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Abstract. Nagaev’s method, via the perturbation operator theorem of Keller and Liverani, has been exploited

in recent papers to establish local limit and Berry-Essen type theorems for unbounded functionals of strongly ergodic

Markov chains. The main difficulty of this approach is to prove Taylor expansions for the dominating eigenvalue of the

Fourier kernels. This paper outlines this method and extends it by proving a multi-dimensional local limit theorem, a

first-order Edgeworth expansion, and a multi-dimensional Berry-Esseen type theorem in the sense of Prohorov metric.

When applied to uniformly or geometrically ergodic chains and to iterative Lipschitz models, the above cited limit

theorems hold under moment conditions similar, or close, to those of the i.i.d. case.
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Mathématiques, 29285 Brest cedex, France. francoise.pene@univ-brest.fr

1



1. Introduction, setting, and notation. Let (Xn)n be a Markov chain with values
in (E, E), with transition probability Q and with stationary distribution π. Let ξ be a π-
centered random variable with values in IRd (with d ≥ 1). We are interested in probabilistic
limit theorems for (ξ(Xn))n namely :

• central limit theorem (c.l.t.),

• rate of convergence in the central limit theorem : Berry Esseen type theorem,

• multi-dimensional local limit theorem,

• First-order Edgeworth expansion (when d = 1).

We want to establish these results under moment conditions on ξ as close as possible to
those of the i.i.d. case (as usual i.i.d. is the short-hand for “independent and identically
distributed”). Let us recall some facts about the case when (Yn)n is a sequence of i.i.d. IRd-
valued random variables (r.v.) with null expectation. If Y1 ∈ IL2, we have the central limit
theorem and, under some additional non-lattice type assumption, we have the local limit
theorem. If Y1 ∈ IL3 and d = 1, we have the uniform Berry-Esseen theorem, and the first-
order edgeworth expansion. If Y1 ∈ ILm with m = max (3, bd/2c+ 1), then (Yn)n satisfies a
multi-dimensional Berry-Esseen type theorem (in the sense of Prohorov).

To get analogous results for Markov chain, we shall use and adapt Nagaev’s method. This
method has been introduced in [?] [?] to establish limit theorems for sequences (ξ(Xn))n, when
ξ is a real-valued function and (Xn)n≥0 is a uniformly ergodic Markov chain. This method
is based on Fourier techniques and the usual perturbation operator theory applied to the
Fourier kernels Q(t)(x, dy) = eitξ(y)Q(x, dy) (t ∈ IR). The idea is that IE

[
eit
∑n

k=1
ξ(Xk)

]
is

close enough to an expression of the form λ(t)n and the calculations are then similar to those
of the i.i.d. case (let us recall that, if (Yn)n is a sequence of i.i.d. random variables, then we
have IE

[
eit
∑n

k=1
Yk

]
=
(
IE[eitY1 ]

)n
). The use of Nagaev’s method always requires a strong

ergodic assumption. This assumption is presented in section 2.
Ever since Nagaev’s works, this method has been widely extended to more general Markov

chains. This is fully described in [?] [?] where references are given. Roughly speaking, this
method yields the usual distributional limit theorems if Q is strongly ergodic w.r.t. some
Banach function space B and (Q, ξ) satisfies some operator-moment conditions on B. This
method is specially efficient when B is a Banach algebra and ξ is in B. Unfortunately, on
the one hand, since Banach algebras are often composed of bounded functions, the condition
ξ ∈ B implies that ξ must be bounded. On the other hand, usual models as geometrically
ergodic chains or iterative Lipschitz models (typically E = IRp) are strongly ergodic w.r.t. to
some weighted supremum normed space or weighted Lipschitz-type space which are not Ba-
nach algebras, and the above mentioned operator-moment conditions then hold under very
restrictive assumptions involving both Q and ξ. For instance, in these models, the usual
Nagaev’s method cannot be efficiently applied to the sequence (Xn)n (i.e. ξ(x) = x) ; an
explicit and typical counter-example will be presented in Section 3.

In recent works [?] [?] [?], a new procedure, based on the pertubation theorem of Keller-
Liverani [?] (see also [?] p. 177), allows to get round the previous difficulty and to greatly
improve Nagaev’s method when applied to unbounded functionals ξ ; the main results of [?]
are applied to the Fourier kernels in Section 4. Our work outlines this new approach, and
presents the applications, namely : a multi-dimensional local limit theorem, a one-dimensional
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Berry Esseen Theorem, a first-order Edgeworth expansion, a multi-dimensional Berry-Esseen
type theorem in the sense of Prohorov metric.

When the usual perturbation theorem is replaced with that of Keller-Liverani, the main
difficulty consists in proving Taylor expansions for the dominating eigenvalue λ(t) of the
Fourier kernel Q(t). This point is crucial here. Such expansions may be obtained as follows :
(A) To get Taylor expansion at t = 0, one can combine Nagaev’s method with more prob-
abilistic arguments such as martingale techniques [?]. In this paper, this method is just
outlined : the local limit theorem obtained in [?] is extended to the multi-dimensional case
in section 5, and the one-dimensional uniform Berry-Esseen theorem of [?] is just recalled for
completeness in section 6.
(B) To establish the others limit theorems, we shall use a stronger property : the regularity
of the eigen-elements of Q(·) on a neighbourhood of t = 0. We shall see in section 7 that this
can be done by considering the action of Q(t) on a “chain” of suitable function spaces instead
of a single one as in the classical approach. This method, already introduced to investigate
the clt for iterative Lipshitz models [?], is here specified and extended to general strongly
ergodic chains. It will provide the one-dimensional Edgeworth expansion (section 8) and the
multi-dimensional Berry-Esseen type theorem (section 9).

