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The Nagaev-Guivarc'h method, via the perturbation operator theorem of Keller and Liverani, has been exploited in recent papers to establish limit theorems for unbounded functionals of strongly ergodic Markov chains. The main difficulty of this approach is to prove Taylor expansions for the dominating eigenvalue of the Fourier kernels. The paper outlines this method and extends it by stating a multidimensional local limit theorem, a one-dimensional Berry-Esseen theorem, a first-order Edgeworth expansion, and a multidimensional Berry-Esseen type theorem in the sense of the Prohorov metric. When applied to the exponentially L 2 -convergent Markov chains, to the v-geometrically ergodic Markov chains and to the iterative Lipschitz models, the three first above cited limit theorems hold under moment conditions similar, or close (up to ε > 0), to those of the i.i.d. case.

Titre (en français). La méthode de Nagaev-Guivarc'h via le théorème de Keller-Liverani Mots-clés : chaîne de Markov, théorème limite central, développement d'Edgeworth, méthode spectrale Résumé. La méthode de Nagaev-Guivarc'h, via le théorème de perturbation de Keller et Liverani, a été appliquée récemment en vu d'établir des théorèmes limites pour des fonctionnelles non bornées de chaînes de Markov fortement ergodiques. La difficulté principale dans cette approche est de démontrer des développements de Taylor pour la valeur propre perturbée de l'opérateur de Fourier. Dans ce travail, nous donnons une présentation générale de cette méthode, et nous l'étendons en démontrant un théorème limite local multidimensionnel, un théorème de Berry-Esseen unidimensionnel, un développement d'Edgeworth d'ordre 1, et enfin un théorème de Berry-Esseen multidimensionnel au sens de la distance de Prohorov. Nos applications concernent les chaînes de Markov L 2 -fortement ergodiques, vgéométriquement ergodiques, et les modèles itératifs. Pour ces exemples, les trois premiers théorèmes limites cités précédemment sont satisfaits sous des conditions de moment dont l'ordre est le même (parfois à ε > 0 près) que dans le cas indépendant.

Introduction, setting and notations

Let (X n ) n be a Markov chain with values in (E, E), with transition probability Q and with stationary distribution π. Let ξ be a π-centered random variable with values in R d (with d ≥ 1). We are interested in probabilistic limit theorems for (ξ(X n )) n namely:

• central limit theorem (c.l.t.),

• rate of convergence in the central limit theorem: Berry Esseen type theorem,

• multidimensional local limit theorem,

• First-order Edgeworth expansion (when d = 1). We want to establish these results under moment conditions on ξ as close as possible to those of the i.i.d. case (as usual i.i.d. is the short-hand for "independent and identically distributed"). Let us recall some facts about the case when (Y n ) n is a sequence of i.i.d. R d -valued random variables (r.v.) with null expectation. If Y 1 ∈ L 2 , we have the central limit theorem and, under some additional nonlattice type assumption, we have the local limit theorem. If Y 1 ∈ L 3 and d = 1, we have the uniform Berry-Esseen theorem, and the first-order Edgeworth expansion (under the nonlattice assumption). All these results can be proved thanks to Fourier techniques. If Y 1 ∈ L 3 , (Y n ) n satisfies a multidimensional Berry-Esseen type theorem (in the sense of the Prohorov metric). The proof of this last result uses Fourier techniques and a truncation argument.

To get analogous results for Markov chains, we shall use and adapt the Nagaev-Guivarc'h method, introduced in [START_REF] Nagaev | Some limit theorems for stationary Markov chains[END_REF] [START_REF] Nagaev | More exact statements of limit theorems for homogeneous Markov chains[END_REF] in the case d = 1. This method is based on Fourier techniques and on the usual perturbation operator theory applied to the Fourier kernels Q(t)(x, dy) = e itξ(y) Q(x, dy) (t ∈ R). The idea is that E e it n k=1 ξ(X k ) is close enough to an expression of the form λ(t) n , and the calculations are then similar to those of the i.i.d. case. Indeed, let us recall that, if (Y n ) n is a sequence of i.i.d. random variables, then we have

E e it n k=1 Y k = E[e itY 1 ] n .
The Nagaev-Guivarc'h method, also called the spectral method, has been widely strengthened and extended, especially since the 80's with the contribution of Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], Rousseau-Egele [START_REF] Rousseau-Egele | Un théorème de la limite locale pour une classe de transformations dilatantes[END_REF], Guivarc'h [START_REF] Guivarc | Application d'un théorème limite local à la transcience et à la récurrence de marches aléatoires[END_REF], Guivarc'h and Hardy [START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF], Milhaud and Raugi [60]. This is fully described by Hennion and the first author in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF], where other references are given. Roughly speaking, to operate the Nagaev-Guivarc'h method, one needs the following strong ergodicity assumption (specified below) w.r.t. some Banach space B, namely: Q n → π in the operator norm topology of B. Under this assumption, the sequence (ξ(X n )) n then satisfies the usual distributional limit theorems provided that (Q, ξ) verifies some operator-moment conditions on B. This method is especially efficient when B is a Banach algebra and ξ is in B. Unfortunately, on the one hand, since Banach algebras are often composed of bounded functions, the condition ξ ∈ B implies that ξ must be bounded. On the other hand, usual models as v-geometrically ergodic Markov chains or iterative Lipschitz models (typically E = R p ) are strongly ergodic w.r.t. some weighted supremum normed space or weighted Lipschitz-type space which are not Banach algebras, and the above mentioned operator-moment conditions then hold under very restrictive assumptions involving both Q and ξ. For instance, in these models, the usual spectral method cannot be efficiently applied to the sequence (X n ) n (i.e. ξ(x) = x); an explicit and typical counter-example will be presented in Section 3.

In recent works [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF][START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF][START_REF] Chazottes | On almost-sure versions of classical limit theorems for dynamical systems[END_REF][START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF][START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF][START_REF] Guibourg | Théorème de renouvellement pour chaînes de Markov géom triquement ergodiques. Applications aux modèles itératifs Lipschitziens[END_REF][START_REF] Gouëzel | Necessary and sufficient conditions for limit theorems in Gibbs-Markov maps[END_REF], a new procedure, based on the perturbation theorem of Keller-Liverani [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] (see also [START_REF] Baladi | Positive transfer operators and decay of correlations[END_REF] p. 177), allows to get round the previous difficulty and to greatly improve the Nagaev-Guivarc'h method when applied to unbounded functionals ξ. Our work outlines this new approach, and presents the applications, namely : a multidimensional local limit theorem, a one-dimensional Berry Esseen theorem, a first-order Edgeworth expansion. We establish these results under hypotheses close to the i.i.d. case. We also establish a multidimensional Berry-Esseen type theorem in the sense of the Prohorov metric under hypotheses analogous to Y 1 ∈ L m with m = max (3, ⌊d/2⌋ + 1) instead of Y 1 ∈ L 3 . The reason is that, when adapting [START_REF] Yurinskii | A smoothing inequality for estimates of the Levy-Prokhorov distance[END_REF], we can use Yurinskii's smoothing inequality (valid for r.v. in L m ) but we cannot adapt Yurinskii's truncation argument.

When the usual perturbation theorem is replaced with that of Keller-Liverani, the main difficulty consists in proving Taylor expansions for the dominating eigenvalue λ(t) of the Fourier kernel Q(t). This point is crucial here. Such expansions may be obtained as follows:

(A) To get Taylor expansion at t = 0, one can combine the spectral method with more probabilistic arguments such as martingale techniques [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF]. In this paper, this method is just outlined: the local limit theorem obtained in [START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF] is extended to the multidimensional case, and the one-dimensional uniform Berry-Esseen theorem of [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF] is here just recalled for completeness.

(B) To establish the others limit theorems, we shall use a stronger property: the regularity of the eigen-elements of Q(•) on a neighbourhood of t = 0. We shall see that this can be done by considering the action of Q(t) on a "chain" of suitable Banach spaces instead of a single one as in the classical approach. This method, already used for other purposes in [START_REF] Page | Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications[END_REF][START_REF] Hennion | Dérivabilité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes à coefficients positifs[END_REF][START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF], has been introduced in the spectral method [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF] to investigate the c.l.t. for iterative Lipschitz models. It is here specified and extended to general strongly ergodic Markov chains, and it will provide the one-dimensional Edgeworth expansion and the multidimensional Berry-Esseen type theorem.

Next, we introduce our probabilistic setting, and the functional notations and definitions, helpful in defining the operator-type procedures of the next sections.

Probabilistic setting. (X n ) n≥0 is a Markov chain with general state space (E, E ), transition probability Q, stationary distribution π, initial distribution µ, and ξ = (ξ 1 , . . . , ξ d ) is a R dvalued π-integrable function on E such that π(ξ) = 0 (i.e. the ξ i 's are π-integrable and π(ξ i ) = 0). The associated random walk in R d is denoted by

S n = n k=1 ξ(X k ).
We denote by | • | 2 and •, • the euclidean norm and the canonical scalar product on R d . For any t ∈ R d and x ∈ E, we define the Fourier kernels of (Q, ξ) as Q(t)(x, dy) = e i t, ξ(y) Q(x, dy). N (0, Γ) denotes the centered normal distribution associated to a covariance matrix Γ, and " D > " means "convergence in distribution". Although (X n ) n≥0 is not a priori the canonical version, we shall slightly abuse notation and write P µ , E µ to refer to the initial distribution. For any µ-integrable function f , we shall often write µ(f ) for f dµ. For x ∈ E, δ x will stand for the Dirac mass: δ x (f ) = f (x). Finally, a set A ∈ E is said to be π-full if π(A) = 1, and Q-absorbing if Q(a, A) = 1 for all a ∈ A.

Functional setting. Let B, X be complex Banach spaces. We denote by L(B, X) the space of the bounded linear operators from B to X, and by • B,X the associated operator norm, with the usual simplified notations L(B) = L(B, B), B ′ = L(B, C), for which the associated norms are simply denoted by • B . If T ∈ L(B), r(T ) denotes its spectral radius, and r ess (T ) its essential spectral radius. For the next use of the notion of essential spectral radius, we refer for instance to [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF][START_REF] Räbiger | On the approximation of positive operators and the behaviour of the spectra of the appoximants[END_REF][START_REF] Wu | Essential spectral radius for Markov semigroups (I): discrete time case[END_REF] and [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]Chap. XIV]. The notation "B ֒→ X" means that B ⊂ X and that the identity map is continuous from B into X.

We denote by L 1 (π) the vector space of the complex-valued π-integrable functions on E, and by Cl(f ) the class of f modulo π. We call B

∞ the space of all bounded measurable functions on E equipped with the supremum norm, and L p (π), 1 ≤ p ≤ +∞, the usual Lebesgue space. If B ⊂ L 1 (π) and X ⊂ L 1 (π), we shall also use the notation "B ֒→ X" to express that we have Cl(f ) ∈ X for all f ∈ B and that the map f → Cl(f ) is continuous from B to X.

If f ∈ L 1 (π), it can be easily seen that the following function

(Q) (Qf )(x) = E f (y) Q(x, dy)
is defined π-a.s. and is π-integrable with:

π(|Qf |) ≤ π(|f |). If B ⊂ L 1 (π), Q(B) ⊂ B
and Q ∈ L(B), we say that Q continuously acts on B. If B ⊂ L 1 (π), we shall use the same definition with Q given by Q Cl(f ) = Cl(Qf ) (which is possible since Cl(f ) = Cl(g) implies Cl(Qf ) = Cl(Qg)). Clearly, Q is a contraction on B ∞ and L p (π).

Strong ergodicity assumption. Unless otherwise indicated, all the normed spaces (B, • B ) considered in this paper satisfy the following assumptions: (B, • B ) is a Banach space such that, either B ⊂ L 1 (π) and 1 E ∈ B, or B ⊂ L 1 (π) and Cl(1 E ) ∈ B, and we have in both cases B ֒→ L 1 (π). We then have π ∈ B ′ , so we can define the rank-one projection Π on B:

Πf = π(f )1 E (f ∈ B),
and we shall say that Q (or merely (X n ) n ) is strongly ergodic w.r.t. B if the following holds:

(K1) Q ∈ L(B) and lim n Q n -Π B = 0.

One could also say " geometrically ergodic w.r.t. B ". Indeed, one can easily see that the last property in (K1) is equivalent to:

(K'1) ∃κ 0 < 1, ∃C > 0, ∀n ≥ 1, Q n -Π B ≤ C κ n 0 . We shall repeatedly use the following obvious fact. If Q is strongly ergodic w.r.t. B, and if f ∈ B is such that π(f ) = 0, then the series k≥0 Q k f is absolutely convergent in B. Now, let us return to more probabilistic facts. When (X n ) n is Harris recurrent and strongly mixing, the so-called regenerative (or splitting) method provides limit theorems, including the uniform Berry-Esseen theorem [START_REF] Bolthausen | The Berry-Esseen theorem for strongly mixing Harris recurrent Markov chains[END_REF] and Edgeworth expansions [START_REF] Malinovskii | Limit theorems for Harris Markov chains I[END_REF]. We want to point out that here the Harris recurrence is not assumed a priori. Moreover, the Markov chains in Examples 1-2 below are strongly mixing, but for these two examples, our results will be as efficient as all the others hitherto known ones, even better in many cases. The random iterative models of Example 3 are not automatically, either strongly mixing, or even Harris recurrent (see [START_REF] Alsmeyer | On the Harris recurrence of iterated random Lipschitz functions and related convergence rate results[END_REF]).

Example 1: The strongly ergodic Markov chains on L 2 (π) (see e.g. [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF]). We assume here that the σ-algebra E is countably generated. Let us recall that the strong ergodicity property on L 2 (π) (namely, (K1) on B = L 2 (π)) implies that (K1) holds on L p (π) for any p ∈ (1, +∞), see [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF]. This assumption, introduced in [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF] and called the exponential L 2 (π)-convergence in the literature, corresponds to ergodic and aperiodic Markov chains with spectral gap on L 2 (π), see for instance the recent works [START_REF] Wu | Essential spectral radius for Markov semigroups (I): discrete time case[END_REF][START_REF] Gong | Spectral gap of positive operators and applications[END_REF] (and the references therein).

The previous assumption is for instance satisfied if we have (K1) on B ∞ (see [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF]): in this case, according to the terminology of [START_REF] Meyn | Markov chains and stochastic stability[END_REF], we will say that (X n ) n is uniformly ergodic. Equivalently, (X n ) n is aperiodic, ergodic, and satisfies the so-called Doeblin condition, see [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF]. This simple example was used in Nagaev's works [START_REF] Nagaev | Some limit theorems for stationary Markov chains[END_REF][START_REF] Nagaev | More exact statements of limit theorems for homogeneous Markov chains[END_REF] (see Section 3).

The strong ergodicity on L 2 (π) provides a first motivation and a good understanding of the present improvements. Indeed, (except for the multidimensional Berry-Esseen theorem) for results requiring Y 1 ∈ L m in the i.i.d. case, whereas the usual Nagaev-Guivarc'h method needs the assumption sup x∈E |ξ(y)| m Q(x, dy) < +∞ [START_REF] Nagaev | More exact statements of limit theorems for homogeneous Markov chains[END_REF][START_REF] Gharib | A uniform estimate for the rate of convergence in the multidimensional central limit theorem for homogeneous Markov chains[END_REF][START_REF] Datta | On the first-order Edgeworth expansion for a Markov chain[END_REF], the present method appeals to the moment conditions ξ ∈ L m (π) or ξ ∈ L m+ε (π).

In more concrete terms, let (X n ) n be a strongly ergodic Markov chain on L 2 (π), and for convenience let us assume that (X n ) n is stationary (i.e. µ = π). From Gordin's theorem (Section 2), if π(|ξ| 2 2 ) < +∞, then (S n / √ n) n converges in distribution to a normal law N (0, Γ) (see also [START_REF] Chen | Limit theorems for functionals of ergodic Markov chains with general state space[END_REF][START_REF] Jones | On the Markov chain central limit theorem[END_REF]). It is understood below that the covariance matrix Γ is invertible. The nonlattice condition will mean that the following property is fulfilled: there is no

a ∈ R d , no closed sub- group H in R d , H = R d , no π-full Q-absorbing set A ∈ E, and finally no bounded measurable function θ : E → R d such that: ∀x ∈ A, ξ(y) + θ(y) -θ(x) ∈ a + H Q(x, dy) -a.s..
The next statements, that will be specified and established as corollaries of the abstract results of Sections 5-9, are new to our knowledge. Some further details and comparisons with prior results will be presented together with the corollaries cited below:

(a) If π(|ξ| 2 
2 ) < +∞ and ξ is nonlattice, then (ξ(X n )) n satisfies a multidimensional local limit theorem (Corollary 5.5). (b) (d = 1) If π(|ξ| 3 ) < +∞, then (ξ(X n )) n satisfies a one-dimensional uniform Berry-Esseen theorem (Corollary 6.3).

(c) (d = 1) If π(|ξ| α ) < +∞ with some α > 3 and ξ is nonlattice, then (ξ(X n )) n satisfies a one-dimensional first-order Edgeworth expansion (Corollary 8.2). (d) If π(|ξ| α
2 ) < +∞ for some α > max (3, ⌊d/2⌋ + 1), then (ξ(X n )) n satisfies a multidimensional Berry-Esseen theorem in the sense of the Prohorov metric (Corollary 9.2).

Application to the Knudsen gas model. Corollary 9.2 just above summarized enables us to specify the slightly incorrect Theorem 2.2.4 of [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF] concerning the Knudsen gas model studied by Boatto and Golse in [START_REF] Boatto | Diffusion approximation of a Knudsen gaz model : dependence of the diffusion constant upon a boundary condition[END_REF]. Let us briefly recall the link with the uniform ergodicity hypothesis, see [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF] for details. Let (E, E, π) be a probability space, let T be a π-preserving transformation. The Knudsen gas model can be investigated with the help of the Markov chain (X n ) n on (E, E, π), whose transition operator Q is defined as follows, for some δ ∈ (0, 1):

Qf = δ π(f ) + (1 -δ) f • T.
Then (X n ) n is clearly uniformly ergodic. Theorem 2.2.4 of [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF] gave a rate of convergence in n -1/2 (in the sense of the Prohorov metric) in the multidimensional c.l.t. for (ξ(X n )) n under the hypothesis ξ ∈ L3 (π) ∩ L ⌊d/2⌋+1 (π). However, the proof of this statement is not correct as it is written in [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF] 3 . By Corollary 9.2 of the present paper, the above mentioned rate of convergence is valid if we have ξ ∈ L 3+ε (π) ∩ L ⌊d/2⌋+1+ε (π) for some ε > 0.

Of course Example 1 is quite restrictive, and another motivation of this work is to present applications to the two next Markov models of more practical interest.

Example 2: the v-geometrically ergodic Markov chains (see e.g [START_REF] Meyn | Markov chains and stochastic stability[END_REF][START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processses[END_REF]). This example constitutes a natural extension of the previous one. Let v : E →[1, +∞) be an unbounded function. Then (X n ) n is said to be v-geometrically ergodic if its transition operator Q satisfies (K1) on the weighted supremum normed space (B v , • v ) composed of the measurable complex-valued functions f on E such that

f v = sup x∈E |f (x)|/v(x) < +∞.
Applications of our abstract results to this example are given in Section 10. For all our limit theorems (except for the multidimensional Berry Esseen theorem), when Y 1 ∈ L m is needed in the i.i.d. case, the usual spectral method requires for these models the condition sup x∈E v(x) -1 |ξ(y)| m v(y)Q(x, dy) < +∞ (see e.g [START_REF] Fuh | Asymptotic expansions in multidimensional Markov renewal theory and first passage times for Markov random walks[END_REF]) which, in practice, often amounts to assuming that ξ is bounded [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processses[END_REF]. Our method only requires that |ξ| m ≤ C v or |ξ| m+ε ≤ C v, which extends the well-known condition |ξ| 2 ≤ C v used for proving the c.l.t. [START_REF] Meyn | Markov chains and stochastic stability[END_REF].

Example 3: the iterated random Lipschitz models (see e.g [START_REF] Duflo | Random Iterative Models[END_REF][START_REF] Diaconis | Iterated random functions[END_REF]). Except when Harris recurrence and strong mixing hypotheses are assumed, not many works have been devoted to the refinements of the c.l.t. for the iterative models. As in [START_REF] Milhaud | Etude de l'estimateur du maximum de vraisemblance dans le cas d'un processus auto-régressif: convergence, normalité asymptotique, vitesse de convergence[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF][START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF], the important fact here is that these models are Markov chains satisfying (K1) on the weighted Lipschitz-type spaces, first introduced in [START_REF] Page | Théorèmes de renouvellement pour les produits de matrices aléatoires[END_REF], and slightly modified here according to a definition due to Guibourg. Applications of our results to this example are detailed in Section 11: by considering the general weighted-Lipschitz functionals ξ of [START_REF] Duflo | Random Iterative Models[END_REF], the limit theorems are stated under some usual moment and mean contraction conditions, which extend those of [START_REF] Duflo | Random Iterative Models[END_REF] [7] used to prove the c.l.t.. When applied to some classical random iterative models, these assumptions again reduce to the moment conditions of the i.i.d case (possibly up to ε > 0). For instance, let us consider in R d the affine iterative model X n = AX n-1 + θ n where A is a strictly contractive d × d-matrix and X 0 , θ 1 , θ 2 , . . . are R d -valued independent r.v.. Then, in the case ξ(x) = x, our limit theorems (except the multidimensional Berry-Esseen theorem) hold if θ 1 ∈ L m , where m is the corresponding optimal order of the i.i.d. case (up to ε > 0 as above for the Edgeworth expansion), whereas the usual spectral method requires exponential moment conditions for these statements [START_REF] Milhaud | Etude de l'estimateur du maximum de vraisemblance dans le cas d'un processus auto-régressif: convergence, normalité asymptotique, vitesse de convergence[END_REF].

Extensions. The operator-type derivation procedure (B) may be also used to investigate renewal theorems [START_REF] Guibourg | Théorème de renouvellement pour chaînes de Markov géom triquement ergodiques. Applications aux modèles itératifs Lipschitziens[END_REF] [START_REF] Guibourg | A renewal theorem for strongly ergodic Markov chains in dimension d ≥ 3 and in the centered case[END_REF], and to study the rate of convergence of statistical estimators for strongly ergodic Markov chains (thanks to the control of the constants in (B)), see [START_REF] Hervé | A Berry-Esseen theorem on M -estimators for geometrically ergodic Markov chains[END_REF].

Anyway, our method may be employed in other contexts where Fourier operators occur. First, by an easy adaptation of the hypotheses, the present limit theorems may be extended to the general setting of Markov random walks (extending the present results to sequence (X n , S n ) n ). Second, these theorems may be stated for the Birkhoff sums stemming from dynamical systems, by adapting the hypotheses to the so-called Perron-Frobenius operator (to pass from Markov chains to dynamical systems, see e.g [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] Chap. XI).

The Nagaev-Guivarc'h method can be also used to prove the convergence to stable laws. For this study, the standard perturbation theorem sometimes operates, see [START_REF] Aaronson | Local limit theorem for partial sums of stationary sequences generated by Gibbs-Markov maps[END_REF][START_REF] Aaronson | A Local limit theorem for stationary processes in the domain of attraction of a normal distribution[END_REF][START_REF] Babillot | Asymptotic laws for geodesic homology on hyperbolic manifolds with cusps[END_REF][START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF][START_REF] Guivarc | Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions[END_REF][START_REF] Hennion | Stable laws and products of positive random Matrices[END_REF]. But, since the r.v. which are in the domain of attraction of a stable law are unbounded, the Keller-Liverani theorem is of great interest for these questions. This new approach has been introduced in [START_REF] Bálint | Limit theorems in the stadium billiard[END_REF] in the context of the stadium billiard, and it has been recently developed in [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF] for affine random walks and in [START_REF] Gouëzel | Necessary and sufficient conditions for limit theorems in Gibbs-Markov maps[END_REF] for Gibbs-Markov maps.

