1 — 7)D and¢, = k7 + (1 — 7)C.

The systen(S¢ ) is thenAyw = 0. First, we see that these transformations yield to a singylstem
Byw = 0, for which the existence and the uniqueness of solutionse hlready been proved. We then show
how to define and use the topological degree. Finally, we gitienates in the weighted Hélder space which
allow us to prove the existence of solutions €8¢ . ).

5.1 Existence and uniqueness for the transformed system

Let us begin with an investigation of systeBjw = 0:
Proposition 5.1 Up to a translation, there exists only one solutig, «, u; of the system:

k0" +ct 4+ k() (1—6) =0,

ko +ca — k() a=0, (35)
kol 4 el — k(0) i =0,

such thatd, (o> — a)/a® and (u$° — p;)/pus° are in E.

Proof. — The proof comes from the existence and the uniqueness, updosation, of the solution
c € Randf € F of:

k0" +co +E@B)(1—6)=0. (36)
The unique solution of (35) is then 6, o = a™ (1 — 0), ; = p°(1 —0). O

5.2 Estimates in the Holder space

Estimates independent ofare given by Theorem 4.4 for solutions 4f (6, «, ) = 0 and their behavior at
+oo is given by Proposition 4.5. Let us give similar results folusions of B, (6, «, 1) = 0. First, we give
monotonicity properties:

Proposition 5.2 If, for 0 < 7 < 1, there exists a scalar and functiond), « and u; in 02+5(R) solution of
B (0, a, ) = 0, then:

c>0, a’ >0, Vi o> 0, 9’ < 0.
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Proof. — As for Proposition 4.3, we prove that> 0. We then apply Lemma 4.2 in order to prove that
a > 0andyu; > 0and Lemma 4.1 in order to prove thais decreasing and, y; are increasing. O

The a priori estimates and behaviorHato are then given by the following theorem:

Theorem 5.3 There exists\ > 0, ¢,” > 0 and ¢ such that, for each € [0, 1], if there exists a scalar
and functions), o and ; in C2*9(R) solution of B, (6, a, 1) = 0 then:

0]l c2+s my < M, lallczrs@y S M lpillzvs@y <M ¢ <c<ch
Moreover, ifz. = §71(6,), the behavior of the functions atco is given, forz > z., by:
c c
= (- < _b
0(2) 0. exp ( H(z zc)) < exp ( - (z zc)> (37)
a™ —a(z) = a(z.)exp <—Di(z - zc)> < exp <—Ci(z - zc)> (38)
N K
o c c
=) = (o) exp (~ - 20 ) < (-2 - ) )

Proof. — As for Theorem 4.4, we prove thit'| is upperly bounded by (1) + % and then that is
upperly bounded by = (kk(1) + 2)/6,.

We have als@ > (1—¢,)(a® —«) and we then obtain, integrating the first equatioBefd, o, 1) = 0
multiplied by#’:

c "(2))2dx e, —e-)a™>™ — € ' —
Aw<»d>4 F)(1 — ) mw+74k@u y)dy
1
> E/o k(y)(1 - y)dy.

Then we give a lower bound fet

_ K€ 1
cze = m/o k(y)(1 —y)dy.

It is then easy to prove that, p}, o, 1/, 0" and als®”, /", 1" are bounded independently of
The behavior of functions atoo is easy to see and the theorem is proved. O

5.3 Definition of the topological degree

In this subsection, we define the topological degree for tmsidered operatord,. and B, after a change
of variables. Let introduce a realsuch that

c . -
0< A< —, ¢~ =min{c,, ¢, } >0,
K
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wherec, andc, are the lower bounds for the wave velocities introduced iacfem 4.4 and in Theorem
5.3. Let¢ denote the function defined l§yz) = exp(A\(1 — ®(z))z), where® is aC> function described
by (22). The change of variables is given by:

(o}

t=¢, a=¢2 2 52 iy (40)

Then, we have: "
V2<0  t(2) =0(2) a(z) = a:—ij(z) m;(z) = ”m%off(z) (41)
Vz2>1  tz) =0(2)* a(z) = o —al?) - mi(z) = Ljf"(z)e*z (42)

a> 25

For solutions of4. (0, a, ) = 0 or of B, (0, «, 1) = 0 in the weighted Holder spacé,is necessarily
decreasing and we can define= 6~1(6.). Because of Proposition 4.5 fer, and Theorem 5.3 oB,, we
know that there exists a constaitindependent of, such that ifz > z. andz > 1, then:

1(2) < Cexp <%z> exp <<>\ - %) )
) < eep (S e (A% ) 2). (43)
ma()] < Cexp (%z) exp <</\ _ ?> z> .