When (Xn)n is Harris recurrent, the so-called regenerative (or splitting) method provides
limit theorems for (ξ(Xn))n including the uniform Berry-Esseen theorem [?] and Edgeworth
expansions [?]. Here the Harris recurrence is not assumed, but we shall appeal to abstract
operator-type assumptions. Despite the forbidding appearance of theses assumtions, we want
to point out that, when applied to the classical examples of strongly ergodic Markov chains,
they will reduce to simple moment conditions on ξ and standard nonlattice conditions.
We apply our method to the three following examples :

1. Uniformly ergodic Markov chain, see [?].

As a first motivation of the abstract sections 4-9, the above cited limit theorems will be
summarized in Section 2.3 in the simple case of the uniformly ergodic Markov chains.
This simple model provides a good understanding of the improvements obtained in
this work. Indeed, for results requiring Y1 ∈ ILm in the i.i.d. case, whereas the usual
Nagaev’s method needs supx∈E

∫
|ξ(y)|mQ(x, dy) < +∞ [?, ?, ?], the present method

appeals to the moment conditions ξ ∈ ILm(π) or ξ ∈ ILm+ε(π).
Of course this example is quite restrictive, and another motivation of this work is to
present applications to the two following markovian models of more practical use.

2. v-geometrically ergodic Markov chains, see e.g [?, ?].

Applications of our abstract results to v-geometrically ergodic Markov chains are given
in section 10. When Y1 ∈ ILm is needed in the i.i.d. case, the usual Nagaev’s method
requires for these models the condition supx∈E v(x)−1

∫
|ξ(y)|mv(y)Q(x, dy) < +∞ (see

e.g [?]) which, in practice, often amounts to assuming that ξ is bounded [?]. Our method
only requires that |ξ|m ≤ C v or |ξ|m+ε ≤ C v, which extends the well-known condition
|ξ|2 ≤ C v used for proving the clt [?].
Since v-geometrically ergodic Markov chains (as well as uniformly ergodic Markov
chains) are Harris recurrent and strongly mixing, other methods may be used to study
the above mentioned limit theorems. For these two models, our method is as efficient
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as the hitherto known ones, even better in some cases. More precise comparisons will
be made afterwards.

3. The iterated random Lipshitz models, see e.g [?, ?].

Except when Harris recurrence and strong mixing hypotheses are assumed, not many
works have been devoted to the refinements of clt for iterative models. Applications
to this example are detailled in Section 11 : by considering the general weighted-
Lipschitz functionals ξ of [?], the limit theorems will be stated under some usual moment
and mean contractivity conditions which extend those of [?] [?] used to prove the
c.l.t.. For instance, let us consider the typical example when (Xn)n is the usual linear
autoregressive model in IRd, namely Xn = AXn−1 + θn where A is a contractive d× d-
matrix and X0, θ1, θ2, . . . are IRd-valued independent r.v., and when the functional is
ξ(x) = x. For this example, whereas the usual Nagaev’s method requires exponential
moment conditions for these statements [?], our adaptation gives the local limit theorem
and the Berry-Esseen theorem under the expected moment hypotheses θ1 ∈ IL2 and θ1 ∈
IL3 respectively. The first-order edgeworth expansion and the multi-dimensional Berry
Esseen theorem are established under stronger moment conditions : θ1 ∈ IL2m+ε < +∞
when only Y1 ∈ ILm is needed in the i.i.d. case. All these results are new to our
knowledge.

A slight correction of [?]. Also, one of our motivations is to correct slightly theorem 2.2.4
of [?] about the Knudsen gas model. This model involves a uniformly ergodic Markov chain
(Xn)n, and this result gave a rate of convergence in n−1/2 (in the sense of Prohorov) in the
multi-dimensional clt for (ξ(Xn))n under the hypothesis ξ ∈ IL3(π)∩ ILbd/2c+1(π). The proof
of this statement is not correct as it is written in [?]. Indeed, under this hypothesis, t 7→ Q(t)
does not define a regular family of operators when acting on the single space of bounded
functions (this holds under the more restrictive condition mentioned in the above example
1). Hence proposition 2.4.2 of [?] is not correct. By considering the action of Q(t) on a
“chain” of ILp(π)-spaces, the above procedure (B) will enable us to solve this problem ; in
fact this will be done for any uniformly ergodic chain. This will provide the following slight
correction (see Section 2.2 for details) : Theorem 2.2.4 in [?] is valid under the condition
ξ ∈ IL3+ε(π) ∩ ILbd/2c+1+ε(π) for some ε > 0.

Extensions. Mention that the procedures (A) and (B) may be also used to investigate
renewal theorems [?] [?]. Anyway, our method, developped here for functionals of Markov
chains, may be employed in other contexts where Fourier operators occur. First, by an easy
adaptation of the hypotheses, the present limit theorems may be extended to the general
setting of Markov random walks, whose our work is a special case. Second, these theorems
may be also stated for the Birkhoff sums stemming from dynamical systems, by adapting
the hypotheses to the so-called Perron-Frobenius operator (to pass from Markov chains to
dynamical systems, see e.g [?] Chap. XI). Besides, [?] also used Nagaev’s method together
with Keller-Liverani theorem to prove convergences in distribution to stable laws in the
stadium billiard.
Now let us present the general settings useful for the abstract study of Sections 4-9.

Probabilistic setting. (Xn)n≥0 is a Markov chain with general state space (E, E), transition
probability Q, stationary distribution π, initial distribution µ, and ξ = (ξ1, . . . , ξd) is a IRd-
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valued π-integrable function on E such that π(ξ) = 0 (i.e. each ξi is π-integrable and
π(ξi) = 0). The associated random walk in IRd is denoted by

Sn =
n∑
k=1

ξ(Xk).

We denote by | · |2 and 〈·, ·〉 the euclidean norm and the canonical scalar product on IRd. For
any t ∈ IRd and x ∈ E, we define the Fourier kernels of (Q, ξ) as

Q(t)(x, dy) = ei〈t, ξ(y)〉Q(x, dy).