An important question to get further applications will be to find some others "good" families of spaces to apply the operator-type derivation procedure (B). To that effect, an efficient direction is to use interpolation spaces as in [START_REF] Gouëzel | Necessary and sufficient conditions for limit theorems in Gibbs-Markov maps[END_REF].

Plan of the present paper. Section 2 presents a well-known central limit theorem based on Gordin's method, with further statements concerning the associated covariance matrix. In Section 3, we summarize the usual spectral method, and we give an explicit example (belonging to example 2) to which this method cannot be applied. Section 4 presents the Keller-Liverani perturbation theorem and some first applications concerning the link between the characteristic function of S n and the eigen-elements of the Fourier kernels Q(t). These preliminary results are then directly applied to prove a multidimensional local limit theorem in Section 5, and to recall in Section 6 the Berry-Esseen theorem of [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF]. Some useful additional results on the non-arithmeticity condition are presented in Section 5.2: these results are detailed in Section 12. Section 7 states the derivation statement mentioned in the above procedure (B), and this statement is then applied to prove a first-order Edgeworth expansion (Section 8) and a multidimensional Berry-Esseen type theorem for the Prohorov metric (Section 9). Let us mention that all the operator-type assumptions introduced in the sections 4 and 7, as well as all our limit theorems, will be directly afterward investigated and illustrated through the example of the strongly ergodic Markov chains on L 2 (π) (Example 1). The applications to Examples 2-3 are deferred to Sections 10-11. Finally, mention that the proof of the main result of Section 7, and the technical computations involving the weighted Lipschitz-type spaces of Section 11, are relegated to Appendices A-B.
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A central limit theorem in the stationary case

As a preliminary to the next limit theorems, we state here a well-known c.l.t. for (ξ(X n )) n , which is a standard consequence of a theorem due to Gordin [START_REF] Gordin | On the central limit theorem for stationary Markov processes[END_REF]. We shall then deduce a corollary based on Condition (K1). In this section, we only consider the stationary case. Let us observe that, concerning distributional questions on (ξ(X n )) n , one may without loss of generality assume that (X n ) n≥0 is the canonical Markov chain associated to Q. So we consider here the usual probability space (E N , E ⊗N , P π ) for the canonical Markov chain, still denoted by (X n ) n≥0 , with transition probability Q and initial stationary distribution π.

Let θ be the shift operator on E N . As usual we shall say that (X n ) n≥0 is ergodic if the dynamical system (E N , E ⊗N , P π , θ) is ergodic.

Theorem (Gordin). Assume that (X n ) n≥0 is ergodic, and 

∀i = 1, . . . , d, ξ i ∈ L 2 (π) and ξi := n≥0 Q n ξ i converges in L 2 (π). Then Sn √ n D > N (0, Γ),
i ) = 0, the series ξi = +∞ n=0 Q n ξ i converges in B, thus in L 2 (π). For instance, if (X n ) n is strongly ergodic on L 2 (π) (see Example 1), then (X n ) n is ergodic [66],
and we find again the well-known fact that the central limit theorem holds in the stationary case when π(|ξ| 2 2 ) < +∞. In order to make easier the use of Corollary 2.1 in other models, let us recall the following sufficient condition for (X n ) n to be ergodic. This statement, again in relation with Condition (K1), is established in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] (Th. IX.2) with the help of standard arguments based on the monotone class theorem. 

∃t ∈ R d , t = 0, ∃g ∈ B, t, ξ(X 1 ) = g(X 0 ) -g(X 1 ) P π -a.s..
Let us notice that this equivalence is still true for B = L 2 (π) if we know that:

∀t ∈ R d , sup n≥1 n Γt, t -E π [ t, S n 2 ] < +∞.
Proof of Proposition 2.3. If t, ξ(X 1 ) = g(X 0 )g(X 1 ) P π -a.s., then t,Sn √ n n converges in distribution to the Dirac mass at 0 (which proves that Γ is non invertible). Indeed, by stationarity, we have t, ξ(X n ) = g(X n-1 )g(X n ) P π -a.s. for all n ≥ 1, so t, S n = g(X 0 )g(X n ). Since we have g ∈ B ֒→ L 2 (π), this implies that lim n E π [( t,Sn √ n ) 2 ] = 0 and hence the desired statement. Conversely, let us suppose that Γ is not invertible. Then there exists t ∈ R d , t = 0, such that Γt, t = 0. From the definition of Γ given in the above theorem and from the obvious equality

E π [( ξt (X 1 ) -Q ξt (X 0 )) 2 ] = π( ξ2 t ) -π((Q ξt ) 2 ), it follows that E π [( ξt (X 1 ) -Q ξt (X 0 )) 2 ] = 0. Thus ξt (X 1 ) -Q ξt (X 0 ) = 0 P π -a.s.. Set ξ t (•) = t, ξ(•) . By definition of ξt , we have ξt = ξ t + Q ξt , so ξ t (X 1 ) + Q ξt (X 1 ) -Q ξt (X 0 ) = 0 P π -a.s..
This yields ξ t (X 1 ) = g(X 0 )g(X 1 ) P πa.s. with g = Q ξt .

The previous proposition can be specified as follows.

Proposition 2.4. Let t ∈ R d , t = 0, and let g be a measurable function on E such that:

t, ξ(X 1 ) = g(X 0 )g(X 1 ) P πa.s..

Then there exists a π-full Q-absorbing set A ∈ E such that we have:

∀x ∈ A, t, ξ(y) = g(x) -g(y) Q(x, dy)-a.s.. Proof. For x ∈ E, set B x = {y ∈ E : t, ξ(y) = g(x)
g(y)}. By hypothesis we have Q(x, B x )dπ(x) = 1, and since Q(x, B x ) ≤ 1, this gives Q(x, B x ) = 1 π-a.s.. Thus there exists a π-full set A 0 ∈ E such that Q(x, B x ) = 1 for x ∈ A 0 . From π(A 0 ) = 1 and the invariance of π, we also have π(Q1 A 0 ) = 1, and since

Q1 A 0 ≤ Q1 E = 1 E , this implies that Q(•, A 0 ) = 1 π-a.s.. Again there exists a π-full set A 1 ∈ E such that Q(x, A 0 ) = 1 for x ∈ A 1 .
Repeating this procedure, one then obtains a family {A n , n ≥ 1} of π-full sets satisfying by construction the condition: ∀n ≥ 1, ∀x ∈ A n , Q(x, A n-1 ) = 1. Now the set A := ∩ n≥0 A n is π-full and, for any a ∈ A, we have Q(a, A n-1 ) = 1 for all n ≥ 1, thus Q(a, A) = 1. This proves that A is Q-absorbing, and the desired equality follows from the inclusion A ⊂ A 0 .

The usual Nagaev-Guivarc'h method

The characteristic function of S n is linked to the Fourier kernels Q(t)(x, dy) = e i t, ξ(y) Q(x, dy) of (Q, ξ) by the following formula (see e.g [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] p. 23)

(CF) ∀n ≥ 1, ∀t ∈ R d , E µ [e i t,Sn ] = µ(Q(t) n 1 E ),
and the Nagaev-Guivarc'h method consists in applying to Q(t) the standard perturbation theory [START_REF] Dunford | Linear Operators. Part. I : General Theory[END_REF]. For this to make sense, one must assume that Q satisfies Condition (K1) (of Section 1) on B, that Q(t) ∈ L(B), and that

Q(•) is m times continuously differentiable from R d to L(B) (m ∈ N * ). In this case, Q(t) n , hence E µ [e itSn ]
, can be expressed in function of λ(t) n , where λ(t), the dominating eigenvalue of Q(t), is also m times continuously differentiable. Then, the classical limit theorems (based on Fourier techniques), requiring Y 1 ∈ L m for a i.i.d. sequence (Y n ) n , extend to (ξ(X n )) n , see for example [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Rousseau-Egele | Un théorème de la limite locale pour une classe de transformations dilatantes[END_REF][START_REF] Guivarc | Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d'Anosov[END_REF][START_REF] Broise | Études spectrales d'opérateurs de transfert et applications[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]. Unfortunately, the previous regularity assumption on Q(•) (in case d = 1 for simplicity) requires that the kernel ξ(y) m Q(x, dy) continuously acts on B: this is what we called an operator-moment condition in Section 1, and we already mentioned that, if ξ is unbounded, this assumption is in general very restrictive. Actually Nagaev established in [START_REF] Nagaev | Some limit theorems for stationary Markov chains[END_REF] a c.l.t., and a local limit theorem in the countable case, for the uniformly ergodic Markov chains (see Ex. 1 of Section 1), and he did not appeal to operator-moment conditions: indeed, Nagaev first applied the standard perturbation theorem for bounded functionals ξ, and by using some intricate truncation techniques, he extended his results under the condition π(|ξ| 2 ) < +∞. However afterward, this truncation method has not been used any more. In particular, the Berry-Esseen theorem in [START_REF] Nagaev | More exact statements of limit theorems for homogeneous Markov chains[END_REF] was stated under the operator-moment assumption sup x∈E E |ξ(y)| 3 Q(x, dy) < +∞, which is clearly necessary and sufficient for Q(•) to be three times continuously differentiable from R to L(B ∞ ).

The use of the standard perturbation theory is even more difficult in Examples 2-3 of Section 1: the typical example below shows that, neither the operator-moment conditions, nor even the simple assumption Q(t) -Q B → 0, hold in general when ξ is unbounded.

Counter-example. Let (X n ) n≥0 be the real-valued autoregressive chain defined by

X n = aX n-1 + θ n (n ∈ N * ),
where a ∈ (-1, 1), a = 0, X 0 is a real r.v. and (θ n ) n≥1 is a sequence of i.i.d.r.v., independent of X 0 . Assume that θ 1 has a positive density p with finite variance. It is well-known that (X n ) n≥0 is a Markov chain whose transition probability is: (Qf )(x) = R f (ax + y) p(y) dy.

Set v(x) = 1 + x 2 (x ∈ R).
Using the so-called drift condition (see [START_REF] Meyn | Markov chains and stochastic stability[END_REF], Section 15.5.2), one can prove that (X n ) n≥0 is v-geometrically ergodic (see Example 2 in Section 1). Now let us consider the functional ξ(x) = x. We have for any

x ∈ R Q(ξ 2 v)(x) ≥ R (ax + y) 4 p(y) dy. If R y 4 p(y) dy = +∞, then Q(ξ 2 v) is not defined. If R y 4 p(y) dy < +∞, then Q(ξ 2 v) is a polynomial function of degree 4, so that sup x∈E |Q(ξ 2 v)(x)| 1 + x 2 = +∞, that is, Q(ξ 2 v) / ∈ B v . Similarly we have Q(|ξ| v) / ∈ B v .
Thus neither ξ(y)Q(x, dy), nor ξ(y) 2 Q(x, dy), continuously act on B v . Actually, even the continuity condition Q(t) -Q Bv → 0 is not valid. To see that, it suffices to establish that, if g(x) = x 2 , then Q(t)g -Qg v = sup x∈R (1 + x 2 ) -1 |Q(t)g(x) -Qg(x)| does not converge to 0 when t → 0. Set p 1 (y) = yp(y) and p 2 (y) = y 2 p(y), and denote by φ(t) = R φ(y)e ity dy the Fourier transform of any integrable function φ on R. Then

Q(t)g(x) = R e it(ax+y) (y + ax) 2 p(y) dy = e iatx [p 2 (t) + 2axp 1 (t) + a 2 x 2 p(t)]. So Q(t)g(x) -Qg(x) = e iatx p2 (t) -p2 (0) + 2ax [e iatx p1 (t) -p1 (0)] + a 2 x 2 [e iatx p(t) -1].
Using the inequality |e iu -1| ≤ |u|, we easily see that there exists a constant C > 0 such that

sup x∈R (1+x 2 ) -1 e iatx p2 (t)-p 2 (0)+2ax [e iatx p1 (t)-p 1 (0)] ≤ C |t|+|p 2 (t)-p 2 (0)|+|p 1 (t)-p 1 (0)| .
By continuity of p1 and p2 , the last term converges to 0 as t → 0. Now set

ψ(x, t) = (1 + x 2 ) -1 a 2 x 2 |e iatx p(t) -1|.
We have sup x∈R ψ(x, t) ≥ ψ( π at , t) = a 2 π 2 π 2 +a 2 t 2 |p(t) + 1|. Since this last term converges to 2a 2 = 0 as t → 0, this clearly implies the desired statement.

The Nagaev-Guivarc'h method via the Keller-Liverani theorem

The next statement is the perturbation theorem of Keller-Liverani, when applied to the Fourier Kernels Q(t) under Condition (K1) of Section 1. The present assumptions will be discussed, and illustrated in the case of the strongly ergodic Markov chains on L 2 (π). Finally we shall present a first probabilistic application to the characteristic function of S n .

The perturbation operator theorem of Keller-Liverani. 

Condition ( K): Q satisfies Condition (K1) (of
( K2) ∀t ∈ O, lim h → 0 Q(t + h) -Q(t) B, B = 0 ( K3) ∃κ 1 < 1, ∃C > 0, ∀n ≥ 1, ∀f ∈ B, ∀t ∈ O, Q(t) n f B ≤ C κ n 1 f B + C f B . Condition (K): Condition ( K) with B = L 1 (π).
Under Condition ( K), we denote by κ any real number such that max{κ 0 , κ 1 } < κ < 1, where κ 0 is given in Condition (K'1) of Section 1, and we define the following set

D κ = z : z ∈ C, |z| ≥ κ, |z -1| ≥ 1 -κ 2 .
Theorem (K-L) [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF][START_REF] Liverani | Invariant measure and their properties. A functional analytic point of view Dynamical Systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics[END_REF] (see also [START_REF] Baladi | Positive transfer operators and decay of correlations[END_REF]). Let us assume that Condition ( K) holds. Then, for all t ∈ O (with possibly O reduced), Q(t) admits a dominating eigenvalue λ(t) ∈ C, with a corresponding rank-one eigenprojection Π(t) satisfying Π(t)Q(t) = Q(t)Π(t) = λ(t)Π(t), such that we have the following properties:

lim t → 0 λ(t) = 1, sup t∈O Q(t) n -λ(t) n Π(t) B = O(κ n ), lim t → 0 Π(t) -Π B, B = 0,
and finally

M := sup (z -Q(t)) -1 B , t ∈ O, z ∈ D κ < +∞.
Let us moreover mention that λ(t) and Π(t) can be expressed in terms of (z -Q(t)) -1 (see the proof of Corollary 7.2 where the explicit formulas are given and used).

Remark. The conclusions of Theorem (K-L) still hold when Condition ( K2) is replaced with:

lim h → 0 Q(h) -Q B, B = 0.
In fact, Condition ( K2) provides the following additional property, that will be used in Section 5.1: λ(•) is continuous on O (see [START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF]). Anyway, in most of cases, the previous continuity condition at t = 0 implies ( K2) (see for instance Rk. (a) below). Let us also recall that the neighbourhood O and the bound M of Theorem (K-L) depend on κ (with κ fixed as above) and on the following quantities (see [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] p. 145):

-the constant

H := sup{ (z -Q) -1 B , z ∈ D κ }, which is finite by (K1), -the rate of convergence of Q(t) -Q B, B to 0 when t → 0,
-the operator norms Q B , Q B , and the constants C, κ 1 of Condition ( K3).

This remark is relevant since the asymptotic properties of Theorem (K-L) depend on M.

Some comments on Condition ( K).

The hypotheses in [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] are stated with the help of an auxiliary norm on B (which can be easily replaced by a semi-norm). In practice, this auxiliary norm is the restriction of the norm of a usual Banach space B ֒→ L 1 (π). It is the reason why Condition ( K) has been presented with an auxiliary space. The dominated hypothesis between the norms stated in [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] is here replaced with our assumption B ֒→ B. The fact that B is complete and B ֒→ L 1 (π) is not necessary for the validity of Theorem (K-L), but these two hypotheses are satisfied in practice. Moreover the assumption B ֒→ L 1 (π) ensures that π ∈ B ′ , which is important for our next probabilistic applications. Let us also mention that [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] appeals to the following additional condition on the essential spectral radius of Q(t): ∀t ∈ O, r ess (Q(t)) ≤ κ 1 . As explained in [START_REF] Liverani | Invariant measure and their properties. A functional analytic point of view Dynamical Systems. Part II: Topological Geometrical and Ergodic Properties of Dynamics[END_REF], this assumption is not necessary for Theorem (K-L), thanks to Condition (K1). It will be assumed in Section 5.1 for applying [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] to Q(t) for t close to t 0 = 0.

It is worth noticing that the continuity Condition ( K2) is less restrictive than the condition Q(t + h) -Q(t) B → 0 required in the usual perturbation theorem. In fact, despite their not very probabilistic appearance, the conditions ( K2) ( K3) are suited to many examples of strongly ergodic Markov chains: for instance, they hold for any measurable functional ξ in the case of the strongly ergodic Markov chains on L 2 (π) and of the v-geometrically ergodic Markov chains (see Prop. 4.1, Lem. 10.1), and they are valid under simple mean contraction and moment conditions for iterative Lipschitz models (see section 11).

Some comments on Condition (K).

In the special case B = L 1 (π), we shall use repeatedly the next simple remarks.

(a) First observe that we have sup

t∈R d Q(t) L 1 (π) < +∞ (use |Q(t) n f | ≤ Q n |f | and the Q-invariance of π). Besides the following condition sup π(|e i t, ξ -1| |f |), f ∈ B, f B ≤ 1 converges to 0 when t → 0,
which is for instance satisfied if B ֒→ L p (π) for some p > 1 (by Hölder's inequality and Lebesgue's theorem) is a sufficient condition for the continuity assumption of Condition (K). More precisely, the above property implies that

∀t ∈ R d , lim h → 0 Q(t + h) -Q(t) B,L 1 (π) = 0. Indeed we have for any f ∈ B π |Q(t + h)f -Q(t)f | ≤ π Q|e i h, ξ -1| |f | = π |e i h, ξ -1| |f | . (b) Recall that B is a Banach lattice if we have: |f | ≤ |g| ⇒ f B ≤ g B for any f, g ∈ B.
The examples of Banach lattices in our work are:

B = B ∞ , B = L p (π) (used in Ex. 1 of
Section 1), and B = B v (used in Ex. 2). Another classical example is the space of the bounded continuous functions on E.

Let us assume that B is a Banach lattice such that:

∀t ∈ R d , ∀f ∈ B, e i t, ξ • f ∈ B. Then Condition (K1) implies ( K3) with B = L 1 (π) and O = R d . Indeed, we have |Q(t) n f | ≤ Q n |f |, so Q(t) n f B ≤ Q n |f | B ,

and (K1) then gives for all

n ≥ 1, f ∈ B and t ∈ R d : Q(t) n f B ≤ C κ n 0 f B + π(|f |) 1 E B . (c) If ( K3) is fulfilled with B = L 1 (π), then it holds for any B ֒→ L 1 (π).
Example (the strongly ergodic Markov chains on L 2 (π), see Ex. 1 of Section 1):

Proposition 4.1. Assume that (X n ) n≥0 is a strongly ergodic Markov chain on L 2 (π), that ξ is any R d -valued measurable function, and let 1 ≤ p ′ < p < +∞. Then we have ( K) with O = R d , B = L p (π), and B = L p ′ (π).
Proof. We know that Q satisfies Condition (K1) of Section 1 on L p (π) (see [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF]). From the above remarks (b) (c), we then have (

K3) with O = R d , B = L p (π), and B = L p ′ (π). Condition ( K2) follows from the next lemma. Lemma 4.2. Let 1 ≤ p ′ < p, and t ∈ R d . Then lim h → 0 Q(t + h) -Q(t) L p (π),L p ′ (π) = 0. Proof. Let us denote • p for • L p (π) . Using the inequality |e ia -1| ≤ 2 min{1, |a|} (a ∈ R)
and the Hölder inequality, one gets for t, h ∈ R d and f ∈ L p (π),

Q(t + h)f -Q(t)f p ′ ≤ Q(|e i h,ξ -1| |f |) p ′ ≤ 2 min{1, | h, ξ |}|f | p ′ ≤ 2 min{1, | h, ξ |} pp ′ p-p ′ f p , with min{1, | h, ξ |} pp ′ p-p ′
→ 0 when h → 0 by Lebesgue's theorem.

To end this section, let us return to our general setting and present a first probabilistic application of Theorem (K-L).

Link between λ(t) and the characteristic function of S n .

For convenience, let us repeat the basic formula (CF), already formulated in Section 3, which links the characteristic function of S n with the Fourier kernels of (Q, ξ):

∀n ≥ 1, ∀t ∈ R d , E µ [e i t,Sn ] = µ(Q(t) n 1 E )
, where µ is the initial distribution of the chain. We appeal here to Theorem (K-L), in particular to the dominating eigenvalue λ(t) of Q(t), t ∈ O, to the associated rank-one eigenprojection Π(t), and finally to the real number κ for which we just recall that κ < 1.

Lemma 4.3. Assume ( K) and µ ∈ B

′ , and set ℓ(t) = µ(Π(t)1 E ). Then we have:

lim t → 0 ℓ(t) = 1 and sup t∈O E µ [e i t,Sn ] -λ(t) n ℓ(t) = O(κ n ).
Proof. Lemma 4.3 directly follows from Theorem (K-L) and Formula (CF).

A multidimensional local limit theorem

The previous lemma constitutes the necessary preliminary to employ Fourier techniques. However, it is worth noticing that, except lim t → 0 λ(t) = 1, the perturbation theorem of Keller-Liverani cannot yield anyway the Taylor expansions needed for λ(t) in Fourier techniques. An abstract operator-type hypothesis will be presented in Section 7 in order to ensure the existence of m continuous derivatives for λ(•). But we want before to recall another method, based on weaker and more simple probabilistic c.l.t.-type assumptions, which provides second or third-order Taylor expansions of λ(t) near t = 0. As in the i.i.d. case, these expansions are sufficient to establish a multidimensional local limit theorem, this is the goal of the present section, and a one-dimensional uniform Berry-Esseen theorem which will be presented in Section 6. 4Theorem 5.1 below has been established for real-valued functionals in [START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF] under slightly different hypotheses. Here we present an easy extension to the multidimensional case. Section 5.2 states some expected statements on the Markov non-arithmetic and nonlattice conditions. The application to the strongly ergodic Markov chains on L 2 (π) in Section 5.3 is new.

A general statement

To state the local limit theorem, one needs to introduce the two following conditions. The first one is the central limit assumption stated under P π for which one may appeal to Corollary 2.1 for instance. The second one is a spectral non-arithmeticity condition. Recall that, by hypothesis, we have π(ξ) = 0, so that E π [S n ] = 0.

Condition (CLT): Under

P π , Sn √ n D > N (0, Γ)
, with a non-singular matrix Γ.

Condition (S):

For all t ∈ R d , Q(t) ∈ L(B)
, and for each compact set K 0 in R d \ {0}, there exist ρ < 1 and c ≥ 0 such that we have, for all n ≥ 1 and t ∈ K 0 , Q(t) n B ≤ c ρ n . Condition (S) constitutes the tailor-made hypothesis to operate in the spectral method the proofs of the i.i.d. limit theorems involving the so-called nonlattice assumption. Condition (S) will be reduced to more practical hypotheses in Section 5.2.