After change of variables id (6, «, 1) = 0, the obtained system is:

Kt + (C — 2Hll)t/ + [(2[% — lg)l{ — llc]t + Fi (t, a) =0,
Da" + (¢ —2Dl)a’ + [(20f — 12)D — licJa + Fa(t,a,m) = 0, (44)
Cm;/ + (C - 2Cll)m§ + [(21% - lg)c — llc]m,- + Fg(t,a,m) = O,

with [; = fl/f, lo = f”/g and

Fi(t,a) =/%(§) [(1— )™ (€ —a) + (6 1)),

Fg(t,a,m):l;'(é)(S—a)—(l—T)RT<§ (1__>>ZM”Z (€ —my),

o <1 - g>> [<Mi ) —my) - FiH‘Z“ (€ —mis1)

)

Fy(t,a,m)=(1— ) R, (é

a()iem

Let note A, the corresponding operator to (44), with the function@l a,m), defined by (20), replacing

c. The problemsA.(6,,m) = 0 andflT(t, a,m) = 0 are then equivalent because of (41) and (43). For
the operatorB,, we can also define the operatBr. by the same change of variables and the problems
B.(6,a,m) = 0andB,(t,a,m) = 0 are also equivalent.
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Forz > 1, l1(z) = X andly(z) = A2, and because of the choice bf we know that\(kA — ¢) < 0,
MDX —¢) < 0and\(¢A — ¢) < 0. For the operator, and also for the operatds,, the condition (21) is
then valid and we can define the topological degree. Thesatmpg are homotopies.

5.4 Estimates in the weighted Hdlder space

In order to find a priori estimates in the weighted Hoélder spage first prove that there is no ’infinite
translation’ of the solutions ofi (0, o, m) and B (6, o, m), whenr varies. It means, for example, that the
real z. for which 6(z.) = 6. has bounds, independent of It is due to the choice of the functionalw).
Then, the behavior of the solutions-ato allows us to find the estimates.

Letnotel = 1+ 1/(a™)? 4+ 1/ > (u¢°)?%. Up to an eventual translation, we can choesich that

/ " o)z < el (45)

— 00

Lemma 5.4 For solution, «, m; of A,(0,a,m) = 0 or of B.(0,«a,m) = 0, the realz. = 071(0,) is
bounded independently ofe [0, 1].

Proof. — The functionak is defined by:

c(t,a,m) =1n (/R[t2(z) +a?(2) + Zm?(z)]a(z)dz) .

In the variable®), o and y;:

o (w6 () (522 e ()
([ (522 e () o).

)

Let assume that. > 0. We then have:
&0, 1) > In / 0P ()o(2)dz > In(022:0(0)). (46)
0

However, Theorem 4.4 or Theorem 5.3 say th@ «, 1) < c¢t. We then have the upper bound far
independent of:

+
ec

< — .
S 925(0)

Let now assume that. < 0. Theorem 4.4 or Theorem 5.3 show tkéd, v, ;1) > ¢~. Then:

o < (flOan) _ /0 [02(2) N (%ﬁ)z n ZZ: <“§§OTQ‘Z(2)>2 o(2)dz

(47)

—00

+ /OJFOO [92(z) + (oﬂ‘%{;(z)y + Z <M>1 2(2)0(2)dz.

pie
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With the relations (43) and becau$¢z) < exp(\ z) for z > 0, we obtain:

0 400
ef < L/ a(z)dz+£/ A2z R

—o00 0
So:
oC 0 1 -
o S /_OO o(z)dz + mezc ze/w,
and because of (45), the lemma is proved. O

Before giving more estimates let us prove a lemma, whiclwallos to evaluate the behavior-ato or
at —oo of solution of some ordinary differential equation:

Lemma 5.5 Let notel the interval] — oo, 2], a andb two positive reals ang a function inC%*+(I) such
that:

e 1 iS non negative,

e y(z) tends to 0 when tends to—oo,

e forall zeI,y"(z) + ay'(z) —by(z) > 0.
Then, forz € I:

u(z) <y(z0) exp (—*2‘”"( - Zo)) (48)
0 <y/(2)< [Z/(Zo) potverd Vf*‘“’wm] exp (—“{”"( - Zo)) (49)

Proof. — Letintroduce the functior\; defined forz € I by:

A(2) = <y'<z> L V‘j*‘%(z)) exp (*— 2*‘“’) .