N (0,Γ) denotes the centered normal distribution associated to a covariance matrix Γ, and
“ D > ” means “convergence in distribution”. Although (Xn)n≥0 is not a priori the canonical
version, we shall slightly abuse notation and write IPµ, IEµ to refer to the initial distribution.
For any µ-integrable function f , we shall often write µ(f) for

∫
fdµ. For x ∈ E, δx will stand

for the Dirac mass : δx(f) = f(x).

Functional setting. The Banach spaces on which Q will act will be composed of complex-
valued π-integrable functions on E (or, of equivalence classes of such functions) and will be
moreover supposed to be stable under complex conjugation. Such a space will be called a
function space. The simplest examples are the space B∞

of bounded measurable functions on
E, equipped with the supremum norm, and the usual Lebesgue space ILp(π), 1 ≤ p ≤ +∞.

Unless otherwise indicated, (B, ‖ · ‖B) will be a function space. If X is a Banach space, we
denote by L(B, X) the space of the bounded linear operators from B to X, and by ‖·‖B,X the
associated operator norm, with the usual simplified notations L(B) = L(B,B), B′ = L(B,C),
for which the associated norms are simply denoted by ‖ · ‖B. If T ∈ L(B), r(T ) denotes
its spectral radius, and ress(T ) its essential spectral radius (see e.g [?] Chap. XIV). For
any normed spaces A and B, the notation “A ↪→ B” means that the inclusion A ⊂ B is a
continuous embedding.

Throught this paper, we consider function spaces B containing 1E and such that B ↪→ IL1(π)
(which implies that π is in B′), and Π denotes the rank-one projection defined on B by :

Πf = π(f)1E (f ∈ B).

2. Strong ergodicity assumption. We shall appeal to the following strong ergodicity
condition on B :

Condition (K1) : B ↪→ IL1(π), 1E ∈ B, Q ∈ L(B), and limn ‖Qn −Π‖B = 0.

When condition (K1) holds, we shall say that Q (or merely (Xn)n) is strongly ergodic w.r.t.
B. One could also say “ geometrically ergodic w.r.t. B “. Indeed, one can easily see that the
last property in (K1) is equivalent to :

∃κ0 < 1, ∃C > 0, ∀n ≥ 1, ‖Qn −Π‖B ≤ C κn0 .

It is worth noticing that the condition B ↪→ IL1(π) in (K1) implies π ∈ B′. Besides, we shall
repeatedly use the following obvious fact. If Q is strongly ergodic w.r.t. B, and if f ∈ B is
such that π(f) = 0, then the series

∑
k≥0Q

kf is absolutely convergent in B.

2.1. Examples.
(a) According to the terminology of [?], we say that (Xn)n is uniformly ergodic if we have
(K1) on B∞

. This also corresponds to aperiodic Markov chains satisfying the so-called Doe-
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blin condition. Nagaev’s method was introduced with this example.

(b) Let v : E→[1,+∞[. The v-geometrically ergodic Markov chains [?] constitute a natural
extension of Example (a). A Markov chain is said to be v-geometrically ergodic if its transi-
tion operator Q satisfies (K1) on the weighted supremum normed space (Bv, ‖ · ‖v) composed

of measurable complex-valued functions f on E such that ‖f‖v = sup
x∈E

|f(x)|
v(x)

< +∞.

(c) Under some usual moment and mean contractivity conditions, the iterated random Lip-
shitz models [?] satisfy (K1) on weighted Lipschitz-type spaces, see [?] (Sect. 5).

(d) Let q(·) be a semi-norm on B, dominated by ‖ · ‖B. Suppose that Q continuously acts
on both (B, ‖ · ‖B) and (B, q(·)), and satisfies the so-called Doeblin-Fortet inequalities : there
exist r < 1 and C > 0 such that ‖Qnf‖B ≤ C rn ‖f‖B + Cq(f) for all n ≥ 1 and f ∈ B. Fi-
nally, denoting by S the unit ball of (B, ‖ ·‖B), assume Q(S) is relatively compact in (B, q(·)).
Then Q is quasi-compact on B [?] [?], so that Q satisfies (K1) provided that it verifies some
further irreducibility and aperiodicity conditions.

All the limit theorems investigated in this work are stated in Section 2.3 for Example (a).
They will be applied to the examples (b) and (c) in Sections 10-11.

2.2. A central limit theorem in the stationary case. As a preliminary to the next limit
theorems, we state here a well-known c.l.t. for (ξ(Xn))n, which is a standard consequence
of a theorem due to Gordin [?]. We shall then deduce a corollary based on Condition (K1).
In this section, we shall only consider the stationary case. Also observe that, concerning
distributional questions on (ξ(Xn))n, one may without loss of generality assume that (Xn)n≥0

is the canonical Markov chain associated to Q.

So we consider here the usual probability space (EIN , E⊗IN , IP π) for the canonical Markov
chain, still denoted by (Xn)n≥0, with transition probability Q and initial stationary distribu-
tion π. Let θ be the shift operator on EIN . As usual we shall say that (Xn)n≥0 is ergodic if
the dynamical system (EIN , E⊗IN , IP π, θ) is ergodic.

Theorem (Gordin). Assume that (Xn)n≥0 is ergodic, and

∀i = 1, . . . , d, ξi ∈ IL2(π) and ξ̆i :=
∑
n≥0Q

nξi converges in IL2(π).

Then Sn√
n

D > N (0,Γ), where Γ is the covariance matrix defined by 〈Γt, t〉 = π(ξ̆2t )−π((Qξ̆t)2),

where we set ξ̆t =
∑d
i=1 ti ξ̆i.