We want to prove that, given some fixed positive function f on E and some fixed real-valued measurable function h on E, we have

(LLT ) lim n sup a∈R d √ det Γ (2πn) d 2 E µ [ f (X n ) g(S n -a) h(X 0 ) ] -e -1 2n Γ -1 a,a µ(h) π(f ) R d g(x)dx = 0,
for all compactly supported continuous function g : R d → R.

The conditions on f , h and µ are specified below. Before going into the proof, let us notice that this result can be easily extended to any real-valued function f ∈ B such that max(f, 0) and min(f, 0) belong to B.

Proof of Theorem 5.1. In order to use Lemma 4.3 and to write out the Fourier techniques of the i.i.d. case [START_REF] Breiman | Probability Classic in Applied Mathematics[END_REF], one needs to establish a second-order Taylor expansion for λ(t). Lemma 5.2. Under the conditions ( K) and (CLT), we have for u ∈ R d close to 0:

λ(u) = 1 - 1 2 Γu, u + o( u 2 ).
Proof (sketch). For d = 1, the proof of Lemma 5.2 is presented in [START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF], let us just recall the main ideas. By hypothesis, we have Sn

√ n D > N (0, σ 2 ) under P π , with σ 2 > 0. Besides, B ֒→ L 1 (π) implies π ∈ B ′ .
So, from Lévy's theorem and Lemma 4.3 (applied here with

µ = π), it follows that lim n λ( t √ n ) n = e -σ 2 2 t 2 , with uniform convergence on any compact set in R. Then the fact that log λ( t √ n ) n = n log λ( t √ n ) and log λ( t √ n ) ∼ λ( t √ n )-1 gives for t = 0 : ( √ n t ) 2 λ( t √ n ) -1 + σ 2 2 = o(1) when n → +∞. Setting u = t
√ n , it is then not hard to deduce the stated Taylor expansion (see [START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF] Lem. 4.2).

These arguments can be readily repeated for

d ≥ 2. (To get log λ( t √ n ) n = n log λ( t √ n ) in d ≥ 2, proceed as in [45] with ψ(x) = λ(x t √ n ), x ∈ [0, 1]
; the continuity of λ(•) on some neighbourhood of 0, helpful for this part 5 , obviously extends to d ≥ 2).

If f = h = 1 E , then (LLT) follows from Lemma 4.3, by writing out the i.i.d. Fourier techniques of [START_REF] Breiman | Probability Classic in Applied Mathematics[END_REF]. In particular, Condition (S) plays the same role as the nonlattice condition of [START_REF] Breiman | Probability Classic in Applied Mathematics[END_REF]. If f ∈ B, f ≥ 0, and h : E → R is measurable, one can proceed in the same way by using the following equality, of which (CF) is a special case (see e.g [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] p. 23),

(CF') ∀n ≥ 1, ∀t ∈ R d , E µ [f (X n ) e itSn h(X 0 )] = (hµ)(Q(t) n f ),
and by using an obvious extension of Lemma 4.3.

Study of Condition (S)

When the spectral method is applied with the standard perturbation theory, it is well-known that Condition (S) can be reduced to more practical non-arithmetic or nonlattice assumptions, see e.g [START_REF] Guivarc | Application d'un théorème limite local à la transcience et à la récurrence de marches aléatoires[END_REF] [36] [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]. These reductions are based on some spectral arguments, and on simple properties of strict convexity. In this section, we generalize these results under the next Condition ( K), close to ( K) of Section 4, but involving the whole family {Q(t), t ∈ R d } and an additional condition on the essential spectral radius of Q(t). Condition ( K) will be satisfied in all our examples.

Condition ( K): Q satisfies Condition (K1) (of Section 1) on B, and there exists a Banach space

B such that B ֒→ B, Q(t) ∈ L(B) ∩ L( B) for each t ∈ R d , and: 6 ( K2) ∀t ∈ R d , lim h → 0 Q(t + h) -Q(t) B, B = 0
and, for all compact set K 0 in R d , there exists κ ∈ (0, 1) such that:

( K3) ∃C > 0, ∀n ≥ 1, ∀f ∈ B, ∀t ∈ K 0 , Q(t) n f B ≤ C κ n f B + C f B ( K4) ∀t ∈ K 0 , r ess (Q(t)) ≤ κ.
Clearly, if B ֒→ L 1 (π), then ( K) implies ( K) of Section 4. Besides, when B = L 1 (π), the condition introduced in Remark (a) of Section 4 implies ( K2).

We also need the next assumption (fulfilled in practice under Condition (K1), see Rk. below):

(P) We have, for any λ ∈ C such that |λ| ≥ 1, and for any nonzero element f ∈ B:

∃n 0 , ∀n ≥ n 0 , |λ| n |f | ≤ Q n |f | ⇒ |λ| = 1 and |f | ≤ π(|f |) .
The previous inequalities hold, everywhere on E if we have B ⊂ L 1 (π), and π-almost surely on

E if we have B ⊂ L 1 (π). If B ⊂ L 1 (π), we shall say that w is a bounded element in B if w ∈ B ∩ L ∞ (π).
A non-arithmetic condition on ξ. We shall say that (Q, ξ), or merely ξ, is arithmetic w.r.t. B (and non-arithmetic w.r.t. B in the opposite case) if there exist In the usual spectral method, this statement is for instance established in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] (Prop. V.2) (under some additional conditions on B). The proof of Proposition 5.3, which is an easy extension of that in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF], is presented in Section 12.1.

t ∈ R d , t = 0, λ ∈ C, |λ| = 1, a π-full Q-absorbing set A ∈ E, and a bounded element w in B such that |w| is nonzero constant on A, satisfying: ( * ) ∀x ∈ A, e i t,ξ(y) w(y) = λw(x) Q(x,
We now state a lattice-type criterion for (S) which is a natural extension of the i.i.d. case and a well-known condition in the general context of Markov random walks.

A nonlattice condition on ξ. We say that (Q, ξ), or merely ξ, is lattice (and nonlattice in the opposite case) if there exist Proof. If (S) is not fulfilled, then ξ is arithmetic w.r.t. B, and one may assume that w ∈ B in ( * ) is such that we have |w| = 1 π-a.s., so that we can write w(x) = e ig(x) for some measurable function g : E →[0, 2π]. Therefore, setting λ = e ib , the property ( * ) is then equivalent to:

a ∈ R d , a closed subgroup H in R d , H = R d , a π-full Q-absorbing set A ∈ E, and a bounded measurable function θ : E → R d such that ( * * ) ∀x ∈ A, ξ(y) + θ(y) -θ(x) ∈ a + H Q(x,
∀x ∈ A, t, ξ(y) + g(y) -g(x) -b ∈ 2πZ Q(x, dy) -a.s.. Now set θ(x) = g(x) t |t| 2 2
, and a = b t |t| 2

2

. Then we have ( * * ) with

H = (2πZ) t |t| 2 2 ⊕ (R t) ⊥ , so
ξ is lattice. Conversely, if ξ is lattice, then, by considering ( * * ) and t ∈ H ⊥ , one can easily prove that ( * ) holds with λ = e i t,a and w(x) = e i t,θ(x) . Since w ∈ B, (S) is not fulfilled on B (by Proposition 5.3.).

Proposition 5.4 will be specified in Section 12.2, where we shall investigate the following set: G = {t ∈ R d : r(Q(t)) = 1}. We conclude Section 5.2 by some further remarks. The weighted Lipschitz-type spaces used in Section 11 for the iterative models are not Banach lattices, and in these models, the next remark will be helpful to prove ( K4). Let us assume that ( K3) is fulfilled with B and B satisfying the following property:

On Conditions ( K3) ( K4). If (X n ) n≥0 is strongly ergodic on a Banach lattice B and if B is such that e i t, ξ • f ∈ B for all t ∈ R
for each t ∈ R d , Q(t)(S) is relatively compact in ( B, • B )
, where S is the unit ball of (B, • B ). Then it follows from [START_REF] Ionescu-Tulcea | Théorème ergodique pour des classes d'opérations non complètement continues[END_REF] [40] that Condition ( K4) automatically holds on B.

On Condition (P).

Under Assumption (K1), the property (P) is for instance fulfilled in the following cases: andδ x ∈ B ′ for all x ∈ E. Indeed, we then have by (K1): ∀x ∈ E, lim n (Q n |f |)(x) = π(|f |), hence (P) (here, f = 0 means that f (x) = 0 for some x ∈ E). This case contains B ∞ , the weighted (either supremum or Lipschitz-type) spaces, the space of bounded continuous functions, the space of functions of bounded variation (on an interval),....

-B ⊂ L 1 (π), B ֒→ L 1 (π), and B is dense in L 1 (π). Indeed, since Q is a contraction on L 1 (π), one then obtains from (K1) that lim n Q n |f | = π(|f |) in L 1 (π) for all f ∈ B, hence (P) (here, f = 0 means that π(|f |) = 0). This case contains L p (π), the Sobolev spaces,... -B ⊂ L 1 (π), B ֒→ L 1 (π), B is stable under complex modulus (i.e. f ∈ B ⇒ |f | ∈ B),
-B is the space of C k functions (on some nice E) equipped with its usual norm. Observe that, if f ∈ C k , then |f | is continuous on E. By using a density argument (with the supremum norm) and the property (K1) on C k , one can easily see that lim n Q n |f | = π(|f |) uniformly on E, hence (P).

A case when A = Supp(π) in ( * ) and ( * * ). If ( K) and (P) hold, if δ x ∈ B ′ for all x ∈ E, and finally if all the functions of B are continuous on the state space E (assumed to be locally compact here), then Propositions 5.3-4 (and Proposition 12.4) apply with A = Supp(π) in ( * ) and ( * * ), where Supp(π) is the support of π. This can be seen by an easy examination of the proof in Section 12.1.

Condition (S) and invertibility of Γ.

Let us just assume in this remark that Q(t) ∈ L(B) for all t ∈ R d . If the conclusion of Proposition 2.4 holds for some real-valued measurable function g on E, then we clearly have ( * ) with w(•) = e i g(•) and λ = 1. Moreover, ( * * ) is satisfied with a = 0, θ

(x) = 2π{ g(x) 2π } t |t| 2 2 ,
and

H = (2πZ) t |t| 2 2 ⊕ (R • t) ⊥
, where {•} stands for the fractionary part. Condition (S) on any space B containing w is then false because, in this case, the above mentioned equality ( * ) easily implies that r(Q(t)) ≥ 1, see Lemma 12.2. One can deduce the following facts from the previous remarks and the results of Section 2. If the hypotheses of Corollary 2.1 hold on some space B 2 and if e i ψ(•) ∈ B for all ψ ∈ B 2 , then we have the following implications, in which Γ denotes the covariance matrix of Section 2 (the above condition on B is unnecessary for the last implication):

Condition (S) on B ⇒ Γ is invertible Non-arithmeticity w.r.t. B ⇒ Γ is invertible (Q, ξ) is nonlattice ⇒ Γ is invertible.
5.3 (LLT) for the strongly ergodic Markov chains on L 2 (π)

Let us suppose that (X n ) n≥0 is a strongly ergodic Markov chain on L 2 (π) (Ex. 1 of Section 1). If π(|ξ| 2 2 ) < +∞, then (n -1 2 S n ) n converges in distribution to a normal distribution N (0, Γ) (see Section 2).
Corollary 5.5. Let us assume that π(|ξ| 2 2 ) < +∞, that ξ is nonlattice, that µ = π, and that h ∈ L r (π) for some r > 1. Then we have (LLT) for each function f in L p (π) provided that p > r r-1 .

Proof. Let r ′ = r r-1 , and p > r ′ . From Proposition 4.1 and Lemma 4.2, we have ( K2) and ( K3) The property ( K4) on B = L p (π) has been above derived from the general statement [65, Cor. 1.6] which is based on some sophisticated arguments of the theory of positive operators acting on a Banach lattice. Below, we present a simpler proof of this fact in the special case of the uniformly ergodic Markov chains. By repeating some arguments of [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels[END_REF], we are going to see that ( K4) on B = L p (π) then follows from Doeblin's condition.

(thus ( K)) with B = L p (π) and B = L r ′ (π). Note that B ′ = L r (π). Since B = L p (π)
Let us assume that (X n ) n≥0 is uniformly ergodic (i.e. we have (K1) on B ∞ ). Then the socalled Doeblin condition holds (use (K1) on B ∞ ): there exist ℓ ≥ 1, η > 0, and

ρ < 1 such that ( π(A) ≤ η ) ⇒ ( ∀x ∈ E, Q ℓ (x, A) ≤ ρ ℓ ). Proposition 5.6. Let p ∈ (1, +∞). If ξ is any R d -valued measurable function on E, then we have: ∀t ∈ R d , r ess (Q(t)) ≤ ρ p-1 p .
Proof of Proposition 5.6.

Let • p = π(| • | p )
1 p denote the norm on L p (π). We also use the notation • p for the operator norm on L p (π). Let q be such that 1 p + 1 q = 1.

Lemma 5.7. There exist a nonnegative bounded measurable function α on E × E and a positive kernel S(x, dy), x ∈ E, such that Q ℓ (x, dy) = α(x, y)dπ(y)+S(x, dy) and S p ≤ ρ ℓ q .

Proof. Let us summarize the beginning of the proof in [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels[END_REF] (Lemma III.4): using the differen-tiation of measures, there exist a nonnegative measurable function α ′ on E × E and a positive kernel S ′ (x, dy) such that, for all x ∈ E, we have

Q ℓ (x, dy) = α ′ (x, y)dπ(y) + S ′ (x, dy), with π(C x ) = 0 and S ′ (x, E \ C x ) = 0 for some C x ∈ E. Set α = α ′ 1 { α ′ ≤η -1 } , and for x ∈ E, let L x = { y ∈ E : α ′ (x, y) > η -1 } \ C x . Then Q ℓ (x, dy) = α(x, y)dπ(y) + S(x, dy) with S(x, A) = Q ℓ (x, A ∩ (C x ∪ L x )). We have ∀x ∈ E, 1 ≥ Q ℓ (x, L x ) ≥ Lx α ′ (x, y) dπ(y) ≥ η -1 π(L x ), thus π(L x ∪ C x ) = π(L x ) ≤ η, so that Q ℓ (x, L x ∪ C x ) ≤ ρ ℓ . Now let f ∈ L p (π). We have Sf (x) = Cx∪Lx f (y) Q ℓ (x, dy)
, and from Hölder's inequality w.r.t. the probability measure Q ℓ (x, dy), we have

Sf p p = E E f (y) 1 Cx∪Lx (y) Q ℓ (x, dy) p dπ(x) ≤ E Q ℓ |f | p (x) Q ℓ (x, C x ∪ L x ) p q dπ(x), hence Sf p p ≤ (ρ ℓ ) p q π(Q ℓ |f | p ) = (ρ ℓ ) p q π(|f | p ) which is the stated estimate on S p . Now let us prove r ess (Q(t)) ≤ ρ 1 q for all t ∈ R d . Since |Q(t) ℓ f | ≤ Q ℓ |f |, there exists a complex-valued measurable function χ t on E × E such that Q(t) ℓ (x, dy) = χ t (x, y) Q ℓ (x, dy) with |χ t | ≤ 1. So, by Lemma 5.7, Q(t) ℓ (x, dy) = χ t (x, y) α(x, y)dπ(y) + χ t (x, y) S(x, dy) := α t (x, y)dπ(y) + S t (x, dy),
and, since α t (•, •) is bounded, the associated kernel operator is compact on L p (π) [START_REF] Dunford | Linear Operators. Part. I : General Theory[END_REF]. Recall that, if T is a bounded operator on a Banach space B, then r ess (T ) = lim n (inf

T n -V B ) 1 n
where the infimum is considered over the ideal of compact operators V on B. This yields r ess (Q(t) ℓ ) = r ess (S t ) ≤ r(S t ) ≤ S t p ≤ S p ≤ ρ ℓ q (Lem. 5.7). Hence r ess (Q(t)) ≤ ρ 1 q .

A one-dimensional uniform Berry-Esseen theorem

Here we assume d = 1 (i.e. ξ is real-valued), we denote by N the distribution function of N (0, 1), we suppose that Hypothesis (CLT) of Section 5.1 holds with Γ = σ 2 > 0, and we set:

∀u ∈ R, ∆ n (u) = P µ ( S n σ √ n ≤ u) -N (u) , and ∆ n = sup u∈R ∆ n (u).
Theorem 6.1 and Proposition 6.2 below have been already presented in [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF], we state them again for completeness. The next application to the Markov chains with spectral gap on L 2 (π) is new. Comparisons with prior works are presented in [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF], they will be partially recalled below and in Sections 10-11.

A general statement.

Let us reinforce Condition (CLT) by the following one:

Condition (CLT'): ∃C > 0, ∀t ∈ [- √ n, √ n], E π [e it Sn σ √ n ] -e -t 2 2 ≤ C |t| √ n .
Theorem 6.1 [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF]. Assume that (CLT') holds, and that Condition ( K) (of Section 4) holds w.r.t. B, B, with the additional following conditions: we have (K1) (of Section 1) on B, and

Q(t) -Q B, B = O(|t|). Then we have ∆ n = O(n -1 2 ) for any µ ∈ B ′ .
Proof (sketch). See [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF] for details. The conclusions of Theorem (K-L) are satisfied. As in Lemma 4.3, let us set ℓ(t) = µ(Π(t)1 E ). In order to copy the Fourier techniques used for the i.i.d. Berry-Esseen theorem (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF] [23]), we have to improve Lemmas 4.3 and 5.2 as follows:

(a) sup

t∈O |ℓ(t) -1| |t| < +∞ and sup t∈O 1 |t| E µ [e itSn ] -λ(t) n ℓ(t) = O(κ n ) (b) λ(u) = 1 -σ 2 u 2 2 + O(u 3
) near u = 0. Assertion (a) cannot be derived from the Keller-Liverani theorem (even by using the precise statements of [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF]). However one can proceed as follows. As in the standard perturbation theory [START_REF] Dunford | Linear Operators. Part. I : General Theory[END_REF], the perturbed eigen-projection Π(t) in Theorem (K-L) can be expressed as the line integral of (z -Q(t)) -1 over a suitable oriented circle centered at λ = 1 (see Section 7.2). By using the formula

(z -Q(t)) -1 -(z -Q) -1 = (z -Q) -1 Q(t) -Q (z -Q(t)) -1 ,
the last assertion in Theorem (K-L), the assumption Q(t) -Q B, B = O(|t|), and finally the fact that (K1) holds on B, one can then conclude that Π(t) -Π B, B = O(|t|). Hence the desired property for ℓ(t). The second assertion in (a) can be established similarly by using Formula (CF) of Section 3 and the second line integral given in Section 7.2. To get (b), one may repeat the short proof of Lemma 5.2 by starting here from the prop-

erty λ( t √ n ) n -e -σ 2 2 t 2 = O( |t| √ n ) which follows from (CLT'
) and (a). One then obtains (

√ n t ) 2 (λ( t √ n ) -1) + σ 2 2 = O( |t| √ n
), and setting u = t √ n , this leads to the expansion (b) (see Lem. IV.2 in [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF]).

A sufficient condition for (CLT').

Actually, one of the difficulties in the previous theorem is to show Hypothesis (CLT'). By the use of martingale techniques derived from [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF], the first named author showed in [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF] the next statement. Proposition 6.2 [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF]. We have (CLT') when the two following conditions hold:

(G1) ξ = +∞ n=0 Q n ξ absolutely converges in L 3 (π). (G2) +∞ p=0 Q p ψ absolutely converges in L 3 2 , where ψ = Q( ξ2 )-(Q ξ) 2 -(π( ξ2 )-π((Q ξ) 2 ) 1 E .
Let us notice that ξ is the solution of the Poisson equation ξ -Q ξ = ξ, already introduced in Gordin's theorem (Section 2). Also observe that the above function ψ can be expressed as

ψ = Q( ξ2 ) -(Q ξ) 2 -σ 2 1 E
, where σ2 is the asymptotic variance of Gordin's theorem.

About the practical verification of (G1) (G2).

In practice, one often proceeds as follows to verify the two above conditions. Since π(ξ

) = 0, Condition (G1) holds if Q is strongly ergodic w.r.t. some B ֒→ L 3 (π) and if ξ ∈ B. If moreover Q is strongly ergodic w.r.t. some B 2 ֒→ L π(ψ) = 0, the series +∞ p=0 Q p ψ absolutely converges in B 2 , thus in L 3 2 (π).

Condition (G2) is the functional version of the projective assumption

n≥0 E[Z 2 n | F 0 ] - E[Z 2 0 ] L 3 2
< +∞ used for stationary martingale difference sequences (Z n ) n : under this condition, the uniform Berry-Esseen theorem at rate n -1 4 is established in [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF] (Chap. 3) for such bounded sequences. In [START_REF] Dedecker | On Esseen's mean central limit theorem for dependent sequences[END_REF][START_REF] Dedecker | Rates of convergence for minimal metrics in the central limit theorem under projective criteria[END_REF], this projective assumption (extended to L p in [START_REF] Dedecker | Rates of convergence for minimal metrics in the central limit theorem under projective criteria[END_REF]) provides the expected Berry-Esseen theorem in term of Wasserstein's distances.

Application to the strongly ergodic Markov chains on L 2 (π).

Let us assume that (X n ) n≥0 is a strongly ergodic Markov chain on L 2 (π) (Ex. 1 of Section 1). In the stationary case (i.e. µ = π), since (X n ) n≥0 is strongly mixing (see [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF]), Bolthausen's theorem [START_REF] Bolthausen | The Berry-Esseen theorem for strongly mixing Harris recurrent Markov chains[END_REF] yields the estimate ∆ n = O(n -1

2 ) if π(|ξ| p ) < +∞ for some p > 3. In the special case of uniform ergodicity, Nagaev's work [START_REF] Nagaev | More exact statements of limit theorems for homogeneous Markov chains[END_REF], and some of its extensions (see e.g [START_REF] Datta | On the first-order Edgeworth expansion for a Markov chain[END_REF]), provide the previous estimate in the non-stationary case, but under the strong moment condition sup x∈E E |ξ(y)| 3 Q(x, dy) < +∞. The next statement only requires the expected third-order moment condition.

Corollary 6.3. If π(|ξ| 3 ) < +∞ and µ = φ dπ, with some φ ∈ L 3 (π), then ∆ n = O(n -1 2 ).
Proof. Set L p = L p (π). We have (K1) on L 3 and L 3 2 , see [START_REF] Rosenblatt | Markov processes. Structure and asymptotic behavior[END_REF]. So Conditions (G1) (G2), hence (CLT'), are fulfilled (use the above remark with B 2 = L 

(t) -Q L 3 ,L 3 2 = O(|t|). Indeed, let f ∈ L 3 . Using |e ia -1| ≤ |a|, one gets π( |Q(t)f -Qf | 3 2 ) ≤ π( |Q(|e itξ -1| |f |)| 3 2 ) ≤ |t| 3 2 π( Q(|ξ| 3 2 |f | 3 2 ) ) = |t|

Regularity of the eigen-elements of the Fourier kernels

The goal of this section is to present an abstract operator-type Hypothesis, called C(m), ensuring that the dominating eigenvalue λ(t) and the associated eigen-elements of Q(t) have m continuous derivatives on some neighbourhood O of 0. The usual spectral method already exploited this idea by considering the action of Q(t) on a single space, but as illustrated in Section 3, the resulting operator-moment conditions may be very restrictive in practice. The use of a "chain" of spaces developed here enables to greatly weaken these assumptions.