A computation of derivative shows that this function is #asing. Moreover, it tends to 0 abo. Then it
is non negative ang (z) + (a — va? 4+ 4b) /2 y(z) > 0. We also introduce the functidndefined forz € I
by:

_ /02
I'(z) = y(z) exp (#z) .
This function is also increasing because of the previousittesnd simply writingl'(z) < I'(zp), we show
the validity of the first inequality (48).

Let now introduce the functioA; defined forz € I by:

a + Va2 +4by(z)> exp (a —Va? +4bz>

Aao(z) = <y’<z> + .

This function is increasing and thew(z) < Aa(zp) for z < zp. Becausey is non negative, we obtain the
second inequality (49) and the lemma is proved. d
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We can then give estimates in the weighted Holder space:

Theorem 5.6 There exists a constarit/ > 0 independent of < [0, 1] such that, ift, a, m; in E are
solution ofA, (t,a,m1 7, ...,mn.-) = 0, then:

|®— tHcﬁ”(R) < M, |®— a||05+6(R) < M, |®— mi||05+6(]R) <M, (50)

Proof. — Letnoted =t/ € E,a =a>*(1 —a/() € E, p; = p3°(1 —m;/¢) which are solution of
AT(H, [0 V3 PR ,IU,N) =0.

Theorem 4.4, relations (41) and (43) and upper boundfer #—1(6..) in Lemma 5.4 give upper bound
independent of for the norms of, « andm; in the Holder spac€?*(R). Estimates independent of
in the spaceﬁfﬁ‘s(}RJr ) are straightforward because of Proposition 4.5. We they loewe to find estimates
independent of in the spaceﬁﬁ”(]R{‘) of the functionsl — 6, « and y;, which are respectively equal to
1—t,a®(1l—a)andu®(1 —m;)onR™.

We know that(z.) = 6., 0'(z.) = —cf./rx andf” (z.) = c*0./k? > 0. Let then notez, the larger real
in] — oo, z.] such that’(z,4) = 0 (9" have necessarily a zero in- oo, z.]: in the other case’ would be
increasing and upperly bounded 8yz.) = —cf./x in| — oo, 2., but it is impossible). The functio# is
increasing onzy, z.] and then:

Vz € |24, Zc) 0'(z2) < —Cic. (51)
An integration of this inequality betweefy andz. give a lower bound foe,:
Zq = Ze — _ﬁ . (52)
c 0,
So, asz., z4 admits a lower bound independentrof
Moreover, forz = z4, the equation o# give:
—ct'(2q) = (1 — )k(6(24)) (1 — a(2a)) + €k(0(2a)) (1 — 0(2q)) < k(6(2a)).
Applying (51) toz = z; and becausg(f(z)) is a decreasing function, we obtain, foK z4:
_ 2
HO) > (53)

Let consider increasing variablés- 0, Sy, = (1 — 0)x/[D(1 —¢)] — aands; = Z{CV:Z. ui. Because
of (53), those variables are such that, o€ z,:

—k0"(2) —cb(2) > 662/56(1 —6(2)), (54)
2 .2

DSU(2) + cSh(2) > 2 < O Spu2), (55)

¢S/ (2)+¢Si(z) = 602/196 Si(2). (56)

We apply Lemma 5.5 to those variables. Firstfor 8, we obtain, forz < z4:
0<1—0(2) <1 —0(zq)] exp (i[«h Y defo—1)(» — zd)>
0< —0'(2) < |—0(zq) + i(l + 1+ 4e HC)Q(zd)] exp (i[\/ 1+ 4ef. — 1](z — zd)>
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We have also remarked that there exists a constanindependent of, which upperly bound the norms
of 6, o and y; in the Holder spac&?°(R). The constantg~ andct are also independent of and
0<c <c<ch. Then:

0<1—-6(z) <exp <;—_[\/1+4690—1](Z—Zd)> , (57)
K
0<—0'(z) < [M+—1+\/1+469 }exp< \/1+460—1](Z—Zd)> (58)
In the same way, fofy,, if z < z4:
ct D? c”
M + 2D <1+ 1+46?90>] exp (E

As 1 — 0, the functionsy anda’ then exponentially tend to zero abo:

0 < Spa(2) <

D2
1+ 46?90 - 1] (z — zd)> .