Corollary 2.1. Let us suppose that (Xn)n is ergodic, that (K1) holds on a function space
B ↪→ IL2(π), and ξi ∈ B (i = 1, . . . d). Then the c.l.t. of the previous theorem holds.

Proof of Corollary. Since we have (K1) on B, ξi ∈ B and π(ξi) = 0, the series ξ̆i =
∑+∞
n=0Q

nξi
converges in B, thus in IL2(π). 2

In order to make easier the use of this corollary, let us recall the following sufficient condition
for (Xn)n to be ergodic. This statement, again in relation with Condition (K1), is established
in [?] (Th. IX.2) with the help of standard arguments based on the monotone class theorem.

Proposition 2.2. Let us suppose that (K1) holds on a function space B satisfying the
following conditions : B generates the σ-algebra E, δx ∈ B′ for all x ∈ E, and B∩B∞

is stable
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under product. Then (Xn)n is ergodic.

Of course, other methods exist to investigate the c.l.t. for Markov chains. Corollary 2.1
will be here our basic distributional statement : it will be easily applicable to our examples,
and its interest is also to define the asymptotic covariance matrix Γ which will occur in all
the others limit theorems. Anyway, the above definition of Γ provides the following classical
characterisation of the case when Γ is degenerate.

Proposition 2.3. Under the hypotheses of Corollary 2.1, Γ is non invertible if and only if

∃t ∈ IRd, t 6= 0, ∃g ∈ B, 〈t, ξ(X1)〉 = g(X0)− g(X1) IP π − a.s..

Let us notice that this equivalence is still true for B = IL2(π) if we know that :

∀t ∈ IRd, supn≥1

∣∣n〈Γt, t〉 − IEπ[〈t, Sn〉2]
∣∣ < +∞.

Proof. If 〈t, ξ(X1)〉 = g(X0) − g(X1) IP π-a.s., then
(
〈t,Sn〉√

n

)
n

converges in distribution to
the Dirac mass at 0 (which proves Γ is non invertible). Indeed, by stationarity, we have
〈t, ξ(Xn)〉 = g(Xn−1) − g(Xn) IP π-a.s.. for all n ≥ 1, so 〈t, Sn〉 = g(X0) − g(Xn). Since
we have g ∈ B ↪→ IL2(π) by hypothesis, this implies that limn IEπ[(

〈t,Sn〉√
n

)2] = 0 and hence
the desired statement. Conversely, let us suppose that Γ is not invertible. Then there exists
t ∈ IRd, t 6= 0, such that 〈Γt, t〉 = 0. From the definition of Γ given in the above theorem and
from the obvious equality IEπ[(ξ̆t(X1)−Qξ̆t(X0))2] = π(ξ̆2t )− π((Qξ̆t)2), it follows that

IEπ[(ξ̆t(X1)−Qξ̆t(X0))2] = 0.

Thus ξ̆t(X1) − Qξ̆t(X0) = 0 IP π − a.s.. Set ξt(·) = 〈t, ξ(·)〉. By definition of ξ̆t, we have
ξ̆t = ξt +Qξ̆t, so

ξt(X1) +Qξ̆t(X1)−Qξ̆t(X0) = 0 IP π − a.s..

This yields ξt(X1) = g(X0)− g(X1) IP π − a.s. with g = Qξ̆t. 2

As usual, a set A ∈ E is said to be π-full if π(A) = 1, and Q-absorbing if Q(a,A) = 1 for all
a ∈ A. The previous proposition can be specified as follows.

Proposition 2.4. Let t ∈ IRd, t 6= 0, and let g be a measurable function on E such that :

〈t, ξ(X1)〉 = g(X0)− g(X1) IP π − a.s.,

then there exists a π-full Q-absorbing set A ∈ E such that we have :

∀x ∈ A, 〈t, ξ(y)〉 = g(x)− g(y) Q(x, dy)-a.s..

Proof. For x ∈ E, set Ax = {y ∈ E : 〈t, ξ(y)〉 = g(x) − g(y)}. By hypothesis we have∫
Q(x,Ax)dπ(x) = 1, and since Q(x,Ax) ≤ 1, this gives Q(x,Ax) = 1 π-a.s.. Thus there

exists a π-full set A0 ∈ E such that Q(x,Ax) = 1 for x ∈ A0. From π(A0) = 1 and
invariance of π, we also have π(Q1A0) = 1, and since Q1A0 ≤ Q1E = 1E , this implies that
Q(x,A0) = 1 π-a.s.. Again there exists a π-full set A1 ∈ E such that Q(x,A0) = 1 for x ∈ A1.
Repeating this procedure, one then obtains a family {An, n ≥ 1} of π-full sets satisfying by
construction the condition : ∀n ≥ 1, ∀x ∈ An, Q(x,An−1) = 1. Now the set A := ∩n≥0An
is π-full and, for any a ∈ A, we have Q(a,An−1) = 1 for all n ≥ 1, thus Q(a,A) = 1. This
proves A is Q-absorbing, and the desired equality follows from the inclusion A ⊂ A0. 2
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2.3. The uniformly ergodic Markov chains. We suppose here that (Xn)n≥0 is uniformly
ergodic, as defined in Example (a) of Section 2.1, and we state below in this special case all
the limit theorems investigated in this work.

Let us suppose that π(|ξ|22) < +∞. Then ( Sn√
n
)n converges in distribution to a centered

normal distribution N (0,Γ) for any initial distribution. This is a classical result [?] (see also
[?]) that can be easily deduced, in the stationary case, from the statements of Section 2.2.
Indeed, by definition we have (K1) on B∞

, so (Xn)n is ergodic by Proposition 2.2, and since
Q also satisfies (K1) on IL2(π) [?], Corollary 2.1 applied with B = IL2(π) gives the desired
c.l.t..

In the sequel, whenever we consider uniformly ergodic Markov chains, we shall assume that
the σ-algebra E is countably generated (in order to apply [?] in Section 4.2).