As a first example we shall see in Section 7.3 that, for the strongly ergodic Markov chains on L 2 (π), Hypothesis C(m) reduces to π(|ξ| α

2 ) < +∞ for some α > m. This condition is slightly stronger than the assumption π(|ξ| m 2 ) < +∞ of the i.i.d. case ensuring that the common characteristic function has m continuous derivatives. But it is much weaker than the condition sup x∈E (Q|ξ| m

2 )(x) < +∞ of the usual spectral method (see Section 3). Other simple reductions of C(m) will be obtained in Sections 10-11 for Examples 2-3 of Section 1.

Roughly speaking one can say that Hypothesis C(m) below (together with possibly the non-arithmeticity condition) allows to extend to strongly ergodic Markov chains the classical i.i.d. limit theorems established with Fourier techniques. This will be illustrated in Sections 8-9 by a one-dimensional Edgeworth expansion and a multidimensional Berry-Esseen type theorem in the sense of the Prohorov metric. This is also exploited in [START_REF] Guibourg | A renewal theorem for strongly ergodic Markov chains in dimension d ≥ 3 and in the centered case[END_REF] to prove a multidimensional renewal theorem.

Before dealing with the regularity of the eigen-elements of Q(t), we investigate that of the function t → (z -Q(t)) -1 , where (z -Q(t)) -1 is seen as an element of L(B, B) for suitable spaces B and B.

Regularity of

(z -Q(•)) -1
Let O be an open subset of R d , let X be a vector normed space. Then, for m ∈ N, we shall say that

U ∈ C m (O, X) if U is a function from O to X which admits m continuous derivatives. For convenience, C ℓ (O, B 1 , B 2 ) will stand for C ℓ (O, L(B 1 , B 2 )
). In view of the probabilistic applications of Sections 8-9, Q(t) still denotes the Fourier kernels defined in Section 1, and the Banach spaces B, B, B θ considered below satisfy the conditions stated before (K1) in Section 1. Let B ֒→ B, and let m ∈ N * .

Hypothesis C(m).

There exist a subset I of R and a family of spaces (B θ , θ ∈ I) containing B, B, such that B θ ֒→ B for all θ ∈ I, and there exist two functions T 0 : I → R and T 1 : I → R such that, for all θ ∈ I, there exists a neighbourhood V θ of 0 in R d such that we have for j = 1, ..., m:

(0) [T 0 (θ) ∈ I ⇒ B θ ֒→ B T 0 (θ) ] and [T 1 (θ) ∈ I ⇒ B θ ֒→ B T 1 (θ) ] (1) If T 0 (θ) ∈ I, then Q(•) ∈ C 0 (V θ , B θ , B T 0 (θ) ) (2) If θ j := T 1 (T 0 T 1 ) j-1 (θ) ∈ I, then Q(•) ∈ C j (V θ , B θ , B θ j ) (3) Q(•) satisfies Hypothesis (K) of Section 4 on B θ (4) There exists a ∈ m k=0 T -1 0 (T 0 T 1 ) -k (I) ∩ (T 1 T 0 ) -k (I) such that we have B = B a and B = B (T 0 T 1 ) m T 0 (a) .
To fix ideas, let us introduce a more restrictive but simpler hypothesis : Hypothesis C ′ (m). There exist A > m and a family of spaces

(B θ , θ ∈ [0, A]) such that B 0 = B, B A = B and, for all θ, θ ′ ∈ [0, A] with 0 ≤ θ < θ ′ ≤ A, we have : (a) B θ ֒→ B θ ′ ֒→ B, (b) there exists a neighbourhood V = V θ,θ ′ of 0 in R d such that, for any j ∈ {0, ..., m} with j < θ ′ -θ, we have Q ∈ C j (V, B θ , B θ ′ ), (c) Q(•) satisfies Hypothesis (K) of Section 4 on B θ .
It is easy to see that Hypothesis C ′ (m) implies Hypothesis C(m) (by taking a = 0, T 0 (x) = x+ε and T 1 (x) = x+ 1+ ε for some well chosen ε > 0). Actually Hypothesis C ′ (m) will be satisfied in all our examples, but Hypothesis C(m) is more general and, despite its apparent complexity, might be more natural to establish than hypothesis C ′ (m) (see the end of Section 7.3).

Let us come back to Hypothesis C(m). The condition on a in (4) means that a, T 0 a, T 1 T 0 a, T 0 T 1 T 0 a,...,(T 0 T 1 ) m T 0 (a) belong to I, and from (0), it follows that the corresponding family of B θ 's is increasing with respect to the continuous embedding. In particular, θ := T 0 (a) and

θ m := T 1 (T 0 T 1 ) m-1 (θ) are in I, therefore we have Q(•) ∈ C m (V θ , B θ , B θm ) by (2). It then follows that Q(•) ∈ C m V θ , B, B . In practice, we may have Q(•) ∈ C m V θ , B, B T m 1 (a)
, but the introduction of T 0 will enable us to get (z -Q(•)) -1 ∈ C m O, B, B for some neighbourhood O of t = 0 and for suitable z ∈ C.

Notation. Recall that we set D κ = {z ∈ C : |z| ≥ κ, |z -1| ≥ (1κ)/2} for any κ ∈ (0, 1). Under Hypothesis C(m), we have (K) on B, so from Theorem (K-L) of Section 4, if t belongs to some neighbourhood U a of 0 in R d and if z ∈ D κa for some κ a ∈ (0, 1), then (z -Q(t)) -1 is a bounded operator on B, and we shall set R z (t) = (z -Q(t)) -1 . It is worth noticing that we also have R z (t) ∈ L(B, B) for all t ∈ U a and z ∈ D κa . In the case d ≥ 2, for t = (t 1 , . . . , t d ), R (ℓ) z (t) will stand for any partial derivative of the form

∂ ℓ R z ∂t i 1 • • • ∂t i ℓ (t). Proposition 7.1. Under Hypothesis C(m), there exist a neighbourhood O ⊂ U a of 0 in R d and κ ∈ (κ a , 1) such that R z (•) ∈ C m (O, B, B) for all z ∈ D κ, and 
R ℓ := sup{ R (ℓ) z (t) B, B , z ∈ D κ, t ∈ O } < +∞, ℓ = 0, . . . , m.
The proof of Proposition 7.1 is presented in Appendix A under a little bit more abstract setting. It is based on general and elementary derivation arguments. Similar statements concerning the Taylor expansions of (z -Q(•)) -1 at t = 0 are developed in [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF][START_REF] Gouëzel | Banach spaces adapted to Anosov systems[END_REF][START_REF] Gouëzel | Necessary and sufficient conditions for limit theorems in Gibbs-Markov maps[END_REF].

Remarks.

(a) In hypothesis C(m), the set I can be reduced to the following finite set :

a, T 0 a, T 1 T 0 a, T 0 T 1 T 0 a, . . . , (T 0 T 1 ) m T 0 (a) . This remark will be of no relevance for checking C(m) in our examples, but it will be important in the proof of Proposition 7.1 in order to define the set O, the real number κ , and finally the bounds R ℓ (see the remark following Proposition A in Appendix A).

(b) In our examples, the derivative condition (2) of Hypothesis C(m) can be investigated by using the partial derivatives

∂ j Q ∂tp 1 •••∂tp j (t)
, defined by means of the kernel

Q (p 1 ,...,p j ) (t)(x, dy) = i j j s=1 ξ ps (y) e i t,ξ(y) Q(x, dy).
Actually, in our examples, we shall verify C(m) in the case d = 1 (for the sake of simplicity), and we shall simply denote by Q (k) the k-th derivative of Q(•) occurring in C(m), which is defined for k = 0, . . . , m by the kernel

Q k (t)(x, dy) = i k ξ(y) k e itξ(y) Q(x, dy) (t ∈ R, x ∈ E). (c) By C(m), we know that ∂ m Q ∂t m k (0) ∈ L(B, B) ( k = 1, . . . , d). From 1 E ∈ B, π ∈ B ′ , it follows that π( ∂ m Q ∂t m k (0)1 E ) = i m π(Qξ m k ) = i m π(ξ m k ) is defined. So, in substance, Hypothesis C(m) implies π(|ξ| m
2 ) < +∞ (this is actually true if m is even). However, in our examples, we shall need some slightly more restrictive moment conditions to be able to prove C(m).

Regularity of the eigen-elements of Q(•)

Suppose that Hypothesis C(m) holds for some m ∈ N * , and as above let us use the notations of Proposition 7.1 and of Theorem (K-L) of Section 4 for Q(t) acting on B: if t ∈ U a , λ(t) is the dominating eigenvalue of Q(t) and Π(t) is the associated rank-one eigenprojection. Besides let us define in L(B):

N (t) = Q(t) -λ(t)Π(t). Since Π(t)Q(t) = Q(t)Π(t) = λ(t)Π(t), we have ∀n ≥ 1, N (t) n = Q(t) n -λ(t) n Π(t). It follows from Theorem (K-L) that Q(t) n = λ(t) n Π(t) + N (t) n , with N (t) n B ≤ Cκ n a .
The operators Q(t), R z (t), Π(t) and N (t) n are viewed as elements of L(B) when we appeal to the spectral theory, and as elements of L(B, B) for stating our results of derivation.

Corollary 7.2. Under Hypothesis C(m), there exists a neighbourhood V of 0 in R d such that :

(i) Π(•) ∈ C m (V, B, B) (ii) for all n ≥ 1, N n (•) := N (•) n ∈ C m (V, B, B),
and
∃C > 0, ∀n ≥ 1, ∀ℓ = 0, . . . , m : sup t∈V N (ℓ) n (t) B, B ≤ C κn ,
where κ ∈ (0, 1) is the real number of Proposition 7.1.

(iii) λ(•) ∈ C m (V, C).
Proof. Let t ∈ O, with O introduced in Proposition 7.1.

(i) As in the standard perturbation theory, the eigenprojection Π(t) is defined in [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] by

Π(t) = 1 2iπ Γ 1 R z (t) dz,
where this line integral is considered on the oriented circle Γ 1 centered at z = 1, with radius (ii) In the same way, one can write

N (t) n = 1 2iπ Γ 0 z n R z (t) dz,
where Γ 0 is here the oriented circle, centered at z = 0, with radius κ (thus Γ 0 ⊂ D κ). By Proposition 7.1, we have

N n (•) ∈ C m (O, B, B) with N (ℓ) n (t) = 1 2iπ Γ 0 z n R (ℓ) z (t) dz for ℓ = 1, . . . , m. Hence the stated inequalities. (iii) Since lim t → 0 π(Π(t)1 E ) = π(Π1 E ) = 1 (by Th. (K-L)), there exists a neighbourhood V of 0 contained in O such that π(Π(t)1 E ) = 0 for any t ∈ V. From Q(t) = λ(t)Π(t) + N (t), it follows that λ(t) = π Q(t)1 E -N (t)1 E π(Π(t)1 E ) .
From the remark following the statement of C(m), we have

Q(•) ∈ C m (V, B, B) (with possibly V reduced). Now, since 1 E ∈ B and N (•), Π(•) are in C m (V, B, B), the functions Q(•)1 E , N (•)1 E , Π(•)1 E are in C m (V, B).
Finally, since π ∈ B ′ , this gives (iii).

Hypothesis C(m)

for the strongly ergodic Markov chains on L 2 (π)

Let us suppose that (X n ) n≥0 is a strongly ergodic Markov chain on L 2 (π). Let m ∈ N * , and let us investigate Hypothesis C(m) by using a family {B θ = L θ (π), r ≤ θ ≤ s} for some suitable 1 < r < s. We give the proof for d = 1. The extension to d ≥ 2 is obvious by the use of partial derivatives.

Proof. Let us notice that the condition on s implies that αs α+ms > 1, so one may choose r as stated, and we have r < s. Let ε > 0 be such that r = αs α+ms+ε(m+1)s . Let us prove C(m) with B θ = L θ (π), I = [r; s], a = s, and finally T 0 (θ) = αθ α+εθ and T 1 (θ) = αθ α+θ . Since T 0 T 1 = T 1 T 0 , one gets T 0 k T 1 j (θ) = αθ α+(j+εk)θ , in particular (T 0 T 1 ) m T 0 (s) = r, so the space B introduced in C(m) is B = L r (π). Since T 0 (θ) < θ and T 1 (θ) < θ, we have (0), and Lemma 4.2 gives (1) of C(m). To prove (2), let j ∈ {1, . . . , m}, and let θ ∈ I such that θ j := T 1 (T 0 T 1 ) j-1 (θ) ∈ I. We have θ j < T j 1 (θ), thus L T j 1 (θ) (π) ֒→ L θ j (π), so the regularity property in (2) follows from the following lemma where Q k (t) stands for the kernel defined in Remark (b) of Section 7.1.

Lemma 7.4. Let 1 ≤ j ≤ m. Then Q(•) ∈ C j R, L θ (π), L T j 1 (θ) (π) with Q (k) = Q k (k = 0, . . . , j).
Proof. We denote • p for • L p (π) , and • p,q for • L p (π),L q (π) . Let us first show that

Q k (•) ∈ C 0 R, B θ , B T j 1 (θ)
for any k = 0, . . . , j. The case k = 0 follows from Lemma 4.2. For 1 ≤ k ≤ j, we have for t 0 , h ∈ R and f ∈ L θ ,

Q k (t 0 + h)f -Q k (t 0 )f T 1 j (θ) = Q k (t 0 + h)f -Q k (t 0 )f αθ α+jθ ≤ 2 ξ k min{1, |hξ|}f αθ α+jθ ≤ 2 ξ k min{1, |hξ|} α j f θ with ξ k min{1, |hξ|} α j → 0 when h → 0 by Lebesgue's theorem. Now let us prove Q ′ k = Q k+1 in L B θ , B T 1 j (θ) for k = 0, . . . , j -1. Using |e ia -1 -ia| ≤ 2|a| min{1, |a|}, one gets for t 0 , h ∈ R and f ∈ B θ : Q k (t 0 + h)f -Q k (t 0 )f -hQ k+1 (t 0 )f αθ α+jθ ≤ Q |ξ| k |e ihξ -1 -ihξ| |f | αθ α+jθ ≤ 2|h| |ξ| (k+1) min{1, |h| |ξ|}|f | αθ α+jθ ,
and the previous computations yield

Q k (t 0 + h) -Q k (t 0 ) -hQ k+1 (t 0 ) θ,T 1 j (θ) = o(|h|).
We know that Q satisfies (K) on L p (π) for every p ∈]1; +∞[ (Prop. 4.1). Hence we have (3) of C(m), and ( 4) is obvious from the definition of T 0 , T 1 and r.

In this example, one can also use Lemma 4.2 and Lemma 7.4 to prove that Hypothesis C ′ (m) is satisfied by taking A > m such that r = αs α+As and by setting B θ := L αs α+θs (π).

A one-dimensional first-order Edgeworth expansion

In this section we assume that d = 1 (i.e. ξ is a real-valued measurable function on E). When (X n ) n is Harris recurrent, the regenerative method provides Edgeworth expansions under some "block" moment conditions [START_REF] Malinovskii | Limit theorems for Harris Markov chains I[END_REF] 

σ 2 = lim n 1 n E µ [S 2 n ] = lim n 1 n E π [S 2 n ], m 3 = lim n 1 n E π [S 3 n ], b µ = lim n E µ [S n ],
are well-defined, and if σ > 0, the following expansion holds uniformly in u ∈ R

(E) P µ S n σ √ n ≤ u = N (u) + m 3 6σ 3 √ n (1 -u 2 ) η(u) - b µ σ √ n η(u) + o( 1 √ n ).
It will be seen in the proof of Lemma 8.4 below that

σ 2 - 1 n E µ [S 2 n ] = O 1 n and m 3 - 1 n E π [S 3 n ] = O 1 n .
Case of the strongly ergodic Markov chains on L 2 (π).

In the special case of uniform ergodicity, the expansion (E) was established in [START_REF] Nagaev | More exact statements of limit theorems for homogeneous Markov chains[END_REF] for any initial distribution, under some hypothesis on the absolute continuous component of Q(x, dy) w.r.t. π and under the following restrictive operator-moment condition: there exists g : R → R such that g(u) → +∞ when |u| → +∞ and sup x∈E E |ξ(y)| 3 g(|ξ(y)|) Q(x, dy) < +∞. In [START_REF] Datta | On the first-order Edgeworth expansion for a Markov chain[END_REF], this result is slightly improved, more precisely (E) is established under the weaker (but still restrictive) moment condition sup x∈E E |ξ(y)| 3 Q(x, dy) < +∞ and under some refinements of the nonlattice condition given in [START_REF] Nagaev | More exact statements of limit theorems for homogeneous Markov chains[END_REF]. In the stationary case (i.e. under P π ), the general asymptotic expansions established in [START_REF] Götze | Asymptotic expansions for sums of weakly dependent random vectors[END_REF] apply to the uniformly ergodic Markov chains: they yield (E) when π(|ξ| 4 ) < +∞, but under the so-called Cramér condition that is much stronger than the nonlattice one.

With the help of Theorem 8.1, one obtains here the following improvement which is moreover valid for the more general context of the strong ergodicity on L 2 (π).

Corollary 8.2. Let us suppose that (X n ) n≥0 is a strongly ergodic Markov chain on L 2 (π), that π(|ξ| α ) < +∞ with some α > 3, and that ξ is nonlattice (Prop. 5.4). Then we have (E) for any initial distribution of the form dµ = φ dπ, where φ ∈ L r ′ (π) for some r ′ > α α-3 .

Proof. Let r ′ be fixed as above and let r be such that 1 r + 1 r ′ = 1. Then 1 < r < α 3 , and since αs α+3s ր α 3 when s → +∞, on can choose s such that s > α α-3 and αs α+3s > r. We have C(3) with B = L s (π), B = L r (π) (Prop. 7.3), and (S) on L s (π) (see the proof of Cor. 5.5).

Proof of Theorem 8.1. We shall appeal repeatedly to the notations and the conclusions of Theorem (K-L) (cf. Section 4) and of Corollary 7.2 (case m = 3). The existence of σ 2 , m 3 and b µ follows from the two next lemmas. Lemma 8.3. We have λ ′ (0) = 0 and µ(Π

′ (0)1 E ) = i k≥1 µ(Q k ξ) = i lim n E µ [S n ]. Proof. By deriving the equality Q(•)Π(•)1 E = λ(•) Π(•)1 E , one gets Q ′ (0)1 E + QΠ ′ (0)1 E = λ ′ (0) 1 E + Π ′ (0)1 E in B. Thus π(Q ′ (0)1 E ) + π(Π ′ (0)1 E ) = λ ′ (0) + π(Π ′ (0)1 E ). This gives λ ′ (0) = i π(Qξ) = i π(ξ) = 0, and iQ(ξ) + QΠ ′ (0)1 E = Π ′ (0)1 E in B. Therefore we have Π ′ (0)1 E -π(Π ′ (0)1 E ) = i k≥1 Q k ξ. This series is absolutely convergent in B since π(Qξ) = 0, Qξ = -iQ ′ (0)1 E ∈ B
and Q is strongly ergodic on B. Moreover, we have π(Π ′ (0)1 E ) = 0. Indeed, by deriving Π(t) 2 = Π(t), we get 2π(Π ′ (0

)1 E ) = π(Π(0)Π ′ (0)1 E + Π ′ (0)Π(0)1 E ) = π(Π ′ (0)1 E ). Since µ ∈ B
′ , this yields the first equality of the second assertion. The second one is obvious.

Lemma 8.4. We have lim n

1 n E µ [S 2 n ] = -λ ′′ (0) and lim n 1 n E π [S 3 n ] = iλ (3) (0).
Proof of Lemma 8.4. For convenience, let us assume that µ = π and prove the two equalities of Lemma 8.4 at once (see Rk. below). Since

E π [ |ξ(X k )| 3 ] = π(|ξ| 3 ) < +∞, we have E π [ |S 3 n | ] < +∞, so E π [e itSn ] = 1 -E π [S 2 n ] t 2 2 -i E π [S 3 n ] t 3 6 + o n (t 3 ).
Besides, Formula (CF) (cf. Section 3) and the equality Q(t) n = λ(t) n Π(t) + N (t) n (see Section 7.2) give

E π [e itSn ] = λ(t) n π(Π(t)1 E ) + π(N (t) n 1 E ),
and, since λ ′ (0) = 0 and π(Π ′ (0)1 E ) = 0 (Lemma 8.3), it follows from Hypothesis C(3) and Corollary 7.2 that

λ(t) n = 1 + n λ ′′ (0) 2 t 2 + n λ (3) (0) 6 t 3 + o n (t 3 ), π(Π(t)1 E ) = 1 + ct 2 + dt 3 + o(t 3 ),
with some c, d ∈ C, and since N (0)1 E = 0, we have π(N (t) n 1 E ) = e n t+f n t 2 +g n t 3 +o n (t 3 ) for all n ≥ 1, with some e n , f n , g n ∈ C. Moreover, from Assertion (ii) in Corollary 7.2, it follows that the sequences (e n ) n , (f n ) n and (g n ) n are bounded. From the previous expansions, one can write another third order Taylor expansion for E π [e itSn ], from which we easily deduce the following equalities (and so Lemma 8.4):

nλ ′′ (0) + 2c + 2f n = -E π [S 2 n ] and nλ (3) (0) + 6d + 6g n = -i E π [S 3 n ].
Remark. By using the above arguments with second-order Taylor expansions, it can be easily proved that the first equality of Lemma 8.4 is valid under Hypothesis C(2) for any µ ∈ B ′ . To prove E µ [S 2 n ] < +∞ under Hypothesis C(2) and for µ ∈ B ′ , we notice that

Q ′′ (0)1 E = -Q(ξ 2 ) ∈ B, so Q k (ξ 2 ) ∈ B for k ≥ 1, and E µ [ξ(X k ) 2 ] = µ(Q k ξ 2 ) < +∞.
The proof of the Edgeworth expansion (E) is close to that of the i.i.d. case [START_REF] Feller | An introduction to probability theory and its applications[END_REF] (XVI.4). For convenience, one may assume, without any loss of generality, that σ = 1 (of course this reduction also leads to alter the constants m 3 and b µ ). Set

G n (u) = N (u) + m 3 6 √ n (1 -u 2 ) η(u) - b µ √ n η(u) (u ∈ R).
Then G n has a bounded derivative g n on R whose Fourier transform γ n is given by

γ n (t) = γ 0,n (t)+γ µ,n (t), where γ 0,n (t) = e -1 2 t 2 1+ m 3 6 √ n (it) 3 and γ µ,n (t) = e -1 2 t 2 i b µ √ n t .
Let us notice that the part γ 0,n (t) has the same form as in the i.i.d. context. Let us set

∀t ∈ R, φ n (t) = E µ [e itSn ].
The first question is to prove the so-called Berry-Esseen inequality

sup u∈R P µ ( S n √ n ≤ u) -G n (u) ≤ 1 π T -T φ n ( t √ n ) -γ n (t) t dt + 24m πT , where m = sup{|G ′ n (u)|, n ≥ 1, u ∈ R}.
To do this, let us observe that all the hypotheses of Lemma 2 in Section XVI.3 of [START_REF] Feller | An introduction to probability theory and its applications[END_REF], which provides this inequality, are satisfied, except γ ′ n (0) = 0 because of the additional term γ µ,n (t) in γ n (t). However it can be easily seen that the above cited lemma of [START_REF] Feller | An introduction to probability theory and its applications[END_REF] still holds under the condition that γn(t)-1 t is continuous at the origin. Indeed the argument in [START_REF] Feller | An introduction to probability theory and its applications[END_REF] (p. 511) deriving from the Riemann-Lebesgue theorem then remains valid. Obviously the previous condition on γ n is fulfilled since γµ,n(t) t = i bµ √ n e -1 2 t 2 . Thus we have the desired Berry-Esseen inequality and we can now proceed as in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]: let ε > 0, let T = a √ n with a such that 24m πa < ε. So 24m πT ≤ ε √ n . Let 0 < δ < a such that [-δ, δ] is contained in the interval O of Theorem (K-L) applied on B, and let us write

a √ n -a √ n φ n ( t √ n ) -γ n (t) t dt = δ √ n≤|t|≤a √ n + |t|≤δ √ n := A n + B n .
The property (E) then follows from the two next lemmas.