N

0< al2) < (-0 < g e (%[\/1 Tach, - 1)(= zd>) ,

(1—eD
g [ S v e (VT IR G - ),

—a/(2) <Sp,(2)

ct D? ¢
M+ —11 1+ 4e—=0, —
+2D<+ +ER2 )]exp(zD

Finally, applying Lemma 5.5 t§;, we have, forz < z4:

o (2) < —

N

D2
1+ 46?90 - 1] (z — zd)> .

0 < S;(2) < exp <2< 1 +4e%90 - 1] (z — zd)> (59)

ct ¢ c~
M—i_R( \/1+46290>]exp<ﬂ

The functions,u, andy; then exponentially tend to zero abo becaus® < y; < S, i, = S; — Sj,; < 5j
and—p; =S, — S/ <Sj 4

We then have an upper bound, independent, &6r the norm ofl — 8, « andy; in the space?ﬁ”(R—)
and the theorem is proved. d

0<Sj(2) <

1+ 46%90 — 1] (z — zd)> (60)

Theorem 5.7 There exists a constadt’ > 0 such that, for each € [0, 1], if ¢, a, m; in E are solution of
B-(t,a,m1,...,my) =0, then:

|®— tHcﬁH(R) < M, |®— a||03+5(R) < M, |®— mi||03+‘5(]R) <M, (61)
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Proof. — Letnoted =t/ € E, a = a>®(1 —a/() € E, p; = p°(1 — m;/¢) which are solution of
B (6,a,p1,...,un) =0.

Theorem 5.3, relations (41) and (43) and the upper bound.fer §=1(6,) in Lemma 5.4 give an upper
bound independent effor the norms of, a andm; in the Holder spac€?*(R). Estimates independent of
T in the space?ﬁ” (R™) are straightforward because of Theorem 5.3. We then onlg twfind estimates
independent of in the space’)ﬁ*‘s(R—) of the functionsl — 6, « and y;, which are respectively equal to
1—t,a®(1l—a)andu®(1 —m;)onR™.

We introduce, as in the proof of Theorem 5.6, the largestageal | — oo, z.] such tha®”(z;) = 0 and
we have:

K 6290
> — >
24 = 2 p— k(0(z)) = p
The increasing variables— 6, o andy; are then such that, far < z4:
20,
kO0"(2) —c'(z) > € - (1-0(z2)), (62)
20,
D:a"(z) +cd(z) = a(z), (63)
K
20,

G (2) + e pi(z) 2 e——pi(2). (64)

Applying Lemma 5.5 to those variables, we obtain:
0<1-0(2) <exp <%[\/T4690—1](z—2d)>7
0<—0'(2) < [M+— 1+\/m}exp< \/m—l](z—zd)>
0 < afz) < exp <% [V1+4c0, — 1] (Z_Zd)>>
0<d(2)< [M+— 1+\/m}exp<§— \/m—l](Z—Zd)>>
0 pule) < oxp (o [VIF A -1] (- 20)).
0< h(z) < [M+— (1+ /17 4e0,) }exp< _ «/1—1—4690—1](z—zd)>.

We then have an upper bound, independent, &r the norm ofl — 6, « andy; in the space?ﬁ”(]R{‘) and
the theorem is proved. O

5.5 Conclusion

For(, e andr fixed such thab < ( < D < r 0<e<1—pand0 < r <1, wethen have defined two
p

homotopies between the operator(8f . .) and a simpler operator vanishing only at one point. Morgover
we also have given a priori estimates in the weighted Héldacs, independent ef We can then conclude
with the existence of solution @8 ).
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Theorem 5.8 There exists a scalat > 0 and functions, «, p; solution of (8. ), such thatd, (o> —
a)/a® and (pu$° — p;)/pse are in E.

Proof. — Infact, we prove that there exists solutigm, m,; in E of system[lo(t, a,m) = 0, evaluating
its topological degree.

Because of Theorem 5.7, an open i&jlcan be chosen it +2, which contain all the zero of the ho-
motopy B;. The topological degrees 0By = A, B,) and(B;, B,) are then equal. Moreover, the problem
Bjw = 0 admits a unique solutiom,. Because of the functionalization ©{20), there is no eigenvalue for
linearized operator aty. The topological degree @f3;, B,) is then 1 or -1. So, the topological degree of
(A1, By) is different from zero.