For the sake of simplicity, we assume in this section that (Xn)n is stationary (µ = π). It will
be understood below that the previous covariance matrix Γ is invertible, and the next nonlattice
condition will mean that there is no a ∈ IRd, no closed subgroup H in IRd, H 6= IRd, no π-full
Q-absorbing set A ∈ E, and finally no bounded measurable function θ : E→ IRd such that :

∀x ∈ A, ξ(y) + θ(y)− θ(x) ∈ a+H Q(x, dy)− a.s..

The following statements will be afterwards specified and established as corollaries of the
abstract results of Sections 4-9 :

• If π(|ξ|22) < +∞ and ξ is nonlattice, then (ξ(Xn))n satisfies a multidimensional local limit
theorem (Corollary 5.5).
• (d = 1) If π(|ξ|3) < +∞, then (ξ(Xn))n satisfies a one-dimensional uniform Berry-Esseen
theorem (Corollary 6.3).
• (d = 1) If π(|ξ|α) < +∞ with some α > 3 and ξ is nonlattice, then (ξ(Xn))n satisfies a
one-dimensional first-order Edgeworth expansion (Corollary 8.2).
• If π(|ξ|α2 ) < +∞ for some α > max (3, bd/2c+ 1), then (ξ(Xn))n satisfies a multidimen-
sional Berry-Esseen theorem in the sense of Prohorov (Corollary 9.2).

These results, which are similar or very close to those of the i.i.d. case, are new to our knowl-
edge. For details and comparison with prior results, see each above cited corollary. Let us just
mention here that the first Nagaev’s work [?], which investigated the real-valued functionals of
uniformly ergodic Markov chains, established a clt, and a local limit theorem in the countable
case, without requiring to the operator-moment conditions mentioned in introduction. More
exactly, Nagaev first applied the perturbation method for bounded functionals, and used then
some intricate truncation techniques in order to extend his results to unbounded functionals
under the condition π(|ξ|2) < +∞. Afterwards this truncation method has not been used
any more. In particular, the Edgeworth expansions in Nagaev’s paper [?] were stated under
strong operator-moment conditions of the type supx∈E

∫
E |ξ(y)|3Q(x, dy) < +∞.

The Knudsen gas model. As pointed out in introduction, Corollary 9.2 just above summarized
specifies the slightly uncorrect result of [?] concerning the Knudsen gas model studied by
Boatto and Golse in [?], for which we just briefly recall here the link with the uniform
ergodicity hypothesis, see [?] for details. Let (E,F , π) be a probability space, let T be a
π-preserving transformation. The Knudsen gas model can be investigated with the help of
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the Markov chain (Xn)n on (E,F , π) whose transition operator Q is given by :

Qf = δ π(f) + (1− δ) f ◦ T (for some δ ∈ (0, 1)).

Clearly (Xn)n is uniformly ergodic, so that the above statements apply to the Knudsen gas
model. In particular, if π(|ξ|α2 ) < +∞ for some α > max (3, bd/2c+ 1), then we have as a
consequence of Corollary 9.2

P
(
π∗( Sn√

n
),N (0,Γ)

)
= O(n−1/2),

where P denotes the Prohorov metric [?, ?], and π∗( Sn√
n
) is the law of Sn√

n
under Pπ. Moreover,

according to corollary 2.3.2 of [?] and to the remark following Corollary 9.2, this result is
valid for non-invertible Γ as well as for invertible one.

3. The usual Nagaev’s method and a typical counter-example. The characteristic
function of Sn is linked to the Fourier kernels Q(t)(x, dy) = ei〈t, ξ(y)〉Q(x, dy) of (Q, ξ) by the
following formula (see e.g [?] p. 23)

(CF) ∀n ≥ 1, ∀t ∈ IRd, IEµ[ei〈t,Sn〉] = µ(Q(t)n1E),

and Nagaev’s method consists in applying to Q(t) the standard perturbation operator theory
[?]. For this to make sense, one must assume that Q satisfies (K1) (of Section 2) on a function
space B, thatQ(t) ∈ L(B) for t near 0, and at least that ‖Q(t)−Q‖B→ 0 when t→ 0. Then one
may express Q(t)n, hence IEµ[eitSn ], in function of λ(t)n, where λ(t) denotes the dominating
eigenvalue of Q(t), and roughly speaking, the usual Fourier techniques then supply limit
theorems for (ξ(Xn))n, provided that λ(t) satisfies the required Taylor expansions.
This method is notably efficient when (K1) holds on a Banach algebra B and ξ ∈ B. Indeed,
Q(·) is then analytic (see e.g [?] p. 58). Therefore, the Fourier techniques provide for
(ξ(Xn))n a uniform Berry-Esseen theorem, local limit and renewal theorems under some non-
arithmeticity hypothesis, and large deviations theorems by the use of the Laplace kernels,
see e.g [?]. Nevertheless it is worth noticing that Banach algebras are generally composed of
bounded functions, so that the condition ξ ∈ B implies ξ is bounded.
For instance, concerning the local limit theorem, if we want to repeat the proof of the i.i.d.
case presented in [?], one needs a second-order Taylor expansion for λ(t). To that end (in
case d = 1 for simplicity), the kernels ξ(y)Q(x, dy) and ξ(y)2Q(x, dy) must act continuously
on B, see [?, ?, ?, ?] : this is what we called the operator-moment conditions in introduction.
Of course, if ξ is unbounded, this requires very restrictive assumptions on Q. This problem
occurs for geometrically ergodic chains or for iterative models, where typically E = IRd, when
we consider unbounded functionals as ξ(x) = x. In this case, as it is shown in the simple
and typical example below, neither the previous conditions on (Q, ξ), nor even the simple
necessary condition ‖Q(t)−Q‖B→ 0, hold in general.