Lemma 8.5. There exists

N 0 ∈ N * such that A n ≤ ε √ n for all n ≥ N 0 .
Proof. From Formula (CF) (cf. Section 3), Condition (S) (cf. Section 5.1) on B applied with

K 0 = [-a, -δ] ∪ [δ, a],
and from µ ∈ B ′ ⊂ B ′ , there exist ρ < 1 and c ′ ≥ 0 such that we have,

for n ≥ 1 and u ∈ K 0 : |φ n (u)| = |µ(Q(u) n 1 E )| ≤ c ′ ρ n . So δ √ n≤|t|≤a √ n |φ n ( t √ n )| |t| dt = δ≤|u|≤a |φ n (u)| |u| du ≤ 2a δ c ′ ρ n .
Moreover, for n sufficiently large, we have δ

√ n≤|t|≤a √ n |γn(t)| |t| dt ≤ |t|≥δ √ n |γ n (t)|dt.
We easily deduce Lemma 8.5 from the two last estimates.

Lemma 8.6. There exists N

′ 0 ∈ N * such that B n ≤ ε √ n for all n ≥ N ′ 0 .
Proof. Using γ n (t) = γ 0,n (t) + γ µ,n (t) and the equality φ n (t) = λ(t) n µ(Π(t)1 E ) + µ(N (t) n 1 E ) which follows from (CF) and from Theorem (K-L), one can write for any

t such that |t| ≤ δ √ n φ n ( t √ n ) -γ n (t) = λ( t √ n ) n -γ 0,n (t) + λ( t √ n ) n µ(Π( t √ n )1 E ) -1 -i b µ t √ n + i b µ t √ n λ( t √ n ) n -e -1 2 t 2 + µ(N ( t √ n ) n 1 E ) := i n (t) + j n (t) + k n (t) + ℓ n (t).
Therefore:

B n ≤ |t|≤δ √ n |i n (t)| + |j n (t)| + |k n (t)| + |ℓ n (t)| dt |t| := I n + J n + K n + L n .
Then Lemma 8.6 follows from the assertions (i)-(l) below for which, as in the i.i.d. case, we shall repeatedly appeal to the following remark: using the Taylor expansion λ(t) = 1 -t 

(i) ∃N 1 ∈ N * , ∀n ≥ N 1 , I n ≤ ε √ n .
This can be proved exactly as in the i.i.d. case [START_REF] Feller | An introduction to probability theory and its applications[END_REF] since we have λ

(t) = 1 -t 2 2 -i m 3 6 t 3 + o(t 3 ) (Lemmas 8.3-4). (j) ∃N 2 ∈ N * , ∀n ≥ N 2 , J n ≤ ε √ n . Indeed, since u → µ(Π(u)1 E ) has two continuous deriva- tives on [-δ, δ] (Coro. 7.2) and µ(Π ′ (0)1 E ) = ib µ (Lemma 8.
3), there exists C > 0 such that:

J n ≤ |t|≤δ √ n e -t 2 4 Ct 2 n dt |t| ≤ C n +∞ -∞ e -t 2 4 |t| dt. (k) ∃N 3 ∈ N * , ∀n ≥ N 3 , K n ≤ ε √ n . Indeed we have K n ≤ |b µ | √ n |t|≤δ √ n λ( t √ n ) n -e -1 2 t 2 dt,
and from the already mentioned second order Taylor expansion of λ(t) and Lebesgue's theorem, it follows that this last integral converges to 0 when n → +∞.

(l) ∃N 4 ∈ N * , ∀n ≥ N 4 , L n ≤ ε √ n . Indeed, the function χ n : u → µ(N (u) n 1 E
) is continuously differentiable on [-δ, δ] and there exists C ′ > 0 such that we have for all n ≥ 1 and u ∈ [-δ, δ]:

|χ ′ n (u)| ≤ C ′ κn (Corollary 7.2(ii)). Since N (0)1 E = 0, one then obtains |µ(N (u) n 1 E )| ≤ C ′ κn |u| for |u| ≤ δ, so L n ≤ C ′ √ n κn 2δ √ n = 2C ′ δ κn = o( 1 √ n ).
Remark. In the i.i.d. case, higher-order Edgeworth expansions can be established, see [START_REF] Feller | An introduction to probability theory and its applications[END_REF] (Th. 2 p. 508), but the non-arithmeticity assumption has to be replaced with the so-called more restrictive Cràmer condition. Notice that, in our context, this condition can be extended to some operator-type Cràmer condition, and that the present method could be then employed to prove similar higher-order Edgeworth expansions. However, the main difficulty is to reduce this operator-type Cràmer assumption to some more practical condition.

A multidimensional Berry-Esseen theorem

We want to estimate the rate of convergence in the central limit theorem for a R d -valued function ξ = (ξ 1 , . . . , ξ d ). A natural way to do this is in the sense of the Prohorov metric. Let us recall the definition of this metric and some well-known facts about it. We denote by B(R d ) the Borel σ-algebra of R d and by M 1 (R d ) the set of probability measures on (R d , B(R d )).

The Prohorov metric [START_REF] Billingsley | Convergence of probability measures[END_REF][START_REF] Dudley | Wadsworth & Brooks Cole Math. series[END_REF]. For all P, Q in M 1 (R d ), we define:

P(P, Q) := inf ε > 0 : ∀B ∈ B(R d ), (P (B) -Q(B ε )) ≤ ε , where B ε is the open ε-neighbourhood of B.
The Ky Fan metric for random variables. If X and Y are two R d -valued random variables defined on the same probability space (E 0 , T 0 , P 0 ), we define :

K(X, Y ) := inf {ε > 0 : P 0 (|X -Y | 2 > ε) < ε} .
Let us recall that lim n→+∞ K(X n , Y ) = 0 means that (X n ) n converges in probability to Y .

Proposition ([20] Corollary 11.6.4). For all P, Q in M 1 (R d ), the quantity P(P, Q) is the infimum of K(X, Y ) over the couples (X, Y ) of R d -valued random variables defined on the same probability space, whose distributions are respectively P and Q.

For any n ≥ 1, µ *

Sn

√ n stands for the law of Sn √ n under P µ , and we denote by S ⊗2 n the random variable with values in the set of d × d matrices given by: 

S n ⊗2 i,j = n k,ℓ=1 ξ i (X k )ξ j (X ℓ ).
Γ := lim n→+∞ 1 n E π [S n ⊗2 ] = lim n→+∞ 1 n E µ [S n ⊗2 ]. If Γ is invertible, then Sn √ n n
converges in distribution under P µ to the gaussian distribution N (0, Γ), and we have

P µ * S n √ n , N (0, Γ) = O(n -1/2 ).
In the i.i.d. case, thanks to a smoothing inequality (see Proposition 9.3) and to an additional truncation argument, the conclusion of Theorem 9.1 holds if the random variables admit a moment of order 3. For the strongly ergodic Markov chains on L 2 (π), one gets the following statement which is a consequence of Theorem 9.1 and of Proposition 7.3 (proceed as for Corollary 8.2).

Corollary 9.2. Let us suppose that (X n ) n≥0 is a strongly ergodic Markov chain on L 2 (π), that π(|ξ| α 2 ) < +∞ for some α > m := max(3, ⌊d/2⌋ + 1), and that the initial distribution satisfies dµ = φdπ with φ ∈ L r ′ (π) for some r ′ > α α-m . Then the conclusion of Theorem 9.1 is true.

Concerning the special case of the uniform ergodicity, notice that [START_REF] Götze | Asymptotic expansions for sums of weakly dependent random vectors[END_REF] provides a multidimensional uniform Berry-Esseen type estimate when π(|ξ| 4 2 ) < +∞. However, the hypothesis µ = π (i.e. (X n ) n is stationary), and the Cramér condition for ξ(X 0 ), are required in [START_REF] Götze | Asymptotic expansions for sums of weakly dependent random vectors[END_REF], while the (Prohorov) estimate in Corollary 9.2, and more generally in Theorem 9.1, is valid in the non-stationary case and without any lattice-type condition.

Let us mention that Theorem 9.1 remains true when Γ is non invertible if, for every β ∈ R d such that β, Γβ = 0, we are able to prove that sup n β, S n ∞ < +∞. In this case, up to a linear change of coordinates and to a possible change of d, we are led to the invertible case (see Section 2.4.2 of [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF]). This remark applies to the Knudsen gas model (see Section 1).

When d = 1, Theorem 9.1 gives the uniform Berry-Esseen result under Condition C(3) if the asymptotic variance σ 2 is nonzero. This is an easy consequence of the definition of P by taking B = (-∞, x] and B = (x, +∞). However, as already mentioned, C( 3) is in practice a little more restrictive than the conditions of Section 6; for instance, compare the expected condition π(|ξ| 3 ) < +∞ of Corollary 6.3 with that of Corollary 9.2 (case d = 1).

The proof of Theorem 9.1 is based on Corollary 7.2, on lemmas 8.3 and 8.4 and on the following smoothing inequality due to Yurinskii [START_REF] Yurinskii | A smoothing inequality for estimates of the Levy-Prokhorov distance[END_REF] : Proposition 9.3. Let Q be some non degenerate d-dimensional normal distribution. There exists a real number c 0 > 0 such that, for any real number T > 0 and for any Borel probability measure P admitting moments of order ⌊ d 2 ⌋ + 1, we have:

P (P, Q) ≤ c 0     1 T +   |t| 2 <T ⌊ d 2 ⌋+1
k=0 {i 1 ,...,i k }∈{1,...,d} k

∂ k ∂t i 1 ...∂t i k P (e i t,• ) -Q(e i t,• ) 2 dt   1 2     .
Proof of Theorem 9.1. The proof uses Corollary 7.2 which is applied here under Hypothesis C(m) with m defined in Theorem 9.1. In particular we have m ≥ 3, and we shall use repeatedly the fact that 1 E ∈ B and π, µ ∈ B ′ . Since the proof has common points with the proof given in Section 2.4.1 of [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF], we do not give all the details. We shall refer to [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF] for some technical points. The existence of the asymptotic covariance matrix Γ as defined in Theorem 9.1 follows from the next lemma in which ∇ and Hess denote the gradient and the Hessian matrix.

Lemma 9.4. We have ∇λ(0) = 0 and lim n

1 n E µ [S ⊗2 n ] = -Hessλ(0).
Proof. These properties have been proved in the case d = 1 (Lemmas 8.3-4). We deduce from them the multidimensional version by considering, for any α ∈ R d , the function t → Q(tα) defined on R.

Without any loss of generality, up to a linear change of variables, we may suppose that the covariance matrix Γ is the identity matrix.

Let β > 0 be such that the closed ball {u ∈ R 

|t| 2 ≤β √ n |Ξ (k) n (t)| 2 dt 1 2 = O 1 √ n . From the decomposition E µ [e i u,Sn ] = λ(u) n µ(Π(u)1 E ) + µ(N (u) n 1 E ) which is valid for u ∈ O, it follows that Ξ (k) n = λ( • √ n ) n -e -|•| 2 2 2 (k) + λ( • √ n ) n µ(Π( • √ n )1 E ) -1 (k) + µ(N ( • √ n ) n 1 E ) (k) := A (k) n + B (k) n + C (k) n
where the functions A n , B n and C n , defined on the set {t : |t| 2 < β √ n}, are implicitly given by the above equality. In the sequel, we merely use the notation

F n (t) = O(G n (t)) to express that |F n (t)| ≤ C |G n (t)| for some C ∈ R + independent of (t, n) such that |t| 2 ≤ β √ n. Setting N n (•) = N (•) n , Corollary 7.2(ii) yields |C (k) n (t)| = n -k 2 |µ(N (k) n ( t √ n )1 E )| = O(n -k 2 κn ).
So

|t| 2 ≤β √ n |C (k) n (t)| 2 dt = O(n d 2 -k κ2n ) = O( 1 √ n
). Now (I) will be clearly valid provided that we have, for some square Lebesgue-integrable function χ(•) on R d :

(II)

|A (k) n (t)| + |B (k) n (t)| = O 1 √ n χ(t) .
To prove this estimate for the term

A (k)
n , one can proceed as in the i.i.d. case. Indeed, according to the previous lemma, the function λ(•) then satisfies the same properties and plays exactly the same role, as the common characteristic function of the i.i.d. case (see Section 3 of [START_REF] Yurinskii | A smoothing inequality for estimates of the Levy-Prokhorov distance[END_REF] and Lemma 8 of [START_REF] Rotar | A non-uniform estimate for the convergence speed in the multidimensional central theorem[END_REF] or [START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF] pages 2349-2350).

To study 

B (k) n (t), set λ n (t) = λ( t √ n ) n for any (t, n) such that |t| 2 ≤ β √ n and, for |u| 2 ≤ β, set α(u) = µ(Π(u)1 E ) -1. With these notations, we have B n (t) = λ n (t) α( t √ n ),
B (k) n,p,q (t) := λ (p) n (t) n -q 2 α (q) ( t √ n ) with p + q = k.
Lemma 9.5. For p = 0, . . . , m, we have |λ .

Assume this lemma for the moment. Since we have, by Corollary 7.

2(i), α( t √ n ) = O( |t| 2 √ n ) and α (q) ( t √ n ) = O(1) for 1 ≤ q ≤ m, this lemma gives for q = 0 B (k) n,k,0 (t) = O (1 + |t| k 2 ) e -|t| 2 2 4 O( |t| 2 √ n ) = O 1 √ n (1 + |t| k+1 2 ) e -|t| 2 2 4
, and for q ≥ 1:

B (k) n,p,q (t) = O (1 + |t| p 2 ) e -|t| 2 2 4 O(n -q 2 ) = O 1 √ n (1 + |t| k+1 2 ) e -|t| 2 2 4
.

So all the B

(k) 4 , and this gives the estimate (II) for B (k) n (t), and finally the proof of (I) is complete.

n,p,q (t)'s are O 1 √ n χ(t) with χ(t) = (1+ |t| k+1 2 ) e -|t| 2 2 
Proof of Lemma 9.5. Recall Γ is by hypothesis the identity matrix, so λ(u) = 1-

|u| 2 2 2 + o(|u| 2 
2 ) as u goes to 0 (use Lemma 9.4). Hence, for |u| 2 ≤ β with β possibly reduced,

|λ(u)| ≤ λ(u) -1 + |u| 2 2 2 + 1 - |u| 2 2 2 ≤ |u| 2 2 4 + (1 - |u| 2 2 2 ) ≤ 1 - |u| 2 2 4 ≤ e -|u| 2 2 4 , so |λ( t √ n )| ≤ e -|t| 2 2 4n and |λ( t √ n ) n | ≤ (e -|t| 2 2 4n ) n = e -|t| 2 2 
4 . This gives the estimate of the lemma for p = 0. Now, in the case p ≥ 1, one can prove by a straightforward induction that λ

(p) n (t) is a finite sum of terms of the form γ(t, n) := n(n -1) • • • (n -j + 1) n -p 2 λ (s 1 ) ( t √ n ) • • • λ (s j ) ( t √ n ) λ( t √ n ) n-j ,
with j ∈ {1, . . . , p}, s i ≥ 1, and s 1 + • • • + s j = p (for convenience, j, s 1 , . . . , s j have been neglected in the above notation γ(t, n)). So we must prove that, given such fixed j, s 1 , . . . , s j ,

we have γ(t, n) = O (1 + |t| p 2 ) e -|t| 2 2 4 
. To that effect, let us observe that λ (1) 

( t √ n ) = O( |t| 2 √ n ) since λ (1) (0) = 0, and that λ (s) ( t √ n ) = O(1)
for any s = 2, . . . , m. This leads to define a = Card{i : s i = 1}. Then we have

γ(t, n) = O n j-p 2 |t| a 2 n a 2 (e -|t| 2 2 4n ) n-j = O e j 4 t √ n 2 2 n j-p 2 -a 2 |t| a 2 e -|t| 2 2 4 = O n 1 2 (2j-p-a) (1 + |t| p 2 ) e -|t| 2 2 4 
.

For the last estimate, we used the fact that t √ n 2 ≤ β and a ≤ p. Finally observe that we

have p = s 1 + • • • + s j ≥ a + 2(j -a)
by definition of the number a, thus 2jpa ≤ 0, so that the desired estimate on γ(t, n) follows from the previous one.

Application to v-geometrically ergodic Markov chains

For the moment, the abstract results of the previous sections have been only applied to the (somewhat restrictive) strongly ergodic Markov chains on L 2 (π). This section and the next one present applications to other practicable Markov models, namely the so-called vgeometrically ergodic Markov chains and the random iterative models (see Examples 2-3 in Section 1). The interest of these models for statistical applications and for stochastic algorithms is fully described in [START_REF] Meyn | Markov chains and stochastic stability[END_REF] [21], and of course, the rate of convergence in the c.l.t. and the Edgeworth expansions are of great importance in practice, see e.g [60] [8]. For these models, all the previously studied limit theorems will be stated under general and simple moment conditions.

Throughout this section, we suppose that the σ-field E is countably generated, that (X n ) n≥0 is aperiodic and ψ-irreducible w.r.t. a certain positive σ-finite measure ψ on E.

Moreover, given an unbounded function v : E →[1, +∞[, we assume that (X n ) n≥0 is vgeometrically ergodic, that is π(v) < +∞ and there exist real numbers κ 0 < 1 and C ≥ 0 such that we have, for all n ≥ 1 and x ∈ E,

sup |Q n f (x) -π(f )| , f : E → C measurable, |f | ≤ v ≤ C κ n 0 v(x).
If w is an unbounded function defined on E and taking values in [1, +∞[, we denote by (B w , • w ) the weighted supremum-normed space of measurable complex-valued functions f on E such that

f w = sup x∈E |f (x)| w(x) < +∞.
Let us observe that µ ∈ B ′ w if µ(w) < +∞. In particular we have π ∈ B ′ v by hypothesis. Clearly, v-geometrical ergodicity means that Q is strongly ergodic w.r.t. B v . Let 0 < θ ≤ 1. For the sake of simplicity, we slightly abuse notation below by writing

B θ = B v θ and • θ = • v θ . In particular B 1 = B v and • 1 = • v .
The next lemma will be repeatedly used below (here ξ is only supposed to be measurable). Proof. The property (K1) of Section 1 on B θ (i.e. (X n ) n≥0 is v θ -geometrically ergodic) follows from the well-known link between v-geometric ergodicity and the so-called drift criterion [START_REF] Meyn | Markov chains and stochastic stability[END_REF]. More precisely, under the aperiodicity and ψ-irreducibility hypotheses, the w-geometric ergodicity for some w : E →[1, +∞[ is equivalent to the following condition: there exist r < 1, M ≥ 0 and a petite set C ∈ E such that Qw 0 ≤ rw 0 + M 1 C , where w 0 is a function equivalent to w in the sense that c -1 w ≤ w 0 ≤ c w for some c ∈ R * + . From that and since the function t → t θ is concave on R + , v-geometric ergodicity implies, by virtue of Jensen's inequality, that

Q(v θ 0 ) ≤ (rv 0 + M 1 C ) θ ≤ r θ v θ 0 + M θ 1 C , where v 0 stands for some function equivalent to v. Thus (X n ) n≥0 is v θ -geometrically ergodic. Besides, since π(|e i h, ξ -1| |f |) ≤ f θ π(|e i h, ξ -1| v θ ) for f ∈ B θ ,
we have ( K2) (use Lebesgue's theorem and Remark (a) of Section 4). Besides we have ( K3) by Remark (b) of Section 4. Since B θ is a Banach lattice, the property ( K4) w.r.t. B θ can be deduced from the abstract statement [START_REF] Räbiger | On the approximation of positive operators and the behaviour of the spectra of the appoximants[END_REF]Cor. 1.6]. A simpler proof based on [START_REF] Hennion | Quasi-compactness and absolutely continuous kernels[END_REF] is presented in [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF].

If |ξ| 2 2 ≤ C v for some C > 0, then ( Sn √ n
) n converges to a normal distribution N (0, Γ) for any initial distribution. This is a classical result [START_REF] Meyn | Markov chains and stochastic stability[END_REF] which can be also deduced, in the stationary case, from the statements of Section 2. Indeed, the condition |ξ| 2 2 ≤ C v implies that the coordinate functions ξ i of ξ belong to the space B 1 Recall that, without additional assumptions, this central limit theorem does not hold under the weaker condition π(|ξ| 2 2 ) < +∞ (see [START_REF] Jones | On the Markov chain central limit theorem[END_REF]). In the same way, the limit theorems below will hold under moment conditions of the type |ξ| α 2 ≤ C v with some suitable exponent α ≥ 2, and some positive constant C. So α will measure the order in these moment conditions, and we are going to see that, except for the multidimensional Berry-Esseen theorem, it is similar (possibly up to ε > 0) to that of the i.i.d. case.

The hypotheses of Assertions (a)-(d) below will imply that the above cited c.l.t. holds, and it will be then understood that Γ is non-singular (this means σ 2 > 0 in case d = 1), hence we have (CLT) of Section 5.1. The nonlattice condition below is that of Proposition 5.4. Finally we suppose that the initial distribution µ is such that µ(v) < +∞. 

P µ * Sn √ n , N (0, Γ) = O(n -1/2 ).
From the usual spectral method, (a) was established in [START_REF] Seva | On the local limit theorem for non-uniformly ergodic Markov chains[END_REF] for bounded functionals ξ. Assertion (a) extends the result of [START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF] stated under a kernel condition on Q. From Bolthausen's theorem [START_REF] Bolthausen | The Berry-Esseen theorem for strongly mixing Harris recurrent Markov chains[END_REF], the one-dimensional uniform Berry-Esseen theorem holds under P π (stationary case) if π(|ξ| p ) < +∞ for some p > 3. Assertion (b), already presented in [START_REF] Hervé | Vitesse de convergence dans le théorème limite central pour chaînes de Markov fortement ergodiques[END_REF], extends this result to the non-stationary case under an alternative third-order moment condition. Assertion (c) was established in [START_REF] Kontoyiannis | Spectral theory and limit theorems for geometrically ergodic Markov processses[END_REF] for bounded functional ξ, and (d) is new to our knowledge. , one gets: 

∀f ∈ B 1 2 , |Q(t + h)f -Q(t)f | ≤ Q |e i h, ξ -1| |f | ≤ |h| 2 g 1 2 f 1 2 Qv,
֒→ L 3 (π), B 2 3 ֒→ L 3 2 ( 
π), we have (G1) (G2), so (CLT') (Section 6). We have

|Q(t)f -Qf | ≤ |t| ξ 1 3 f 1 3 Qv 2 3 for all f ∈ B 1 3
, and since

Qv 2 3 v ≤ Qv v , one gets Q(t) -Q B 1 3 ,B 1 = O(|t|). So Theorem 6.1 applies with B = B 1 3 .
Using the next proposition, Assertions (c) and (d) follow from Theorems 8.1 and 9.1.