Because of Theorem 5.6, an open B4 can be chosen i~ 12, which contain all the zero of the
homotopyA,. The topological degrees ¢fl,, By) and(A;, B,) are then equal and not equal to zero. The
theorem is then proved. d

6 Limits

We saw that, for eact €]0, D[, with D < % for eache €]0,1 — 3] and for each €]0, 1], there exists
p

a solution of(S¢ . ). We then show successively, the existence of solutior{§eg ), for (8.), for (8x)
and then for(8y).

6.1 Limit on the parameter r

Let now note,., o, andy; - a solution of(S . ,-), for eachr €]0, 1[. Theorem 4.4 give estimates@?+°(R)

for 6,, o, andy; .., independent of but eventually dependent gf These a priori estimates allows us to
pass to the limit when tends to 0, with convergent subsequences, thus giving d@olf the limit system.
But the used compactness property is only valid for funatiefined in bounded domains. The limit solution
can be extended to the whole real line but the convergencéheamot be uniform ofR. So the boundary
conditions of each function have to be recovered, thanksdqualities given in Proposition 4.3 and in
Theorem 4.4. We then have the Theorem:

Theorem 6.1 There exists a scalarand functiong), o and z1; in C2+°(R) solution of the syster, o).

Proof. — Letnoter,, = 1/nforn > 1 andc, 6,, ay,, w;, a solution of(8¢ . ,..) such tha#,,(0) = 6..
Since the sequend®,, )< is bounded inC?+%(R), then for any bounded subsetq, g, with ¢ € N*, we
can choose a subsequen@e,);en Which converges to some limiting functighin C?([—g, g]). We can
extend the limiting functior to the whole real line and choose a subsequence such thatitteohss);, — ¢
converge to zero i'2 on every bounded real interval. Moreover, the funcids in 02+5(R): indeed, itis
sufficient to verify the inequality

10" (z) = 6"(y)]

Ve e R, VyeR/{z}, P—

<M.

It follows from the similar inequality for the functiorts, with the constanfi/ independent of, and from the
C? convergence of the sequen@g, )ren to 6 in each bounded interval. We also can extract @) )xen
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and (u; j, )ken Subsequences still notéd ;, )ren and(u; j, )xen Which converge to functions andy; of
C**9(R), the convergence bein@? on all bounded interval. Without loss of generality we casuase that
the sequencéc;, )ren, bounded by, andc™, converge ta: > 0. Moreover, for each € R, the sequence
R, (0,(2), an(2)) converges tdRs(0(2), a(z)). Then,d, a andy; are solution of the equations (8 . ).
Because3,, is non negative, they are regular functions (they belonged-older spac€’?+(R)). We siill
have to find the limits of the functions atcc.

The functiond is decreasing and; = Ej.v:i i, fori = 1to IV, are increasing functions. Moreover,
those functions are bounded: then, they admit finite limitd&. Sincef(0) = 6., we have forz > 0:
0(z) = O.exp(—cz/k). Thenb(z) tends to 0 as tends to+oo andéd(z) > 6. for = < 0. Because of the
differential equation fo#, we know thatk(6(z))a(z) tends to 0 as tends to—oo. Then, necessarilyy(z)
tends to 0 ag tends to—oc.

Because of the differential equation 8¢, we know thatR,(0(z), a(z)) Zj\f:l M;p;(z) tends to O as
z tends totoo. At —oo, Ry(6(z),a(z)) has a positive limit. The functiong;(z) being positive, they
then tend to O as tends to—oco. At +oo, Ry(0(2), a(z)) necessarily tends to 0 and then(z) tends to
Yrs(0) = o™ asz tends to+oo.

Integrating orR the sum of the equation ¢§, ), we obtain:lim ., S; = lim_o f —a* <1 -«
Moreover, forz > 0, we know thatd(z) + a(z) + Si(z) > 1. Passing to the limit — +o0, we have
limyo S1 > 1 — ™. ThenS;(z) tends tol — o> = S{° asz tends to+oo andé(z) tends tol asz tends
to —oo0.

Let notel; the limit of u;(2) asz — +o0. Because of (27), we have:

Vie{l,...,N}, Z H < > (1 —1;) > 0.