Counter-example. Let (Xn)n≥0 be the real-valued autoregressive chain defined by
Xn = aXn−1 + θn (n ∈ IN∗),

where a ∈ (−1, 1), a 6= 0, X0 is a real r.v. and (θn)n≥1 is a sequence of i.i.d.r.v., independent
of X0. Assume θ1 has a positive density p with finite variance. It is well-known that (Xn)n≥0

is a Markov chain whose transition probability is : (Qf)(x) =
∫
IR f(ax+ y) p(y) dy.

Set v(x) = 1 + x2 (x ∈ IR). Using the so-called drift condition [?] (§ 15.5.2), one can prove
that (Xn)n≥0 is v-geometrically ergodic (see def. in § 2.1). Now let us consider the functional
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ξ(x) = x. We have for any x ∈ IR
Q(ξ2 v)(x) ≥

∫
IR

(ax+ y)4 p(y) dy.

If
∫
IR y

4 p(y) dy = +∞, then Q(ξ2 v) is not defined. If
∫
IR y

4 p(y) dy < +∞, then Q(ξ2 v) is a
polynomial function of degree 4, so that

sup
x∈E

|Q(ξ2 v)(x)|
1 + x2

= +∞,

that is, Q(ξ2 v) /∈ Bv. Similarly we have Q(|ξ| v) /∈ Bv. Thus neither ξ(y)Q(x, dy), nor
ξ(y)2Q(x, dy), continuously act on Bv. Actually, let us show that even the continuity condition
‖Q(t) − Q‖Bv → 0 is not valid. To see that, it suffices to establish that, if g(x) = x2, then
‖Q(t)g − Qg‖v = sup

x∈IR
(1 + x2)−1 |Q(t)g(x) − Qg(x)| does not converge to 0 when t→ 0. Set

p1(y) = yp(y) and p2(y) = y2p(y), and denote by φ̂(t) =
∫
IR φ(y)eitydy the Fourier transform

of any integrable function φ on IR. Then

Q(t)g(x) =
∫
IR
eit(ax+y) (y + ax)2 p(y) dy = eiatx [p̂2(t) + 2axp̂1(t) + a2x2 p̂(t)].

So Q(t)g(x) − Qg(x) =
(
eiatxp̂2(t) − p̂2(0) + 2ax [eiatxp̂1(t) − p̂1(0)]

)
+ a2x2 [eiatxp̂(t) − 1].

Using the inequality |eiu−1| ≤ |u|, we easily see that there exists a constant C > 0 such that

sup
x∈IR

(1+x2)−1

∣∣∣∣eiatxp̂2(t)−p̂2(0)+2ax [eiatxp̂1(t)−p̂1(0)]
∣∣∣∣ ≤ C

(
|t|+|p̂2(t)−p̂2(0)|+|p̂1(t)−p̂1(0)|

)
.

By continuity of p̂1 and p̂2, the last term converges to 0 as t→ 0. Now set
ψ(x, t) = (1 + x2)−1 a2x2 |eiatxp̂(t)− 1|.

We have supx∈IR ψ(x, t) ≥ ψ( πat , t) = a2π2

π2+a2t2
|p̂(t) + 1|. Since this last term converges to

2a2 6= 0 as t→ 0, this clearly implies the desired statement.

4. The starting point of Nagaev’s method via Keller-Liverani theorem. Here we
state general hypotheses under which the perturbation theorem of Keller-Liverani applies
to the Fourier Kernels Q(t). Furthermore, as an example, we prove that these hypotheses
hold for the uniformly ergodic chains. Finally we shall present two lemmas that specify the
connection between the characteristic function of Sn and the dominating eigenvalue λ(t) of
Q(t).

4.1. Keller-Liverani theorem. When applied with the Fourier kernels Q(t) and the
auxiliary semi-norm π(| · |), the hypotheses of [?] are 3 :

There exists a neighbourhood O of 0 in IRd such that Q(t) ∈ L(B) for each t ∈ O, and :

(K2) sup{π(|Q(t)f −Qf |), f ∈ B, ‖f‖B ≤ 1} converges to 0 when t→ 0 (t ∈ O).

(K3) ∃κ1 < 1, ∃C > 0, ∀n ≥ 1, ∀f ∈ B, ∀t ∈ O, ‖Q(t)nf‖B ≤ C κn1 ‖f‖B + Cπ(|f |).
(K4) For t ∈ O, we have ress(Q(t)) ≤ κ1.

We call (K) the whole conditions (K1) (K2) (K3) (K4) (See § 2 for (K1)), we denote by κ
any real number such that max{κ0, κ1} < κ < 1, and we define the following set

3The auxiliary norm in [?] can be easily replaced by a semi-norm.
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Dκ =
{
z : z ∈ C , |z| ≥ κ, |z − 1| ≥ 1− κ

2

}
.

The next statement, which extends (K1) to Q(t) for t close to 0, is a consequence of [?] (see
also [?] p. 177).

Theorem (K-L). Let us assume that Condition (K) holds. Then, for all t ∈ O (with possibly
O reduced), Q(t) admits a dominating eigenvalue λ(t) ∈ C , with a corresponding rank-one
eigenprojection Π(t), satisfying the following properties :

lim
t→ 0

λ(t) = 1, sup
t∈O

‖Q(t)n − λ(t)n Π(t)‖B = O(κn),

sup{π(|Π(t)f −Πf |), f ∈ B, ‖f‖B ≤ 1} converges to 0 when t→ 0, and

sup
{
‖(z −Q(t))−1‖B, t ∈ O, z ∈ Dκ

}
< +∞.

Despite their not very probabilistic appearance, the conditions (K2), (K3), (K4) are suited
to many examples of strongly ergodic Markov chains : for instance, we shall prove that they
hold, for any measurable functional ξ, in the case of uniformly and geometrically ergodic
chains (Prop. 4.1, Lem. 10.1), and that they are valid under simple mean contractivity and
moment conditions for iterative Lipschitz models (see § 11). Concerning these conditions, we
shall use repeatedly the following simple remarks.