Proposition 10.3. If |ξ| α 2 ≤ C v with α > m ( m ∈ N * ), then C(m) holds with B = B a , B = B 1 , for any a > 0 such that: a + m α < 1.
Proof. For convenience, let us assume that d = 1. The extension to d ≥ 2 is obvious by the use of partial derivatives. Let ε > 0 such that a + m+(2m+1)ε α ≤ 1. We take I = [a, 1], B θ (θ ∈ I) as above defined, and we consider T 0 (θ

) = θ + ε α , T 1 (θ) = θ + 1+ε α . Recall that we set: Q k (t)(x, dy) = i k ξ(y) k e itξ(y) Q(x, dy) (k ∈ N, t ∈ R, x ∈ E).
With these notations, the proof of C(m) is a consequence of the two following lemmas. Lemma 10.4. For any k = 0, . . . , m and θ, θ

′ > 0 such that θ + k α < θ ′ ≤ 1, we have Q k ∈ C 0 (R, B θ , B θ ′ ). Proof. Let 0 < δ ≤ 1 such that θ + k+δ α ≤ θ ′ . Using the inequality |e iu -1| ≤ 2|u| δ (u ∈ R), one gets for t, t 0 ∈ R and f ∈ B θ : |Q k (t)f -Q k (t 0 )f | ≤ Q |ξ| k |e i(t-t 0 )ξ -1| |f | ≤ 2 C k+δ α |t -t 0 | δ f θ Q(v k+δ α +θ ), hence Q k (t)f -Q k (t 0 )f θ ′ ≤ 2 C k+δ α |t -t 0 | δ f θ Q(v θ ′ ) θ ′ .
Lemma 10.5. For any k = 0, . . . , m -1 and θ, θ

′ > 0 such that θ + k+1 α < θ ′ ≤ 1, we have Q k ∈ C 1 (R, B θ , B θ ′ ) with Q ′ k = Q k+1 . Proof. Let 0 < δ ≤ 1 such that θ+ k+1+δ α ≤ θ ′ . Using |e iu -1-iu| ≤ 2|u| 1+δ and proceeding as above, one gets Q k (t)f -Q k (t 0 )f -(t -t 0 )Q k+1 (t 0 )f θ ′ ≤ 2 C k+1+δ α |t -t 0 | 1+δ f θ Q(v θ ′ ) θ ′ for t 0 , t ∈ R and f ∈ B θ . Since Q k+1 ∈ C 0 (R, θ, θ ′ ), this yields the desired statement.
Remark. The above proof shows that Assertion (b) of Corollary 10.2 holds under the alternative following hypotheses:

(X n ) n≥0 is v 2 3 -geometrically ergodic, µ(v 2 3 ) < +∞, |ξ| 3 ≤ C v, and finally π(v) < +∞, in order to have B 1 3 ֒→ L 3 (π) and B 2 3 ֒→ L 3 2 (π) (use B = B 2 3
).

Applications to iterative Lipschitz models 11.1 Iterative Lipschitz models

Here (E, d) is a non-compact metric space in which every closed ball is compact. We endow it with its Borel σ-field E. Let (G, G) be a measurable space, let (θ n ) n≥1 be a sequence of i.i.d.r.v. taking values in G. Let X 0 be a E-valued r.v. independent of (θ n ) n , and finally let F : E × G → E be a measurable function. We set

X n = F (X n-1 , θ n ), n ≥ 1.
For θ ∈ G, x ∈ E, we set F θ x = F (x, θ) and we suppose that F θ : E → E is Lipschitz continuous. Then (X n ) n≥1 is called an iterative Lipschitz model [START_REF] Diaconis | Iterated random functions[END_REF] [START_REF] Duflo | Random Iterative Models[END_REF]. It is a Markov chain and its transition probability is:

Qf (x) = E[ f (F (x, θ 1 )) ].
Let x 0 be a fixed point in E. As in [START_REF] Duflo | Random Iterative Models[END_REF], we shall appeal to the following r.v:

C = sup d(F θ 1 x, F θ 1 y) d(x, y) , x, y ∈ E, x = y and M = 1 + C + d F (x 0 , θ 1 ), x 0 .
As a preliminary, let us present a sufficient condition for the existence and the uniqueness of an invariant distribution. The following proposition is proved in [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF] (Th. I).

Proposition 11.1. Let α ∈ (0, 1], η ∈ R + . Under the moment condition E[M α(η+1) ] < +∞ and the mean contraction condition E[C α max{C, 1} αη ] < 1, there exists a unique stationary distribution, π, and we have π(d(•, x 0 ) α(η+1) ) < +∞.

More precise statements can be found in the literature (see e.g [START_REF] Diaconis | Iterated random functions[END_REF] [21]). However, the hypotheses occurring in Proposition 11.1 are convenient in our context and are similar to those introduced later.

Finally, we shall suppose that ξ satisfies the following condition, with given S, s ≥ 0:

(L) s ∀(x, y) ∈ E × E, |ξ(x) -ξ(y)| 2 ≤ S d(x, y) 1 + d(x, x 0 ) + d(y, x 0 ) s .
For convenience, Condition (L) s has been stated as a weighted-Lipschitz condition w.r.t. the distance d(•, •) on E. However, by replacing d(•, •) with the distance d(•, •) a (0 < a ≤ 1), Condition (L) s then corresponds to the general weighted-Hölder condition of [START_REF] Duflo | Random Iterative Models[END_REF].

Section 11.2 below will introduce weighted Hölder-type spaces and investigate all the hypotheses of the previous sections. Using these preliminary statements, we shall see in Section 11.3 that the limit theorems of the preceding sections then apply to (ξ(X n )) n under some mean contraction and moment conditions. These conditions will focus on the random variables C, M and will depend on the real number s of Condition (L) s .

To compare with the i.i.d. case, let us summarize the results obtained in Section 11.3 in the following special setting : (X n ) n is a R d -valued iterative Lipschitz sequence such that C < 1 a.s.. For convenience we also assume that (X n ) n is stationary, with stationary distribution π, and we consider the random walk associated to ξ(x) = x -E π [X 0 ], that is:

S n = X 1 + . . . + X n -nE π [X 0 ].
Finally suppose that E[ M 2 ] < +∞. Then the sequence ( Sn √ n ) n converges to N (0, Γ) [START_REF] Benda | A central limit theorem for contractive stochastic dynamical systems[END_REF], and we assume that Γ is invertible. Corollaries of Section 11.3 will then provide the following results : More generally, the previous assertions apply to (ξ(X n )) n whenever ξ is a Lipschitz continuous function on E (i.e. (L) s holds with s = 0).

Example. The autoregressive models. A simple and typical example is the autoregressive chain defined in R d by The possibility of considering α < 1 as above is important. To see that, consider for instance the case s = 0 (i.e. ξ is Lipschitz continuous on E). Then ξ ∈ B 1,γ for any γ > 0, and we could also consider B = B 1,γ in the previous proof, but it is worth noticing that the condition B 1,γ ֒→ L 2 (π) would then require the moment condition π(d(•, x 0 ) 2(1+γ) ) < +∞ which is stronger than π(d(•, x 0 ) 2 ) < +∞ used above. Anyway, we shall often appeal below to the conditions s + 1 ≤ β ≤ γ and E[M α(γ+1) ] < +∞. If s = 0 and β = γ = 1, then the previous moment condition is

X n = A n X n-1 + θ n (n ∈ N * ), where (A n , θ n ) n≥1 is a i.i.d. sequence of r.v. taking values in M d (R) × R d ,
E[M] < +∞ if α = 1 2 , while it is E[M 2 ] < +∞ if α = 1.
Now we investigate the action of the Fourier kernels Q(t) on the space B α,β,γ . The proofs of Propositions 11.4-8 below present no theoretical problem. However the presence of Lipschitz coefficients in the definition of B α,β,γ makes the computations quite more technical than those seen for the v-geometrically ergodic Markov chains. For convenience, these proofs are presented in Appendix B. The arguments will be derived from [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF]. However, the next four statements improve the corresponding ones in [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF] (See Remark below).

Proposition 11.4. Condition (K) of Section 4 holds on B α,β,γ if we have s + 1 ≤ β ≤ γ and

E M α(γ+1) + C α M α(γ+β) < +∞, E C α max{C, 1} α(γ+β) < 1.
Proposition 11.5. We have

Q(t + h) -Q(t) B α,β,γ , B α,β,γ ′ → 0 when t → 0 if the following conditions hold: s + 1 ≤ β ≤ γ < γ ′ and E M α(γ ′ +1) + C α M α(γ ′ +β) < +∞.
Proposition 11.6. We have , and

Q(t) -Q B α,β,γ , B α,β,γ ′ = O(|t|) if the following conditions hold: s + 1 ≤ β ≤ γ, γ ′ ≥ γ + s+1 α , and E M α(γ ′ +1) + C α M α(γ ′ +β) < +∞.
E M α(γ ′ +1) + C α M α(γ ′ +β) < +∞ E C α max{C, 1} α(γ ′ +β) < 1.
Concerning the spectral condition (S) of Section 5.1, we now study the possibility of applying the results of Section 5.2. Observe that this cannot be done with the help of Proposition 11.4 because Condition (K) only concerns Q(t) for t near 0. By considering another auxiliary seminorm on B α,β,γ , we shall prove in Appendix B.5 the following result for which the hypotheses are somewhat more restrictive than those of Proposition 11.4. Remark. The possibility of considering the spaces B α,β,γ with β = γ is important, in particular to apply Proposition 11.7. Indeed, let us assume C < 1 a.s. and consider the case s = 0 to simplify. Then the condition for C(m) is E[M α( m α +γ+β)+ε ] < +∞ (for some ε > 0), where β and γ are such that 1 ≤ β ≤ γ. This condition can be rewritten as E[M m+α(γ+β)+ε ] < +∞. Consequently, under a moment assumption of the form E[M m+ε 0 ] < +∞ for some ε 0 > 0, we can choose α sufficiently small in order to ensure Condition C(m). Actually, the condition E[M α( m α +γ+β)+ε ] < +∞ is useful for proving (K1) on the biggest space occurring in C(m). It is worth noticing that, when working with the weights defined in [START_REF] Milhaud | Etude de l'estimateur du maximum de vraisemblance dans le cas d'un processus auto-régressif: convergence, normalité asymptotique, vitesse de convergence[END_REF][START_REF] Peigné | Iterated function schemes and spectral decomposition of the associated Markov operator[END_REF][START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF] (which corresponds to our weights in the special case β = γ), then Condition (K1) must be satisfied on B α,γ ′ ,γ ′ with γ ′ > γ + m α : this then requires the moment condition E[M 2α( m α +γ)+ε ] = E[M 2m+2αγ+ε ] < +∞ (apply Prop. 11.2 on B α,γ ′ ,γ ′ ), whose order is greater than 2m. Our parameter β enables us to avoid this drawback.

Proposition 11.8. Assume s + 1 < β ≤ γ < γ ′ , E M α(γ ′ +1) + C α M α(γ ′ +β) < +∞ and E C α max{C, 1}

Limit theorems for

(ξ(X n )) n
The hypotheses of Corollaries 11.9-12 below will imply those of Proposition 11.3. Consequently the c.l.t. stated in this proposition will hold automatically, and it will be understood that Γ is non-singular.

Concerning the next conditions imposed on the initial distribution µ, it is worth noticing that, if µ(d(•, x 0 ) α(1+γ) ) < +∞, then µ ∈ B ′ α,β,γ . The conditions imposed on µ below will be always satisfied for µ = π or µ = δ x (x ∈ E) (for π it comes from Proposition 11.1).

Local limit theorem (d ≥ 1).

To present a simple application of Theorem 5.1, let us simply investigate Statement (LLT) of Section 5.1 with f = h = 1 E . We want to prove that, for any compactly supported continuous function g : R d → R, we have

(LLT ′ ) lim n sup a∈R d √ det Γ (2πn) d 2 E µ [ g(S n -a) ] -e -1 2n Γ -1 a,a R g(x)dx = 0.
Corollary 11.9. Suppose that E M 2s+2 + C ) < +∞ for some ε 0 > 0. Then we have (LLT').

Proof. By using the above preliminary statements, let us prove that the hypotheses of Theorem 5.1 hold. We have (CLT) (Prop. 11.3). Let α = 1 2 , 0 < ε ≤ min{ 1 2 , 2δ 3 , ε 0 2 }, β = γ = s + 1 + ε, and γ ′ = γ + ε = s + 1 + 2ε. We set B = B 1 2 ,γ . We have (S) and (K1) on B (Prop. 11.8, 11.2). Besides, with B = B 1 2 ,β,γ ′ , we have ( K2) (Prop. 11.5), and ( K3) (use Prop. 11.4, B ֒→ L 1 (π) and Rk. (c) in Section 4). Hence ( K) holds. Finally, our assumption on µ implies µ ∈ B ′ .

According to the previous proof, the property (LLT) may be also investigated with functions f ∈ B 1 2 ,β,γ (for some suitable s + 1 < β ≤ γ), and the sufficient nonlattice condition can be replaced by the more precise non-arithmeticity condition (w.r.t. B 1 2 ,β,γ ) of Proposition 5.3. Finally observe that, if s = 0 (i.e. ξ is Lipschitz continuous on E), as for example ξ(x) = x , and if we have C < 1 a.s., then (LLT') is valid under the expected moment condition E[M 2 ] < +∞.

One-dimensional uniform Berry-Esseen theorem (d = 1).

Corollary 11. [START_REF] Boatto | Diffusion approximation of a Knudsen gaz model : dependence of the diffusion constant upon a boundary condition[END_REF].

Suppose E M 3(s+1) + C 1 2 M 3s+2 < +∞ and E C 1 2 max{C, 1} 3s+ 5 2 < 1, that ξ satisfies (L) s , and µ(d(•, x 0 ) 2(s+1) ) < +∞. Then ∆ n = O(n -1 2 ).
Proof. To apply Theorem 6.1, we have to prove (CLT') of Section 6 and to find some spaces B and B on which ( K) holds with the additional condition Q(t) -Q B, B = O(|t|). To investigate (CLT'), we shall use the procedure based on conditions (G1)-(G2) (of Section 6).

In particular this procedure requires that ξ ∈ B ֒→ L 3 (π). Since (L) s implies ξ ∈ B The first-order Edgeworth expansion (d = 1).

For convenience, we investigate the property (E) of Theorem 8.1 under the hypothesis that C is strictly contractive a.s.. Corollary 11.11. Suppose that C < 1 a.s., that E[M 3(s+1)+ε 0 ] < +∞ for some ε 0 > 0, that ξ satisfies (L) s and is nonlattice, and µ(d(•, x 0 ) 3(s+1)+ε 0 ) < +∞. Then we have (E). Proof. To check the hypotheses of Theorem 8.1, first observe that the hypothesis C < 1 a.s. implies E[C α max{C, 1} b ] < 1 for any α ∈ (0, 1] and b ≥ 0. We have π(d(•, x 0 ) 3(s+1) ) < +∞ (Prop. 11.1). From |ξ(x)| ≤ p(x) s+1 , it follows that π(|ξ| 3 ) < +∞. Let us prove that C(3) holds w.r.t. B = B α,β,γ and B = B α,β,γ ′ for suitable α, β, γ, γ ′ . Let δ > 0, β = γ = s + 1 + δ, and let us choose 0 < α ≤ 1 such that α(γ + 2δ + s + 1) ≤ ε 0 . Let γ ′ = γ + 3(s+1) α + δ. Then Proposition 11.7 yields the desired property. To study Condition (S) on B α,β,γ , use Proposition 11.8. Finally, we have α(γ ′ + 1) = 3(s + 1) + α(γ + δ + 1) ≤ 3(s + 1) + ε 0 , so µ(d(•, x 0 ) α(γ ′ +1) ) < +∞. This proves that µ ∈ B ′ .

Other similar statements may be derived by proceeding as above. For instance, let us consider 0 < α ≤ 1 (fixed here), β = γ = s + 1 + δ, and γ ′ = γ + 3(s+1) α + δ with some small δ > 0, and suppose that we have andµ(d(•, x 

E[M α(γ ′ +1) + C α M α(γ ′ +β) ] < +∞, E[C α max{C, 1} α(γ ′ +β) ] < 1,
0 ) α(γ ′ +1) ) < +∞. Then we have (E) if ξ is non-arithmetic w.r.t. B α,β,γ .
The multidimensional Berry-Esseen theorem with the Prohorov distance (d ≥ 1).

Again we give a statement in the particular case when C < 1 a.s.. From Theorem 9.1, we get the following.

Corollary 11.12. Suppose C < 1 a.s. and E[M m(s+1)+ε 0 ] < +∞ for some ε 0 > 0 and with m := max (3, ⌊d/2⌋ + 1), that ξ satisfies (L) s and µ(d(•, x 0 ) m(s+1)+ε 0 ) < +∞. Then the conclusion of Theorem 9.1 holds.

Proof. Set β = γ = 1 + s. Let δ > 0, and 0 < α ≤ 1 be such that α(γ + δ + s + 1) ≤ ε 0 , we have ( * ) with w ∈ B ∩ B ∞ and A = A 0 . Let us briefly recall the main arguments. From (K1), one can here deduce from the inequality |w| ≤ Q n |w| that |w| ≤ π(|w|) everywhere on E. Thus w ∈ B ∞ . Besides, the equality Q(t)w(x) = E e i t,ξ(y) w(y) Q(x, dy) = λw(x) is valid for all x ∈ E. Let x ∈ A 0 . Then this equality and the previous inequality give ( * ). Finally ( * ) shows that A 0 is Q-absorbing.

If Q(t)w = λ w almost surely, the previous arguments must be slightly modified as follows.

Proof of (ii). First, by proceeding as in the proof of Proposition 2.4, one can easily get a π-full Q-absorbing set B ⊂ A 0 . Besides the following set is clearly π-full:

C = {z ∈ E : ∀n ≥ 1, Q(t) n w(z) = λ n w(z)}. So the set A = B ∩ C is also π-full. Let x ∈ A. We have Q(t)w(x) = E e i t,ξ(y) w(y) Q(x, dy) = λw(x).
Since Q(x, B) = 1 (B is Q-absorbing), one can replace E by B in the previous integral, and since |λ -1 w(x) -1 e i t,ξ(y) w(y)| = 1 for all y ∈ B, we then obtain the equality ( * ). It remains to prove that A is Q-absorbing. To that effect, we must just prove that Q(x, C) = 1 for any x ∈ A. Set D x = {y ∈ E : e i t,ξ(y) w(y) = λw(x)}. We know that Q(x, D x ) = 1, and from λ n+1 w(x) = Dx e i t,ξ(y) Q(t) n w(y) Q(x, dy) (n ≥ 1), we deduce that

λ n = Dx w(y) -1 Q(t) n w(y) Q(x, dy).
Since Q(x, B) = 1, this equality holds also with B instead of D x . Besides, for any y ∈ B, we have

|Q(t) n w(y)| ≤ Q n |w|(y) = B |w(z)|Q n (y, dz) = π(|w|), so that |w(y) -1 Q(t) n w(y)| ≤ 1. So, for some D x,n ∈ E such that Q(x, D x,n ) = 1, we have Q(t) n w(y) = λ n w(y) for each y ∈ D x,n . From ∩ n≥1 D x,n ⊂ C, one gets Q(x, C) = 1 as claimed.
Lemma 12.2. Let t ∈ R d . If the equality ( * ) holds with λ, A and w as stated at the beginning of this section, then we have r(Q(t)) ≥ 1.

Proof. By integrating ( * ), one gets Q(t)w = λw on A, and since A is Q-absorbing, this gives Q(t) n w = λ n w on A for all n ≥ 1. Suppose r(Q(t)) < 1. Then lim n Q(t) n w = 0 in B, and since B ֒→ L 1 (π), we have lim n π(|Q(t) n w|) = 0, but this is impossible because |Q(t) n w| = |w| on A, and by hypothesis |w| is a nonzero constant on A and π(A) = 1.

The previous lemmas show that, for any fixed t ∈ R d , we have r(Q(t)) ≥ 1 iff the equality ( * ) holds for some λ, A and w as stated at the beginning of this section. Consequently, in order to prove the equivalence of Proposition 5.3, it remains to establish the following lemma whose proof is based on the use of the spectral results of [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF].

Lemma 12.3. We have:

(S) ⇔ ∀t ∈ R d , t = 0, r(Q(t)) < 1.
Proof. The direct implication is obvious. For the converse, let us consider a compact set

K 0 in R d \ {0}. Let us first prove that r K 0 = sup{r(Q(t)), t ∈ K 0 } < 1.
For that, let us assume that r K 0 = 1. Then there exists a subsequence (τ k ) k in K 0 such that we have lim

k r(Q(τ k )) = 1. For k ≥ 1, let λ k be a spectral value of Q(τ k ) such that |λ k | = r(Q(τ k ))
. By compactness, one may assume that the sequences (τ k ) k and (λ k ) k converge. Let τ = lim k τ k and λ = lim k λ k ; observe that τ ∈ K 0 , thus τ = 0, and |λ| = 1.

Besides, by ( K2) ( K3) ( K4), the Q(t)'s satisfy the conditions of [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] near τ . From [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] (p. 145), it follows that λ is a spectral value of Q(τ ), but this is impossible since, by hypothesis, r(Q(τ )) < 1. This shows the claimed statement. Let ρ ∈ (r K 0 , 1). By applying [START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] to Q(•) near any point t 0 ∈ K 0 , there exists a neighbourhood O t 0 of t 0 such that sup{ (z -Q(t)) -1 B , t ∈ O t 0 , |z| = ρ} < +∞. Since K 0 is compact, one gets sup{ (z -Q(t)) -1 B , t ∈ K 0 , |z| = ρ} < +∞. Finally let Γ be the oriented circle defined by {|z| = ρ}. Then the inequality stated in (S) follows from the following usual spectral formula

∀t ∈ K 0 , Q(t) n = 1 2iπ Γ z n (z -Q(t)) -1 dz.
12.2 Study of the set

G = t ∈ R d : r(Q(t)) = 1
Here we still assume that Conditions ( K) and (P) of Section 5.2 are fulfilled. We then know that (S) is equivalent to G = {0} (Lem. 12.3). We assume moreover that the set of bounded elements of B is stable under complex conjugation and under product. The next proposition specifies the statements of Proposition 5.4.

Proposition 12.4. The set

G = t ∈ R d : r(Q(t)) = 1 is a closed subgroup of (R d , +).
Moreover, if the space B of ( K) verifies B ֒→ L 1 (π) and if Condition (CLT) of Section 5.1 holds, then G is discrete, and we have then the following properties. G is discrete. From Lemma 5.2, we have λ(t) = 1 -1 2 Γt, t + o( t 2 ) for t near 0, where λ(t) denotes the dominating eigenvalue of Q(t). Hence we have r(Q(t)) = |λ(t)| < 1 for t near 0, t = 0. This proves that 0 is an isolated point in G, hence G is discrete.

(i) If G = {0}, then there exist a point a ∈ R d , a closed subgroup H in R d of the form H = (vect G) ⊥ ⊕ ∆,

Proof of (i).