7=t k=j+1
C_TIN F\ _ 1N Fy : ; :
Letnote); = [[i—; 11 (1+ 3£ [Ti—;4+2 (1 + 3£ ). The previous equation then reads:
N N
SO el > 0.
J=t k=]
Introducing the sum§;, = Zf (1 = 1), we have:y ", Ay > (E],f:i Ak)Si—1, with 89 = 0. We

know thatSy = 0. Then it is easy to prove that < 0 fori € {1,..., N}. But the first inequality is
Zk:l AkSk = 0. Thens; = 0 for all 4, the;(z) tend tou$® asz — +oo and the theorem is proved. [

6.2 Limit on the parameter ¢

Thanks to the estimates for= r = 0 of Theorem 4.4 and to inequalities of Proposition 4.3 andre@drem
4.4, we can pass to the limit whernends to O:

Theorem 6.2 There exists a scalarand functiond), « and p1; in C2+°(R) solution of the systert8,).
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Proof. — As for the proof of Theorem 6.1, because of estimates of dmar.4, we can find a sequence
€n, CONverging to zero, such that the solutienst,,, ay, i of (8¢, o) converge to a scalarand functions
6, a andy; in C2T(R), the convergence being? on all bounded interval.

The inequalities used in order to recover the limits of thecfions at+oco can still be used here. The
theorem is then proved. d

6.3 Limit on the diffusion coefficient

Let now notef;, a; and ;- a solution of(8¢), for each¢ € [0,D]. Estimates of Theorem 4.4 and
inequalities of Proposition 4.3 and of Theorem 4.4 are addiol Yor - = ¢ = r = 0. We can then pass to the
limit when ¢ tends to 0 in the systeit8.) and also in the inequalities, thus giving other inequalitiseful
for the next step:

Theorem 6.3 There exists a scalarand functions), a and y; in C?+9(R) solution of the syster8 v ).
Moreover,

0<c <c<ch, 0<a<l, Bu(6,a) >0, Vi o >0, Vi S;>0, 9’ <O0.

N

Proof. — The proof is very similar to the proof of Theorem 6.2: becanisestimates of Theorem 4.4,
we can find a sequencg, converging to zero, such that the solutianso,,, o, 1., Of (S¢,) converge to
a scalar and functions irC2(R): 6, a andy;, the convergence being? on all bounded interval.

The inequalities used in order to recover the limits of thecfions at+oo can still be used here and the
theorem is proved. d

6.4 Limit on the number of sections

We have here to pass to the limit when the number of sectioas tinfinity. We then use the numerical
analysis of the sectional approach given in [21] [18]. Buthese articles, the distribution function for the
kinetic problem was known. Here, we have to prove the exigtari the distribution function for the limit
problem and to recover the kinetic equation. In a first step,tlen construct an approximation of this
distribution. In a second step, we show the convergencei®fproximation and of the solutions for the
gaseous phase when the number of sections goes to infinity.

6.4.1 Construction of an approximation of the distribution function

In order to construct an approximation of the distributiomdtion, we introduce the characteristics corre-
sponding to gaseous variables solutions for the disceystem(S ). A distribution function can then be
defined as the transport of the distributigp along these characteristics. We then check in a proposition
using the numerical analysis of the sectional method, tltesburce term for the gaseous phase in the dis-
cretized system is close to the one calculated from the appated distribution function. This last result
will be essential for the passage to the limit in the equation

Let us notec™), 9, o™ and™) in C2+9(R) solution of the systertS v ), with 6¥) (0) = 6,. We
also renote?") and M"Y the constants in the equations on €. The functionRs (0™ (z), ™) (z))
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is non negative and upperly bounded ggi + N)0V)(z) /5 anddN) is exponentially decreasing d&it.
Then, the functionRs (6N (z), oY) (z2)) is integrable on each intervét, +oo[. Let then introduce the
characteristicst (V) and the function)"V) defined by:

X0 (2,8) = 5+ /:O Rs(0™) (1), o™ () dy (65)
M (z,8) = ¢o(X (2, 5)). (66)

The functiony)™) is a solution of the system:

Moz, 8) + Rs(0M) (1), a™ ()05 (2,8) =0  z2eR SeR*
YN (400, 8) = 1o (S) S eR*.