Some comments on the conditions (K2)-(K4).
(a) The continuity Condition (K2) is quite less restrictive than the condition ‖Q(t)−Q‖B→ 0
required in the usual perturbation theorem. A sufficient condition for (K2) is that

(K2’) sup{π(|ei〈t, ξ〉 − 1| |f |), f ∈ B, ‖f‖B ≤ 1} converges to 0 when t→ 0.

More precisely, (K2’) implies that the continuity condition in [?] holds near each point t0 ∈ O.
Indeed we have, for f ∈ B,

π(|Q(t0 + h)f −Q(t0)f |) ≤ π(Q|ei〈h, ξ〉 − 1| |f |) = π(|ei〈h, ξ〉 − 1| |f |).
For instance, (K2’) holds if B ↪→ ILp(π) for some p > 1 (by Hölder’s inequality and Lebesgue’s
theorem).

(b) Suppose that (K3) holds, and that, for each t ∈ O, Q(t)(S) is relatively compact in
(B, π(| · |)), where S is the unit ball of (B, ‖ · ‖B). Then (K4) automatically holds [?] [?]. This
remark will be helpfull to prove (K4) for iterative models (Section 11).

(c) If B is a Banach lattice (i.e. |f | ≤ |g| ⇒ ‖f‖B ≤ ‖g‖B for any f, g ∈ B), then (K1)
implies (K3) (indeed, |Q(t)nf | ≤ Qn|f |, thus ‖Q(t)nf‖B ≤ ‖Qn|f | ‖B). However the previous
compacity condition does not hold for the usual infinite dimensional Banach lattices, so that
in this case, (K4) cannot be deduced from (K3) as above indicated.

4.2. Example of the uniformly ergodic Markov chains. Suppose (Xn)n≥0 is a uni-
formly ergodic Markov chain. So its transition probability Q satisfies Condition (K1) of
Section 2 on B∞

and on ILp(π) for each 1 < p < +∞ [?].

Proposition 4.1. For any IRd-valued measurable function ξ, (Q, ξ) satisfies (K2’), and
(K3)-(K4) with O = IRd, on the function spaces B∞

and ILp(π) for each 1 < p < +∞. In
particular Condition (K) holds on each of these spaces.
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Proof. Let ‖ · ‖p = π(| · |p)
1
p denote the norm on ILp(π) and let q be such that 1

p + 1
q = 1.

Conditions (K2’) and (K3) with O = IRd, follow from the above remarks (a) and (c). Property
(K4) w.r.t. B∞

is proved in [?] with the help of [?]. To get (K4) w.r.t. ILp(π), 1 < p < +∞,
we are going to repeat some arguments derived from [?]. These arguments are based on
Doeblin’s condition (which can be easily deduced from (K1) on B∞

), namely : there exist
` ≥ 1, η > 0, and ρ < 1 such that

( π(A) ≤ η ) ⇒ ( ∀x ∈ E, Q`(x,A) ≤ ρ` ).

Lemma 4.2. There exist a nonnegative bounded measurable function α on E × E and a
positive kernel S(x, dy), x ∈ E, such that Q`(x, dy) = α(x, y)dπ(y)+S(x, dy) and ‖S‖p ≤ ρ

`
q .

Proof. Let us summarize the beginning of the proof in [?] (Lemma III.4) : using the differen-
tiation of measures, there exist a nonnegative measurable function α′ on E×E and a positive
kernel S′(x, dy) such that, for all x ∈ E, we have Q`(x, dy) = α′(x, y)dπ(y) + S′(x, dy), with
π(Cx) = 0 and S′(x,E \ Cx) = 0 for some Cx ∈ E . Set α = α′ 1{α′≤η−1 }, and for x ∈ E,
let Lx = { y ∈ E : α′(x, y) > η−1 } \ Cx. Then Q`(x, dy) = α(x, y)dπ(y) + S(x, dy) with
S(x,A) = Q`(x,A ∩ (Cx ∪ Lx)). We have

∀x ∈ E, 1 ≥ Q`(x, Lx) ≥
∫
Lx

α′(x, y) dπ(y) ≥ η−1 π(Lx),

thus π(Lx ∪ Cx) = π(Lx) ≤ η, so that Q`(x, Lx ∪ Cx) ≤ ρ`.
Now let f ∈ ILp(π). We have Sf(x) =

∫
Cx∪Lx

f(y)Q`(x, dy), and from Hölder’s inequality
w.r.t. the probability measure Q`(x, dy), we have

‖Sf‖pp =
∫
E

∣∣∣∣ ∫
E
f(y) 1Cx∪Lx(y)Q`(x, dy)

∣∣∣∣pdπ(x) ≤
∫
E
Q`|f |p(x)Q`(x,Cx ∪ Lx)

p
q dπ(x),

hence ‖Sf‖pp ≤ (ρ`)
p
q π(Q`|f |p) = (ρ`)

p
q π(|f |p) which is the stated estimate on ‖S‖p. 2

Now let us prove ress(Q(t)) ≤ ρ
1
q . Since |Q(t)`f | ≤ Q`|f |, there exists a complex-valued

measurable function χt on E × E such that Q(t)`(x, dy) = χt(x, y)Q`(x, dy) with |χt| ≤ 1.
So, by Lemma 4.2,

Q(t)`(x, dy) = χt(x, y)α(x, y)dπ(y) + χt(x, y)S(x, dy) := αt(x, y)dπ(y) + St(x, dy),

and, since αt(·, ·) is bounded, the associated kernel operator is compact on ILp(π) [?]. Recall
that, if T is a bounded operator on a Banach space B, then ress(T ) = limn(inf ‖Tn − V ‖B)

1
n

where the infinimum is considered over the ideal of compact operators V on B. This yields
ress(Q(t)`) = ress(St) ≤ r(St)) ≤ ‖St‖p ≤ ‖S‖p ≤ ρ

`
q (Lem. 4.2). Hence ress(Q(t)) ≤ ρ

1
q . 2

4.3. Link between λ(t) and the characteristic function of Sn. Recall that π [resp.
µ] denotes the stationary distribution [resp. the initial distribution] of the chain. For conve-
nience, let us repeat the basic formula (CF), already formulated in Section 3, which links the
characteristic function of Sn with the Fourier kernels of (Q, ξ) :

(CF) ∀n ≥ 1, ∀t ∈ IRd, IEµ[ei〈t,Sn〉] = µ(Q(t)n1E).