Set G = Za 1 ⊕ . . . ⊕ Za p with p ≤ d, and let λ k , A k , and w k be the elements associated with a k in ( * ). Then A = ∩ p k=1 A k is a π-full Q-absorbing set, and if x ∈ A and g = n 1 a 1 + . . . + n p a p is any element of G, we deduce from ( * ) applied to each a k , and by product that:

∀x ∈ A, e i g,ξ(y) p k=1 w k (y) n k = p k=1 λ n k k p k=1 w k (x) n k Q(x, dy) -a.s..
Since |w k | is a nonzero constant function on A, one may assume without loss of generality that |w k|A | = 1 A , so that there exists a measurable function α k : E →[0, 2π[ such that we have, for all z ∈ A: w k (z) = e iα k (z) . For z ∈ A, we set V (z) = (α 1 (z), . . . , α p (z)) in R p . Since the linear map χ : h → ( a 1 , h , . . . , a p , h ) is clearly bijective from vect(G) into R p , one can define the element χ -1 (V (z)) which satisfies a k , χ -1 (V (z) = α k (z) for each k = 1, . . . , p. Finally let θ : E → R d be a bounded measurable function such that θ(z) = χ -1 (V (z)) for all z ∈ A. Then we have w k (z) = e i a k ,θ(z) for any z ∈ A and k = 1, . . . , p. Consequently one gets p k=1 w k (z) n k = e i g,θ(z) for z ∈ A, and the above equality becomes, by setting λ g = p k=1 λ n k k , ∀x ∈ A, e i g,ξ(y)+θ(y)-θ(x) = λ g Q(x, dy)a.s..

For any g ∈ G, let us define β g ∈ R such that λ g = e iβg , and for x ∈ R d , set T g (x) = g, x .

The previous property yields

∀x ∈ A, ξ(y) + θ(y) -θ(x) ∈ ∩ g∈G T -1 g (β g + 2πZ) Q(x, dy) -a.s.. Now let us define H = ∩ g∈G T -1 g (2πZ)
. Then H is a subgroup of R d , and the elements of

∩ g∈G (T -1 g (β g + 2πZ)) are in the same class modulo H. That is: ∃a ∈ R d , ∩ g∈G (T -1 g (β g + 2πZ
)) ⊂ a + H. This proves ( * * ), and it remains to establish that H has the stated form. Actually, since H is closed, H is of the form H = F ⊕ ∆, where F and ∆ are respectively a subspace and a discrete subgroup in R d . So we have to prove that F = (vect G) ⊥ . Let x ∈ (vect G) ⊥ . Since (vect G) ⊥ = ∩ g∈G T -1 g ({0}) ⊂ H, we have x = f + d for some f ∈ F , d ∈ ∆, and for α ∈ R, the fact that αx ∈ (vect G) ⊥ ⊂ H yields αx = f α + d α with some f α ∈ F and d α ∈ ∆. But we also have the unique decomposition αx = αf + αd in F ⊕ vect ∆. Hence we have αd = d α ∈ ∆, and since ∆ is discrete and α can take any real value, we have necessary d = 0. That is, x ∈ F . Conversely, let f ∈ F and let g ∈ G. Since F ⊂ H, we have g, f ∈ 2πZ. Now let α be any fixed nonzero irrational number. Since αf ∈ F ⊂ H, we have α g, f = g, αf ∈ 2πZ. Hence g, f = 0. This gives f ∈ (vect G) ⊥ .

Proof of (ii). Let t ∈ H ⊥ , t = 0. Then t, ξ(y) + t, θ(y)t, θ(x) = t, a Q(x, dy)-a.s. for all x ∈ A. Setting w(•) = e i t,θ(•) and λ = e i t,a , this yields for all x ∈ A e i t,ξ(y) w(y) = λw(x) Q(x, dy)a.s.. Since w ∈ B by hypothesis, this gives ( * ), and Lemmas 12.1-2 implies that t ∈ G.

involving the (finite) constants M := max θ∈Θa M θ,κ and Q j := max θ∈Θa∩τ -1 j (Θa) Q j,θ (j = 0, . . . , ℓ), with τ 0 := T 0 , and τ j := T 1 (T 0 T 1 ) j-1 if j ≥ 1.

The proof below involves the derivatives of some operator-valued maps defined as the composition of Q(t) (or its derivatives) and R z (t) (or its derivatives obtained by induction), where these operators are seen as elements of L(B θ 1 , B θ 2 ) and L(B θ 2 , B θ 3 ) for suitable θ i ∈ I. To that effect, it will be convenient to use the next notations.

Notation. Let θ 1 , θ ′ 1 ∈ I. An element of L(θ 1 , θ ′ 1 ) is a family f = (f z (t)) z,t of elements of L(B θ 1 , B θ ′ 1 )
indexed by (z, t) ∈ J (for some J ⊆ C × R d ) satisfying the following condition: there exists κ0 ∈ (0, 1) such that, for all κ ∈ [κ 0 , 1), there exists a neighbourhood

U κ of 0 in R d such that D κ × U κ ⊆ J. Let θ, θ ′ , θ ′′ ∈ I. Given V = (V z (t)) (z,t)∈J U ∈ L(θ, θ ′ ) and U = (U z (t)) (z,t)∈J V ∈ L(θ ′ , θ ′′ ), we define U V = (U z (t)V z (t)) (z,t)∈J U ∩J V ∈ L(θ, θ ′′ ).
Let ℓ ∈ N, let θ and θ 1 in I be such that B θ ֒→ B θ 1 , and let θ ′ and θ ′ 1 be in I. An element

f = (f z (t)) z,t of L(θ 1 , θ ′ 1
) is said to be in C ℓ (θ, θ ′ ) if the following condition holds: there exists κ ∈ (κ 0 , 1) such that, for all κ ∈ [κ, 1), there exists a neighbourhood U κ ⊆ U κ of 0 in R d such that, for all z ∈ D κ and all t ∈ U κ , we have

f z (t)(B θ ) ⊆ B θ ′ , f z (•) |B θ ∈ C ℓ (U κ , B θ , B θ ′ ) and sup z∈Dκ, t∈Uκ, j=0,...,ℓ f (j) z (t) θ,θ ′ < +∞. When f = (f z (t)) z,t ∈ C ℓ (θ, θ ′ ), we set f (ℓ) = (f (ℓ) z (t)) z,t .
Let us observe that (2) in D(m) implies that Q := (Q(t)) z,t ∈ C j (θ, θ j ) when we have θ ∈ I and θ j := T 1 (T 0 T 1 ) j-1 (θ) ∈ I. Now, we are in a position to state the next obvious (but important) facts (I)-(III), which will be repeatedly used in the proof of Proposition A. Let θ 1 , θ 2 , θ 3 and θ 4 be in I.

(I) Assume that B θ 1 ֒→ B θ 2 , that B θ 3 ֒→ B θ 4 and that V ∈ L(θ 2 , θ 3 ). If V ∈ C k (θ 2 , θ 3 ), then V is in C k (θ 2 , θ 4 ), in C k (θ 1 , θ 3 ) and in C k (θ 1 , θ 4 ). (II) Assume that V ∈ L(θ 1 , θ 2 ) and U ∈ L(θ 2 , θ 3 ). If V ∈ C 0 (θ 1 , θ 2 ) and U ∈ C 0 (θ 2 , θ 3 ), then U V ∈ C 0 (θ 1 , θ 3 ). (III) Let U ∈ L(θ 3 , θ 4 ) and V ∈ L(θ 1 , θ 2 ). Assume that B θ 1 ֒→ B θ 2 ֒→ B θ 3 ֒→ B θ 4 , that V ∈ C 0 (θ 1 , θ 2 ) ∩ C 1 (θ 1 , θ 3 ) and that U ∈ C 1 (θ 2 , θ 4 ) ∩ C 0 (θ 3 , θ 4 ). Then U V is defined in L(θ 1 , θ 4 ), and we have U V ∈ C 1 (θ 1 , θ 4 ) and (U V ) ′ = U ′ V + U V ′ .
Proof of Proposition A. Lemmas A.1-2 below will be our basic statements.

Lemma A.1. If θ, T 0 (θ) ∈ I, then (R z (t)) z,t ∈ C 0 (θ, T 0 (θ)). Proof. Let κ ∈ [max(κ θ , κ T 0 (θ) ), 1). Let U (0) θ,κ = V θ,κ ∩ V T 0 (θ),κ .
From the usual operator formula Id -W n+1 = n k=0 W k (Id -W ), one easily deduces the following equality, which is valid for any bounded linear operators S and T on a Banach space such that S and S -T are invertible: α,β,γ (f ) can be obviously computed over the elements x, y ∈ E such that d(y, x 0 ) ≤ d(x, x 0 ). Lemma B.1 will be applied below with q(•) depending on the function ξ. Remember that ξ verifies the following hypothesis: Since π(p α(γ+1) ) < +∞ (Prop. 11.1), the continuity condition of (K) is satisfied: in fact, from Lebesgue's theorem and Remark (a) of Section 4, we have ( K2) of Section 5.2. To study the Doeblin-Fortet inequalities of (K), notice that Q(t) = K where K is associated to q(x) = e itξ(x) with the notations of Lemma B. In the next proofs, except for Proposition 11.8, the technical parameter λ used above will be neglected, namely we shall assume λ = 1, and the effective computation of the constants occurring in the proofs will be of no relevance. So, to simplify the next estimates, we shall still denote by C the constant in the above inequalities resulting from (L) s , even if it is slightly altered through the computations (the effective constants will actually depend on parameters as α, t 0 ∈ R fixed, k ∈ N fixed, s, S ...). , and

E[ M α(γ ′ +1) + C α M α(γ ′ +β) ] < +∞ E[ C α max{C, 1} α(γ ′ +β) ] < 1.
Let k ∈ N. Let us recall that we set Q k (t)(x, dy) = i k ξ(y) k e itξ(y) Q(x, dy) (x ∈ E, t ∈ R).

For u ∈ R, we set e iuξ(•) = e u (•).

Lemma B.4. For k ∈ N, we have Q k ∈ C 0 (R, B α,β,γ , B α,β,γ ′ ) under the following conditions: s + 1 ≤ β ≤ γ, γ ′ > γ + (s+1)k α , and

I = E[ M α(γ ′ +1) + C α M α(γ ′ +β) ] < +∞.
Proof. Let t, t 0 ∈ R, h = tt 0 . We suppose that |h| ≤ 1. Let K = Q k (t) -Q k (t 0 ). Then K is associated to q(x) = (iξ(x)) k e t (x)e t 0 (x) . Let 0 < ε < α. Proof. Let t, t 0 ∈ R, h = tt 0 , and assume |h| ≤ 1. Let K = Q k (t) -Q k (t 0 )h Q k+1 (t 0 ), and q(x) = (iξ(x)) k e t (x)e t 0 (x)i h ξ(x) e t 0 (x) . For u ∈ R, we set φ(u) = e iu -1iu. Let 0 < ε < α. We shall use the following usual inequalities α,γ ′ are equivalent on B. We have to establish that, if λ ∈ (0, 1] is suitably chosen, then for any compact set K 0 in R, there exist κ < 1 and C > 0 such that:

• ∀n ≥ 1, ∀f ∈ B α,β,γ , ∀t ∈ K 0 , Q(t) n f (λ) α,β,γ,γ ′ ≤ C κ n f (λ) α,β,γ,γ ′ + C |f | (λ) α,γ ′ • ∀t ∈ K 0 , r ess (Q(t)) ≤ κ.
We have Q(t) = K with q(x) = e itξ(x) satisfying Conditions (i)-(ii) of Lemma B.1 with A = 1, a = 0, B = D λ |t| α (D λ > 0) and b = αs. Let f ∈ B α,β,γ . Because of the presence of γ ′ in the above norm, Lemma B.1 cannot be directly applied here. However one can follow the proof of lemma B.1 and see that

|Q(t)f | (λ) α,γ ′ ≤ E[M α(γ ′ +1) ] |f | (λ) α,γ ′ ≤ I |f | (λ) α,γ ′
and that for x, y ∈ E such that d(y, x 0 ) ≤ d(x, x 0 ), we have by using in particular the fact that γ ′ has been chosen such that s + 1 + γ ′β ≤ γ: ] < 1 for sufficiently small λ. The previous estimate then easily gives the desired Doeblin-Fortet inequalities. Since the canonical embedding from B α,β,γ into B is compact (this easily follows from Ascoli's theorem, see [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF] Lemma 5.4), the property r ess (Q(t)) ≤ κ is then a consequence of [START_REF] Hennion | Sur un théorème spectral et son application aux noyaux lipchitziens[END_REF].

|Q(t)f (x) -Q(t)f (y)| ≤ m

Theorem 5 . 1 .

 51 Assume that Condition (CLT) holds, that Condition ( K) (of Section 4) holds w.r.t. some spaces B, B, and that Condition (S) holds on B. Finally assume (hµ) ∈ B′ and f ∈ B, f ≥ 0. Then we have (LLT).

Proposition 5 . 4 .

 54 dy)a.s.. Assume that the assumptions ( K) and (P) hold. If ξ is nonlattice, then (S) holds on B. The converse is true when, for any real-valued measurable function ψ on E, we have e iψ ∈ B (or Cl(e iψ ) ∈ B).

  d and f ∈ B, then we have ( K3) with B = L 1 (π) (see Rk. (b) of Section 4). Moreover we have ( K4) on B according to [65, Cor. 1.6].

  is a Banach lattice, we have ( K4) on B = L p (π) by [65, Cor. 1.6]. Finally, from Proposition 5.4, Condition (S) on B = L p (π) is fulfilled under the nonlattice assumption. Corollary 5.5 can be then deduced from Theorem 5.1.

3 2 ) 3 2

 23 . Besides, we have ( K3) with B = L 3 and B = L (Prop. 4.1). Finally we have Q

2 ≤ 2 3

 22 and the Schwarz inequality yields Q(t)f -Qf 3 ≤ |t| ξ 3 f 3 . We have proved that the hypotheses of Theorem 6.1 are fulfilled with B = L 3 and B = L

( 1 -

 1 κ)/2 (thus Γ 1 ⊂ D κ). Then, by Proposition 7.1, Π(•) ∈ C m (O, B, B).

Proposition 7 . 3 .

 73 If π(|ξ| α 2 ) < +∞ with α > m, then C(m) holds with B = L s (π) and B = L r (π) for any s > α α-m and 1 < r < αs α+ms .

Theorem 9 . 1 .

 91 Let us fix m := max (3, ⌊d/2⌋ + 1). Suppose that Hypothesis C(m) (of Section 7.1) holds with B ֒→ B ֒→ L 1 (π), and that µ ∈ B ′ . Then the following limits exist and are equal:

n

  (t) is a finite sum of terms of the form

Lemma 10 . 1 .

 101 Condition ( K) of Section 5.2 holds on B = B θ , with B = L 1 (π).

2 . 2 ֒→ L 2 2 .

 2222 Since π(v) < +∞, we have B 1 (π), and the previous lemma shows that Q is strongly ergodic on B 1 So the desired c.l.t. follows from Proposition 2.2 and Corollary 2.1 both applied with B = B 1 2 .

If |ξ| 2 2 ≤ 2 ≤

 22 C v and ξ is nonlattice, then we have (LLT) of Theorem 5.1 with B = B 1 2 and B = B v . (b) (Case d = 1) If |ξ| 3 ≤ C v, then the uniform Berry-Esseen estimate holds: ∆ n = O(n -1 2 ). (c) (Case d = 1) If |ξ| α ≤ C v with some α > 3 and ξ is nonlattice, then the first-order Edgeworth expansion (E) of Theorem 8.1 holds. (d) If |ξ| α Cv with some α > max (3, ⌊d/2⌋ + 1), then the (Prohorov) Berry-Esseen estimate holds:

Proof of Corollary 10 . 2 .

 102 Set B := B 1 = B v . From Lemma 10.1, we have on each B θ : (K1), ( K3) (see Rk. (c) in Sect. 4), and we have (S) if and only if ξ is nonlattice (Prop. 5.4). (a) Since g := |ξ| 2 ∈ B 1 2

2 . 3 and B 2 3 , and B 1 3

 2331 and since Qv v is bounded, this proves ( K2), hence ( K), with B = B 1 So Theorem 5.1 applies.(b) Since (K1) holds on B 1

  (i) Local limit theorem : ξ nonlattice ⇒ (LLT) of Section 5.1 with for instance f = h = 1 E , (ii) (d = 1) Uniform Berry-Esseen type theorem : E[M 3 ] < +∞ ⇒ ∆ n = O(n -1 2 ), (iii) (d = 1) First-order Edgeworth expansion : E[M 3+ε ] < +∞, ξ nonlattice ⇒ (E) of Section 8, (iv) multidimensional Berry-Esseen theorem (with Prohorov metric) : E[M m+ε ] < +∞ with m = max (3, ⌊d/2⌋ + 1) ⇒ the conclusion of Theorem 9.1 holds.

  independent of X 0 . (M d (R) denotes the set of real d × d-matrices.) Assume that we have |A 1 | < 1 a.s., where | • | denotes here both some norm on R d and the associated matrix norm. Taking the distance d(x, y) = |x -y| on R d , we have C = |A 1 | and M ≤ 2 + |θ 1 |. So the above moment conditions in (i)-(iv) only concern |θ 1 |. The special value A n = 0 corresponds to the i.i.d. case (S n = θ 1 + . . . + θ n -nE[θ 1 ]), and we

Proposition 11 . 7 .

 117 We have C(m) of Section 7.1 (m ∈ N * ) with B = B α,β,γ and B = B α,β,γ ′ if we have s + 1 ≤ β ≤ γ, γ ′ > γ + m(s+1) α

1 2 M 1 2 2 < 1 ,

 2121 2s+1+δ < +∞ for some δ > 0, that E C max{C, 1} 2s+ 3 that ξ satisfies (L) s and is nonlattice, and finally that we have µ(d(•, x 0 )

1 2 , 3 2

 23 2s+1 , let us consider B = B 1 2 ,2s+1 (so here β = γ = 2s+1). For f ∈ B, we have |f | ≤ |f | 1 2 ,2s+1 p s+1 , and since π(d(•, x 0 ) 3(s+1) ) < +∞ (use Prop. 11.1 with α = 1 2 , η = 6s + 5), one gets B ֒→ L 3 (π). Now set B = B 1 2 ,β,4s+3 . It can be easily seen that B contains all the functions g 2 with g ∈ B, and since each f ∈ B satisfies |f | ≤ |f | 1 2 ,4s+3 p 2(s+1) , one obtains B ֒→ L (π). We have (K1) on B and B (Prop. 11.2). This gives (G1) (G2), hence (CLT'). Besides we have ( K3) (use Prop. 11.4, B ֒→ L 1 (π) and Rk. (c) in Section 4), and we have ( K2) (Prop. 11.5). Hence ( K). Finally, Proposition 11.6 yields Q(t) -Q B, B = O(|t|), and µ(d(•, x 0 ) 2(s+1) ) < +∞ implies that µ ∈ B ′ .

B. 1 .

 1 A preliminary lemma. The proofs of Propositions 11.4-8 are based on the following lemma.Lemma B.1. Let q : E → C measurable, Kf (x) = E[q(Θx) f (Θx) ], and let λ ∈ (0, 1]. Suppose that there exist constants a, A, b, B such that we have for all x, y ∈ E satisfying d(y, x 0 ) ≤ d(x, x 0 )(i) |q(x)| ≤ A p λ (x) a ; (ii) |q(x)q(y)| ≤ B d(x, y) α p λ (x) b .Then we have for f ∈ B α,β,γ and x, y as above stated|Kf (x)| ≤ A |f | (λ) α,γ p λ (x) a+α(γ+1) E[M a+α(γ+1) ] |Kf (x) -Kf (y)| ≤ A m (λ) α,β,γ (f ) d(x, y) α p λ (x) a ∆ (λ) α,β,γ (x, y) E[C α C a+α(γ+β) λ ] + B |f | (λ) α,γ d(x, y) α p λ (x) b p λ (y) α(γ+1) E[C α M b+α(γ+1) ].Proof. We have|Kf (x)| ≤ E[|q(Θx) f (Θx)|] ≤ A |f | (λ) α,γ E[ p λ (Θx) a p λ (Θx) α(γ+1) ] ≤ A |f | (λ) α,γ p λ (x) a+α(γ+1) E[M a+α(γ+1) ]. Moreover, for x, y ∈ E satisfying d(y, x 0 ) ≤ d(x, x 0 ) (thus p λ (y) ≤ p λ (x)), we have |Kf (x) -Kf (y)| ≤ E |q(Θx)| |f (Θx)f (Θy)| + E |f (Θy)| |q(Θx)q(Θy)| ≤ A m (λ) α,β,γ (f ) E p λ (Θx) a d(Θx, Θy) α ∆ (λ)α,β,γ (Θx, Θy)+ |f | (λ) α,γ B E p(Θy) α(γ+1) d(Θx, Θy) α p λ (Θx) b ≤ A m (λ) α,β,γ (f ) d(x, y) α p λ (x) a ∆ (λ) α,β,γ (x, y) E C α C a+α(γ+β) λ + B |f | (λ) α,γ d(x, y) α p λ (x) b p λ (y) α(γ+1) E C α M b+α(γ+1) .Lemma B.1 is then proved.For the use of Lemma B.1, it is worth noticing that the supremum bound defining the Hölder constants m α,β,γ (f ) or m (λ)

(

  L) s ∀(x, y) ∈ E × E, |ξ(x)ξ(y)| ≤ S d(x, y) [1 + d(x, x 0 ) + d(y, x 0 )] s .From (L) s , it follows that there exists C > 0 such that we have for x ∈ E |ξ(x)| ≤ C p(x) s+1 , and for x, y ∈ E satisfying d(y, x 0 ) ≤ d(x, x 0 ):|ξ(x)ξ(y)| ≤ C d(x, y) p(x) s and |ξ(x)ξ(y)| ≤ C d(x, y) α p(x) s+1-α . B.2. Proof ofProposition 11.4. This proposition states that (K) of Section 4 holds w.r.t. the space B α,β,γ if we have s + 1 ≤ β ≤ γ andI = E[ M α(γ+1) + C α M α(γ+β) ] < +∞ and E[C α max{C, 1} α(γ+β) ] < 1.The strong ergodicity condition (K1) of Section 1 holds by Proposition 11.2. Besides we have for f ∈ B α,β,γ π |e i t, ξ -1| |f | ≤ |f | α,γ π |e i t, ξ -1| p α(γ+1) .

1 .] < 1 .

 11 By using (L) s and the inequality |e iT -1| ≤ 2|T | α , one easily gets (i)-(ii) in Lemma B.1 with A = 1, a = 0 and B = D λ |t| α , b = αs, where D λ is a positive constant resulting from (L) s and the equivalence between p λ (•) and p(•). Then, from Lemma B.1, we have for any f ∈ B α,β,γ|Q(t)f | (λ) α,γ ≤ E[ M α(γ+1) ] |f | (λ) α,γ ≤ I |f | (λ) α,γand for x, y ∈ E such that d(y, x 0 ) ≤ d(x, x 0 )|Q(t)f (x) -Q(t)f (y)| ≤ m (λ) α,β,γ (f ) d(x, y) α ∆ (λ) α,β,γ (x, y) E[C α C α(γ+β) λ ] + D λ |t| α |f | (λ) α,γ d(x, y) α p λ (x) αs p λ (y) α(γ+1) E[C α M α(γ+s+1) ]. Since p λ (x) αs p λ (y) α(γ+1) ≤ p λ (x) α(s+1) p λ (y) αγ ≤ p λ (x) αβ p λ (y) αγ ≤ ∆ (λ)α,β,γ (x, y), the previous inequalities prove that Q(t) continuously acts on B α,β,γ , and settingE λ = I D λ , that m (λ) α,β,γ (Q(t)f ) ≤ E[C α C α(γ+β) λ ] m (λ) α,β,γ (f ) + E λ |t| α |f | (λ)α,γ .Now, using the fact that the norms f (λ) α,β,γ and f = m (λ) α,β,γ (f ) + π(|f |) are equivalent (see [43] Prop. 5.2), one obtains with some new constant E ′ λ :m (λ) α,β,γ (Q(t)f ) ≤ E[C α C α(γ+β) λ ] m (λ) α,β,γ (f ) + E ′ λ |t| α m (λ) α,β,γ (f ) + π(|f |) ≤ E[C α C α(γ+β) λ ] + E ′ λ |t| α m (λ) α,β,γ (f ) + E ′ λ |t| α π(|f |).Since C λ ≤ M and C λ → max{C, 1} when λ → 0, it follows from Lebesgue theorem that one can choose λ such thatE[C α C α(γ+β) λ Now let τ > 0 such that κ := E[C α C α(γ+β) λ ] + E ′ λ τ α < 1. Then, if |t| ≤ τ , we have m (λ) α,β,γ (Q(t)f ) ≤ κ m (λ) α,β,γ (f ) + E ′ λ τ α π(|f |). Since π(|Q(t)f |) ≤ π(|Qf |) = π(|f |), this gives Q(t)f ≤ κ f + (1 + E ′ λ τ α ) π(|f |), and this easily leads to the Doeblin-Fortet inequalities of (K), with O = (-τ, τ ).