We want then to prove that the source te$fti is close to a moment of this functiapt™¥):

Proposition 6.4 There exists a constafif independent oiV and such that, for alt € R:

W/ Jo

N —+o0
S ™ My~ S22, 5) dS| < K AS.
i=1

Proof. — First, because of equations (65) and (66), the functit¥ (z, S) is null for z < z,, such
that:

+oco
/ R0 (2),a™ (2))dz = ¢ 8,0

Such az,, exists because the functidis (™) (z), a™¥) (2)) tends to—p In § whenz tends to—oo.
Let introduce the mass densities in each section, calcligith the distribution functiony®):

+oo
e =502 [ SR s)as.

In order to prove the proposition, we introduce two terms:

N +o0 N
>oM M) o sl/%(N)(z,sms‘ <MV M) - g @)
i=1 ™Jo i=1
v . (67)
(N)_(N), .y _ P > q1/2,(N)
MM 5 P .
+ ; N (2) iz 12N (2, 8)dS

We begin by giving an upper bound of the first term. It is prowe{1], [18] that the used multi-fluid
method is of order 1. More precisely, if

9 = O, R, Q0N 1 EN) PN )

thenfy.(N)

2

(2) =0for z < z,, and forz > z,:
i (2)] < €Rs(6™)(2), oM (2))\/5; AS2.
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with
3
C=—= 6\/_ 6”¢0HL°° R+) + ZSmawagHLOO(RJF) :

Let now introduce, for each section, the difference betwhercalculated mass density and the ‘real’ mass
density:el(.N)(z) = MEN)(z) - ﬂEN)(z). Those functions are such that:

C(N)azel(N)_RS(Q(N),Q(N))[(M( )+F( )) (N) E(Jer) €§+1)] _%(N),

andeg )( ) \ reaches its maximum aj such thao, e( )(zo) =
0. We have then the inequality:
(N) (N)
Fi 1 i Zo
e ey < 6™ ()| < P el z0)] + 7 (20)

M + FN) M®™ 4 E™ | Rs(00)(z,), M (2,)) |
Let note3; = fé:qil o®/2do. Then:

N B Bi
6" ey < el e €5 AS™

We obtain an upper bound f@egm l| oo (m)

N o
o (®) < CAS? — ] 5.
i <008 (31 )

k=i

So, the first term of (67) can be upperly bounded:

N N o1\ g /S N
< CAS? — 1= / 1245 < CAS? S,
3 3 (L) e ceas v
e[ Sf’,{fw+ASw/Sma4 AS

We now have to upperly bound the second term of (67).

N +o00
MMMy - P S12(N) (2. §)dS
Ezj @) - | (2.9)

with

N S.
Pl Coa1/2
< —— oo E i
< 4\/7_T”¢0”L (RT) - /Si1 S ]u (S)‘ ds

) ngj,l o2do fs Yoll2do
fsifl o3/2do fs_ ) 0'3/2(10'

So:

Si
AS / S48
=1 J8; 4

i 1/2 2 (2% 1) al
SU2 |y ()] dS < —/ S1245 +
> 3y 2.5
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But:

le

1/2 AS 1/2
H[Si@(”sz)—s/}

= \/Smaz \/—+ASZ \/ .

We can then upperly bound the preceding term:

L 1

N s N-1
Z/ SY2u(9)) dS < SAS <\/Smch +V2AS Z %)
=1 Si,1

2A8 <\/T+\/K/ _dm)
1+2xf )ASV Smaa-

We can then upperly bound the second term of (67):

|[\'>OJ[\'> [JSR N

+
i (z) — 4% SY2(N) (2, 9)dS| < \F(l +2v2) [0l Lo (mt) V/ Smaz AS,
and the proposition is proved. O

6.4.2 Passage to the limit

We can then pass to the limit, using the techniques similan&s of previous subsections:

Theorem 6.5 There exists a scalar and functions), o and p; in C**9(R) solution of the syster(Sy).
Moreover,By; > 0.

Proof. — The constants™, ¢ of Theorem 4.4 are independent§t We then have the estimates, for
all N € N*;

2
o< <d™<et,  0<a™<1 0™ <k +2, By >0
K

BecauseRs (9N, aN)) is bounded by the constap(2 + §)/¢ independent ofV andz, it is easy to have
upper bounds mdependentM for |a™’|| Loy and then for|§™) | cavs gy and ™ ||c2(gy. As for
Theorems 6.2 and 6.3, there exists a scalaiunctlonse € C*I(R) anda e C?(R) and subsequences
W) Vi) and V) which converge te, 6 anda, the convergence bein@? in all bounded interval for
the functions.