Proposition 11 .B. 4 .

 114 5 will follow from Lemma B.4 with k = 0. B.3. Proof of Proposition 11.6. Actually let us prove thatQ(t)-Q B α,β,γ ,B α,β,γ ′ = O(|t|) if 0 < β ≤ γ, γ ′ ≥ γ + s+1α , andI = E M s+1+α(γ+1) + C α M s+1+α(γ+β) < +∞. Let K = Q(t) -Q(0). Then K is associated to q(x) = e itξ(x) -1. Using (L) s and the inequality |e iT -1| ≤ |T |, one easily gets (i)-(ii) in Lemma B.1 with A = C |t|, a = s + 1, and B = C |t| and b= s + 1α. So |Kf (x)| ≤ C |t| |f | α,γ p(x) s+1+α(γ+1) E[ M s+1+α(γ+1) ] ≤ I C |t| |f | α,γ p(x) α(γ ′ +1) ,and, by using the fact that p(y)≤ p(x) (thus ∆ α,β,γ (x, y) ≤ 2 p(x) αγ p(y) αβ ) |Kf (x) -Kf (y)| ≤ C |t| m α,β,γ (f ) d(x, y) α p(x) s+1 2 p(x) αγ p(y) αβ E[C α C s+1+α(γ+β) λ ] + C |t| |f | α,γ d(x, y) α p(x) s+1-α p(y) α(γ+1) E[C α M s+1-α+α(γ+1) ]. Since p(x) s+1+αγ p(y) αβ ≤ p(x) αγ ′ p(y) αβ ≤ ∆ α,β,γ ′ (x,y) and p(x) s+1-α p(y) α(γ+1) ≤ p(x) s+1+αγ ≤ p(x) αγ ′ ≤ ∆ α,β,γ ′ (x, y) it follows that |Kf (x) -Kf (y)| ≤ 2 I C |t| f α,β,γ d(x, y) α ∆ α,β,γ ′ (x, y). Proof of Proposition 11.7. This proposition states that C(m) (m ∈ N * ) holds with B = B α,β,γ and B = B α,β,γ ′ if we have s + 1 ≤ β ≤ γ, γ ′ > γ + m(s+1) α

  Using the inequality |e iT -1| ≤ 2|T | ε , one gets (i) in Lemma B.1 with A = C |h| ε and a = (s + 1)(k + ε). Using also |e iT -1| ≤ 2|T | α , we have for k ≥ 1 and for x, y ∈ E such that d(y, x 0 ) ≤ d(x, x 0 ) (thusp(y) ≤ p(x)) : |q(x)q(y)| ≤ |ξ(x) kξ(y) k | |e t (x)e t 0 (x)| + |ξ(y)| k e t (x)e t 0 (x)e t (y)e t 0 (y) ≤ C |ξ(x)ξ(y)| p(x) (s+1)(k-1) |h| ε p(x) (s+1)ε + C p(x) (s+1)k |e h (x)e h (y)| + |e h (y) -1| |e t 0 (x)e t 0 (y)| ≤ C |h| ε d(x, y) α p(x) s+1-α p(x) (s+1)(k-1+ε) + C p(x) (s+1)k |h| α d(x, y) α p(x) αs + |h| ε p(x) (s+1)ε |t 0 | α d(x, y) α p(x) αs ≤ C |h| ε d(x, y) α p(x) (s+1)(k+ε)-α + C |h| ε d(x, y) α p(x) (s+1)(k+ε)+αs . Hence (ii) in Lemma B.1 holds with B = C |h| ε and b = (s + 1)(k + ε) + αs. If k = 0, the previous computation, which starts from |q(x)q(y)| ≤ | (e t (x)e t 0 (x)) -(e t (y)e t 0 (y)) |, yields the same conclusion. By hypothesis, one can choose ε such that γ ′ ≥ γ + (s+1)(k+ε) α , and Lemma B.1 yields forf ∈ B α,β,γ |Kf (x)| ≤ C |h| ε |f | α,γ p(x) (s+1)(k+ε)+α(γ+1) E[M (s+1)(k+ε)+α(γ+1) ] ≤ I C |h| ε |f | α,γ p(x) α(γ ′ +1) . Next, using s + 1 ≤ β and d(y, x 0 ) ≤ d(x, x 0 ) (thus ∆ α,β,γ (x, y) ≤ 2 p(x) αγ p(y) αβ ) gives |Kf (x) -Kf (y)| ≤ C |h| ε m α,β,γ (f ) d(x, y) α p(x) (s+1)(k+ε) 2 p(x) αγ p(y) αβ E[C α C α(γ ′ +β) λ ] + C |h| ε |f | α,γ d(x, y) α p(x) (s+1)(k+ε)+αs p(y) α(γ+1) E[C α M α(γ ′ +s+1) ] ≤ 2 I C |h| ε f α,β,γ d(x, y) α p(x) αγ ′ p(y) αβ + I C |h| ε f α,β,γ d(x, y) α p(x) (s+1)(k+ε)+αs p(y) α(γ+1-β) p(y) αβ ≤ 2 I C |h| ε f α,β,γ d(x, y) α ∆ α,β,γ ′ (x, y) + I C |h| ε f α,β,γ d(x, y) α p(x) αγ ′ +α(s+1-β) p(y) αβ , and we have p(x) αγ ′ +α(s+1-β) p(y) αβ ≤ p(x) αγ ′ p(y) αβ ≤ ∆ α,β,γ ′ (x, y) because s + 1 ≤ β. Lemma B.4'. For k ∈ N, we have Q k ∈ C 1 (R, B α,β,γ , B α,β,γ ′ ) with Q ′ k = Q k+1 under the conditions: s + 1 ≤ β ≤ γ, γ ′ > γ + (s+1)(k+1)α , and I = E[ M α(γ ′ +1) + C α M α(γ ′ +β) ] < +∞.

  |φ(u)| ≤ 2 |u| 1+ε , |φ(u)φ(v)| ≤ 2 |u -v| (|u| ε + |v| ε ).Writing q(x) = (iξ(x)) k e t 0 (x) φ hξ(x) , one easily gets (i) in Lemma B.1 with A = C |h| 1+ε and a = (s + 1)(k + 1 + ε). Proceeding as in the previous proof, one obtains for x, y ∈ E such with m (λ) α,β,γ (f ) defined in Section B.0, and |f | (λ) α,γ ′ := sup x∈E |f (x)| p λ (x) α(γ ′ +1) . It can be easily shown that the norms • α,β,γ and • (λ) α,β,γ,γ ′ are equivalent on B α,β,γ (see [43] Prop. 5.2), and that the norms | • | α,γ ′ and | • | (λ)

  (λ) α,β,γ (f ) d(x, y) α ∆ (λ) α,β,γ (x, y) E[C α C α(γ+β) λ ] + D ′ λ |t| α |f | (λ) α,γ ′ d(x, y) α p λ (x) αs p λ (y) α(γ ′ +1) E[C α M α(γ ′ +s+1) ] ≤ m (λ) α,β,γ (f ) d(x, y) α ∆ (λ) α,β,γ (x, y) E[C α C α(γ+β) λ ] + I D ′ λ |t| α |f | (λ) α,γ ′ d(x, y) α p λ (x) αs p λ (y) α(γ ′ +1-β) p λ (y) αβ , with p λ (x) αs p λ (y) α(γ ′ +1-β) ≤ p λ (x) α(s+1+γ ′ -β) ≤ p λ (x) αγ . Thus |Q(t)f (x) -Q(t)f (y)| d(x, y) α ∆ (λ) α,β,γ (x, y) ≤ m (λ) α,β,γ (f ) E[C α C α(γ+β) λ ] + I D ′ λ |t| α |f | (λ) α,γ ′ .Besides, by Lebesgue's theorem, we have κ := E[C α C α(γ+β) λ

  Corollary 2.1. Let us suppose that (X n ) n is ergodic, that (K1) holds on B ֒→ L 2 (π), and ξ i ∈ B (i = 1, . . . d). Then the c.l.t. of the previous theorem holds. Proof of Corollary. Since we have (K1) on B, ξ i ∈ B and π(ξ

where Γ is the covariance matrix defined by Γt, t = π( ξ2 t )-π((Q ξt ) 2 ), where we set ξt = d i=1 t i ξi .

  [START_REF] Jensen | Asymptotic Expansions for strongly mixing Harris recurrent Markov chains[END_REF]. Here we do not assume Harris recurrence, and we present an alternative statement. To that effect, we shall appeal to Hypothesis C(3) of Section 7.1 which ensures (Corollary 7.2) that the dominating eigenvalue λ(t) of Q(t) is three times continuously differentiable: then one shall be able to repeat the arguments of the i.i.d. first-order Edgeworth expansion of[START_REF] Feller | An introduction to probability theory and its applications[END_REF] (Th. 1 p. 506).

We denote by η the density function of N (0, 1) and by N its distribution function. The next theorem extends the first-order Edgeworth expansion of the i.i.d. case, with an additional asymptotic bias, namely b µ = lim n E µ [S n ] which depends on the initial distribution µ. As for i.i.d.r.v., this bias is zero in the stationary case (i.e. b π = 0). Theorem 8.1. Suppose that π(|ξ| 3 ) < +∞, that Hypothesis C(3) of Section 7.1 holds with B ֒→ B ֒→ L 1 (π), that the non-arithmeticity condition (S) of Section 5.1 holds on B, and finally that the initial distribution µ is in B ′ . Then the real numbers

  2 2 + o(t 2 ) near 0 (use Lemmas 8.3-4 and σ 2 = 1), one can choose the real number δ such that |λ(u)| ≤ 1 -u 24 ≤ e -u 2 4 when |u| ≤ δ, hence we have |λ(

	|t| ≤ δ	√ n.	t √ n	4 for any )| n ≤ e -t 2

  Corollary 7.2. In the following, the couple (t, n) (t ∈ R d , n ≥ 2) will always satisfy the condition |t| 2 < β √ n. For such a couple, we have: t √ n ∈ O. For any function F defined on an open set of R d , F (k) will merely denote any partial derivative of order k of F (•).

	Set Ξ n (t) := E µ [e i t, Sn √ n ] -e -|t| 2 2 2 . According to Proposition 9.3, it is enough to prove that we have for k = 0, . . . , [ d 2 ] + 1
	(I)

d : |u| 2 ≤ β} is contained in the set O of

  α(γ+β) < 1. Then Condition (S) holds on B α,β,γ if and only if ξ is non-arithmetic w.r.t. B α,β,γ . If ξ is nonlattice, the two previous equivalent conditions hold.

  To prove that G is closed, let us consider any sequence (t n ) n ∈ G N such that lim t n = t in R d . By quasi-compactness (Lemma 12.1), each Q(t n ) admits an eigenvalue, say λ n , of modulus one. Now let λ be a limit point of the sequence (λ n ) n . Then |λ| = 1, and from[START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] (p. 145), it follows that λ is a spectral value of Q(t), so r(Q(t)) ≥ 1, and t ∈ G by Lemma 12.1.

where ∆ is a discrete subgroup of R d , a π-full Q-absorbing set A ∈ E, and a bounded measurable function θ : E → R d such that ( * * ) ∀x ∈ A, ξ(y) + θ(y)θ(x) ∈ a + H Q(x, dy)a.s.. (ii) If ( * * ) holds with a π-full Q-absorbing set A ∈ E, a subgroup H = R d , and a measurable function θ : E → R d such that e i t,θ ∈ B for all t ∈ R d , then G = {0}.

Proof. Let g 1 , g 2 ∈ G, and for k = 1, 2, using Lemma 12.1, let λ k , A k , and w k be the elements associated with g k in ( * ). Then A = A 1 ∩ A 2 is a π-full Q-absorbing set, and g 1g 2 satisfies ( * ) with A, λ = λ 1 λ 2 , and with w = w 1 w 2 ∈ B. Thus

g 1g 2 ∈ G by Lemmas 12.1-2. Besides 0 ∈ G since Q1 E = 1 E . So G is a subgroup of (R d , +).

Now we assume that B ֒→ L 1 (π) (so ( K) of Sect. 4 is fulfilled) and that (CLT) holds.

Proposition 2.4.2 of[START_REF] Pène | Rate of convergence in the multidimensional CLT for stationary processes. Application to the Knudsen gas and to the Sinai billiard[END_REF] stated that, if ξ ∈ L 3 (π) ∩ L ⌊d/2⌋+1 (π), then Q(•) defines a regular family of operators when acting on the single space B ∞ : this result is not true. As already mentioned, it holds under some more restrictive condition of the type sup x∈E |ξ(y)| m Q(x, dy) < +∞.

These two limit theorems could also be deduced from respectively Conditions C(2) and C(3) of Section 7, but in practice, these two conditions are slightly more restrictive than those of Sections

5-6. For instance, compare C(2) and C(3) for the strongly ergodic Markov chains on L 2 (π) (see Prop. 7.3) with the conditions of Coro. 5.5 and 6.3.

This continuity property is proved in[START_REF] Hervé | Théorème local pour chaînes de Markov de probabilité de transition quasicompacte. Applications aux chaînes V -géométriquement ergodiques et aux modèles itératifs[END_REF] by applying[START_REF] Keller | Stability of the Spectrum for Transfer Operators[END_REF] to the family {Q(t), t ∈ O} when t goes to any fixed t0 ∈ O. To that effect, notice that, according to theorem (K-L), we have ress(Q(t)) ≤ κ for all t ∈ O.

As in ( K), the fact that B is complete is not necessary, but always satisfied in practice. Contrary to ( K), it is not convenient for the next statements to assume B ֒→ L 1 (π) (except for Proposition 12.4).

(π) containing all the functions g 2 with g ∈ B, then Condition (G2) holds. Indeed, under these hypotheses, ξ ∈ B, thus ψ ∈ B 2 , and, since

can see that the moment conditions in (i)-(iii) are then optimal for Statements (i) (ii), and optimal up to ε > 0 for Statement (iii).

Let us mention that [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF] investigates the convergence to stable laws for the random walk associated to the above autoregressive model (X n ) n (case d = 1) and to ξ(x) = x. By using the Keller-Liverani theorem, [START_REF] Guivarc | On spectral properties of a family of transfer operators and convergence to stable laws for affine random walks[END_REF] presents very precise statements, similar to the i.i.d. case, in function of the "heavy tail" property of the stationary distribution of (X n ) n .

Preliminary results

The weighted Hölder-type spaces, introduced in [START_REF] Page | Théorèmes de renouvellement pour les produits de matrices aléatoires[END_REF], have been used by several authors for proving quasi-compactness under some contracting property [START_REF] Milhaud | Etude de l'estimateur du maximum de vraisemblance dans le cas d'un processus auto-régressif: convergence, normalité asymptotique, vitesse de convergence[END_REF][START_REF] Peigné | Iterated function schemes and spectral decomposition of the associated Markov operator[END_REF]. Here we slightly modify the definition of these spaces by considering two positive parameters β and γ in the weights. This new definition is due to D. Guibourg.

Let us consider 0 < α ≤ 1 and 0 < β ≤ γ. For x ∈ E, we set p(x) = 1 + d(x, x 0 ), and for (x, y) ∈ E 2 , we set ∆ α,β,γ (x, y) = p(x) αγ p(y) αβ + p(x) αβ p(y) αγ .

Then B α,β,γ denotes the space of C-valued functions on E satisfying the following condition

, x, y ∈ E, x = y < +∞.

Set |f | α,γ = sup x∈E |f (x)| p(x) α(γ+1) and f α,β,γ = m α,β,γ (f ) + |f | α,γ . Then (B α,β,γ , • α,β,γ ) is a Banach space. In the special case γ = β, we shall simply denote B α,γ = B α,β,γ .

The next result which concerns Condition (K1) on B α,β,γ is established in [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF] [Th. 5.5] in the case β = γ. Since the extension to the case 0 < β ≤ γ is very easy, we give the following result without proof.

Now we give a sufficient condition for the central limit theorem in the stationary case. Similar statements are presented in [START_REF] Duflo | Random Iterative Models[END_REF], and in [START_REF] Benda | A central limit theorem for contractive stochastic dynamical systems[END_REF] when ξ is Lipschitz continuous (i.e. s = 0 in (L) s ).

Proof. We apply Proposition 11.1 with α = 1 2 and η = 4s + 3. This yields the existence and the uniqueness of π, and π(d(•, x 0 ) 2s+2 ) < +∞. Here we consider γ = β = 2s + 1 and the corresponding space

. Thus B ֒→ L 2 (π). Besides, from (L) s , it can be easily seen that the coordinate functions of ξ belong to B, and by Proposition 11.2, Q is strongly ergodic on B. We conclude by applying Proposition 2. Extension. Mention that all the previous statements remain valid when, in the hypotheses, the r.v. C is replaced with the following one :

The proofs of the preliminary statements of Section 11.2 are then similar.

12 More on non-arithmeticity and nonlattice conditions

This section presents some complements concerning the spectral condition (S) of Section 5.1, in particular we prove Proposition 5.3 and specify Proposition 5.4.

12.1 Proof of Proposition 5.3.

We assume that the assumptions ( K) and (P) of Section 5.2 hold. Recall that Condition (S) on B states that, for each compact set K 0 in R d \ {0}, there exist ρ < 1 and c ≥ 0 such that we have, for all n ≥ 1 and t ∈ K 0 , Q(t) n B ≤ c ρ n . We have to prove that (S) is not true if and only if there exist t ∈ R d , t = 0, λ ∈ C, |λ| = 1, a π-full Q-absorbing set A ∈ E, and a bounded element w in B such that |w| is nonzero constant on A, satisfying: ( * ) ∀x ∈ A, e i t,ξ(y) w(y) = λw(x) Q(x, dy)a.s..

We have ( * ) with λ, A and w as above stated.

Proof of Assertion (i). By ( K4), we have r ess (Q(t)) < 1 ≤ r(Q(t)), thus Q(t) is quasicompact on B. Now let λ be any eigenvalue of modulus r(Q(t)), and let f = 0 be an associated eigenfunction in B. Then 

Then we have π(A 0 ) = 1 (i.e. A 0 is π-full).

Remark. In the special case when δ x ∈ B ′ for all x ∈ E (and when B is stable under complex modulus), the proof of (ii) is presented in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] (Prop. V.2), with the more precise conclusion:

Appendix A. Proof of Proposition 7.1.

Proposition 7.1 will follow from the slightly more general Proposition below. The derivative arguments are presented here in the case d = 1, but the extension to d ≥ 2 is obvious by the use of the partial derivatives.

Let I be any subset of R, let T 0 : I → R and T 1 : I → R, let (B θ , θ ∈ I) be a family of general Banach spaces. We shall write Hypothesis D(m) (m ∈ N * ). For all θ ∈ I there exists a neighbourhood V θ ⊂ U of 0 in R d such that, for all j = 1, ..., m, we have:

) for all z ∈ D κ and all t ∈ V θ,κ , and we have

When applied to the Fourier kernels, the above conditions (0) (1) (2) and ( 4) are exactly those of Hypothesis C(m) in Section 7.1, and according to Theorem (K-L) of Section 4, Condition (3') of D(m) is implied by (3) of C(m). Hence C(m) implies that the Fourier kernels satisfy D(m), so Proposition 7.1 follows from the next proposition. Let us notice that, from (4), we have

Let us define κ = max θ∈Θa κ θ ∈ (0, 1), and O = θ∈Θa V θ,κ .

Remark. Let O be a compact subset of O. By Conditions [START_REF] Alsmeyer | On the Harris recurrence of iterated random Lipschitz functions and related convergence rate results[END_REF] (2), we have for any θ ∈ Θ a :

The proof below shows that R ℓ in Proposition A can be bounded by a polynomial expression

Using the constants M θ,κ and M T 0 (θ),κ , Condition (1) in D(m) gives the desired property.

which goes to 0 as t goes to t 0 , uniformly in z ∈ D κ (according to condition (2) and with the use of M θ 3 ,κ , M θ 2 ,κ and M θ,κ ). In the same way, we have:

, and (R z (t)) z,t ∈ C 0 (θ 2 , θ 3 ), therefore (R ′ z (t)) z,t ∈ C 0 (θ, θ 3 ).

By Lemma A.1, the following assertion holds:

For ℓ = 1, . . . , m, let us set

and let us denote by (H ℓ ) the following assertion:

We want to prove (H m ) by induction. By Lemma A.2, (H 1 ) holds.

Let (i, j, k) ∈ E ℓ . We have to prove that R (i) Q (1+j) R (k) ∈ C 1 θ, (T 0 T 1 ) ℓ+1 T 0 (θ) and that:

Since 1 ≤ k + 1 ≤ ℓ and by induction hypothesis, we have:

Moreover, since 2 + j ≤ ℓ + 1 ≤ m and according to D(m), we have :

and

From Property (III), we then deduce that we have

, and, since i + 1 ≤ ℓ, we have :

Since k + j + i + 2 = ℓ + 1, this gives the desired property.

Since, by hypothesis, a ∈ m k=0 T -1 0 (T 0 T 1 ) -k (I) ∩ (T 1 T 0 ) -k (I) , the properties (H 0 ),...,(H m ) show that the conclusions of Proposition A are valid. More exactly, the previous induction proves that the neighbourhood O of t = 0 and the real number κ may be defined as stated before Proposition A, and that for any compact subset O ⊂ O, the constants R ℓ are bounded as indicated in the remark following Proposition A. We set Θx = F (x, θ 1 ). So Θ is a random Lipschitz transformation on E, and the transition probability Q can be expressed as:

For any λ ∈ (0, 1], we set p λ (x) = 1 + λ d(x, x 0 ). For any 0 < α ≤ 1, 0 < β ≤ γ, and (x, y) ∈ E 2 , let us set

Then the space B α,β,γ defined in Section 11 is unchanged when m α,β,γ (f ) is replaced with

and for any f ∈ B α,β,γ , the following quantity

α,γ is equivalent to the norm • α,β,γ defined in Section 11. Consequently, for (α, β, γ) fixed as above, Propositions 11.4-8 can be established by considering on B α,β,γ the norm f (λ) α,β,γ (for some value λ ∈ (0, 1]). In most of the next estimates, we shall assume λ = 1; the possibility of choosing suitable small λ will occur in the proof of the Doeblin-Fortet inequaliies (in Prop. 11.4 and Prop. 11.8). Anyway, this already appears in the proof of Proposition 11.2, see [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF].

Let C λ = max{C, 1} + λ d(Θx 0 , x 0 ). In the sequel, we shall use repeatedly the fact that p λ (•) and p(•) are equivalent functions, and that (see [START_REF] Hennion | Central limit theorems for iterated random lipschitz mappings[END_REF] p. 1945)

from which we deduce that

We shall also use the fact that

Indeed, if d(y, x 0 ) ≤ d(x, x 0 ), then we have p λ (y) ≤ p λ (x), so that