Let prove that the functiogN*) have also a limit. We know that, far> 0:

~ C(Nk) c
]RS(H(Nk)(z),a(Nk (2))] < 5(N+ 1)9( )( ) =6.exp | — - z | <6.exp <—?z>,
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and, in the same way
|Rs(0(2), a(2))] < 0 exp <_%z> ,

Then Rg(6Ne), o(Nk)) converge uniformly taRs (6, ). So, the characteristi& (V+) (2, S) converges to
X(2,9) = S+ 1 [ Rs(6(y), a(y))dy andyp ) (2, ) = (XN (2, 5)) converges tai(z, ) =
1o(X(z,59)). Those convergences are uniformdre R*. So:

klln;#/()+ S2y(N0) (5 §)dS = 4\—F " S12y (2, §)dS
and because of Proposition 6, v, ¢ are solution of 8).

We only have to find the limits of the functiosand o at +oo. We saw that forz > 0, 0(z) =
0. exp(—cz/k) andlim,_. ;- 6(z) = 0. Becausd has a limit at—oco and because of the equation érwe
havelim,_, ., a(z) = 0. MoreoverRg(6(z), a(z)) tends to 0 ag tends to+oc. Thenlim,_ o a(z) =
Yrs(0) = a™. We also have

+oo
(Nk) (Nk) pL 3/2,,(Nk)
Dou =m0 = gz [ SRz, 5)dS + O(N)
Pl e 3/2
— ﬁ 0 S ¢(Z, S)dS
Then
Pl oo 3/2
9+a+6\/_ S3/24)(2,8)dS > 1

As for (V&) (2, 8), (2, S) = 0 for sufficiently largez and thend(z) + a(z) > 1. Then, necessarily,
lim,_,_~ 6(z) = 1 and the theorem is proved. O

7 Conclusion

In this paper, we have proved the existence of traveling vealation for the system of partial differen-
tial equations(PDE) of mixed type hyperbolic-parabolic describing the propgageof a plane flame in a
polydisperse fuel spray. Let us recall the system satisfyatidtraveling wave solution profiles :

KO"+c0 +k(0)a=
(S0) Dd"+cd — 12:(9)04 Sm(z 0,a) =0,
cd,0 + Rg(0, a) dgtp = S >0,
with the source term:

§7(2.0.0) = 4= Rs(0.0) /0 SV/2 (2, S) dS,

and with the boundary conditions at infinity:

(Lo) {9(+ o0) =0, a(+o0) =a>, Y(+o00,8) = 1y(9),
O(—o0) =1,



The originality of the present contribution is fourfold.r§t from the modeling point of view, we use
a detailed model, coupling a thermo-diffusive model for gfaseous phase to a kinetic description of the
vaporization of a polydisperse spray of liquid fuel dropleMore specifically, we obtain the existence of
a solution under the condition that Lewis number is such tkat: 1 + p, where the positive real only
depends on the fuel saturated vapor mass fradtiaii7’) and on the temperature of the cold dgas

(T _ TO)YI/'—{S(T)
Yo (T)
p=0 it Ty > Ty — v

p:max{ , T0<T<Teb—1/} if To<Tep—v

This condition insures that no condensation phenomenoakiag place. It is coherent with the chosen
model; however, it would be very interesting to further istigate if this condition can be weakened so that
the existence of the traveling wave persists dowhde= 1. Second, the use of Eulerian multi-fluid models
in order to treat the droplet size phase space allows usaorairent the difficulty of a non-local vaporization
source term in the reactant parabolic equation. It is not anlinteresting way of treating the vaporization
process but, and this is the third aspect of the originalitthe paper, it is compatible, with the addition of
a droplet mass density diffusion process through some was&ays turbulent agitation and allows us to
use the techniques of topological degree in unbounded dasnai elliptic operators. In other terms, if we
would first take the limit of an infinite number of sectionshe discretization of the droplet size phase space,
we could prove the existence of a traveling wave in the praseha small turbulent agitation in the gaseous
phase resulting in a diffusion process at the level of th@léts. Four, we use a new way of perturbing the
system of elliptic equations in order to define an elliptiedholm and proper operator in weighted Holder
spaces, in such a way that the monotonicity and homotopéeseated in a much simpler way. Finally, this
paper is a first step forward to providing the qualitativelgsia of two-phase flame propagation in using
models bridging the gap between too simplified theoreticadiets and practical applications.
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