In this section, we assume that Condition (K) of section 4.1 holds on some function space B.
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We shall appeal to Theorem (K-L), in particular to the dominating eigenvalue λ(t) of Q(t),
t ∈ O, and to the real number κ for which we just remember that κ < 1.

Lemma 4.3. If (K) (of section 4.1) holds and µ = π, then there exists a function ` : O→C
such that

lim
t→ 0

`(t) = 1 and sup
t∈O

|IEπ[ei〈t,Sn〉]− λ(t)n `(t)| = O(κn).

Proof. Set `(t) = π(Π(t)1E) for t ∈ O, where Π(t) is the rank-one eigenprojection associated
to λ(t). Since π ∈ B′, Lemma 4.3 directly follows from Theorem (K-L) and Formula (CF). 2

If the conditions (K2) and (K3) are fulfilled with, instead of π(| · |), any semi-norm q(·) on
B satisfying q(·) ≤ c ‖ · ‖ (c > 0), then the conclusions of Theorem (K-L) remain valid with
in this case : sup{q(|Π(t)f −Πf |), f ∈ B, ‖f‖B ≤ 1}→ 0 when t→ 0, see [?]. The property
limt→ 0 π(Π(t)1E) = 1 required for Lemma 4.3 holds if we have furthermore π(| · |) ≤ d q(·)
(d > 0), and Lemma 4.3 is then still valid. In fact, contrary to the condition (K̂) of Section
5.2 for which the use of a general semi-norm may be interesting in practice, Condition (K)
will be always fulfilled in our examples with the semi-norm π(| · |).

To extend Lemma 4.3 to the non-stationary case, we consider another function space (B̃, ‖·‖B̃)
such that B ⊂ B̃, and the following condition :

Condition (K̃) : we have (K) (of section 4.1) on B, (K1) (of section 2) on B̃, and the
following continuity condition : limt→ 0 ‖Q(t)−Q‖B,B̃ = 0.

Lemma 4.4. If (K̃) holds and µ ∈ B′ ∩ B̃′, the conclusions of Lemma 4.3 hold under IPµ.

Proof. Set `(t) = µ(Π(t)1E) for t ∈ O. Lemma 4.4 will follow from Theorem (K-L) and
Formula (CF), provided that we prove lim

t→ 0
µ(Π(t)1E) = 1. For that, observe that 1 = µ(Π1E),

so |µ(Π(t)1E) − 1| ≤ ‖µ‖B̃ ‖Π(t) − Π‖B,B̃ ‖1E‖B. Besides, as in the standard perturbation
theory [?], Π(t) can be expressed as the line integral of (z −Q(t))−1 over a suitable oriented
circle centered at λ = 1, see [?]. Then the formula

(z −Q(t))−1 − (z −Q)−1 = (z −Q)−1 [Q(t)−Q] (z −Q(t))−1

and (K̃) easily give ‖Π(t)−Π‖B,B̃→ 0 as t→ 0, hence the desired convergence. 2

To illustrate the continuity condition in (K̃), let us prove the following lemma which holds
without any moment condition on ξ. Suppose (Xn)n≥0 is a uniformly ergodic Markov chain.

Proposition 4.5. Let 1 ≤ p′ < p. Then limt→ 0 ‖Q(t)−Q‖
ILp(π),ILp′ (π)

= 0.

Proof. Let us denote ‖·‖p for ‖·‖ILp(π). Using the inequality |eia−1| ≤ 2 min{1, |a|} (a ∈ IR)
and the Hölder inequality, one gets for t0, h ∈ IR and f ∈ ILp(π),

‖Q(t0 + h)f −Q(t0)f‖p′ ≤
∥∥∥Q(|eihξ − 1| |f |)

∥∥∥
p′

≤ 2 ‖min{1, |hξ|}|f |‖p′
≤ 2 ‖min{1, |hξ|}‖ pp′

p−p′
‖f‖p,
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with ‖min{1, |hξ|}‖ pp′
p−p′

→ 0 when h→ 0 by Lebesgue’s theorem. 2

5. A multi-dimensional local limit theorem. The two previous lemmas constitute
the necessary preliminary to employ the usual Fourier techniques. However, it is worth
noticing that, except limt→ 0 λ(t) = 1, the perturbation theorem of Keller-Liverani cannot
yield anyway the Taylor expansions needed for λ(t) in Fourier techniques. An abstract
operator-type hypothesis C(m) will be presented in Section 7 in order to ensure the existence
of m continuous derivatives for λ(·). But we want before to recall another method, based
on weaker and more simple probabilistic c.l.t.-type assumptions, which provides second or
third-order Taylor expansions of λ(t) near t = 0. As in the i.i.d. case, these expansions are
sufficient to establish a multi-dimensional local limit theorem, this is the goal of Section 5.1,
and a one-dimensional uniform Berry-Esseen theorem which will be presented in Section 6. 4

Theorem 5.1 below has been established for real-valued functionals in [?] under slightly
different hypotheses. Here we present an easy extension to the multidimensional case. The
application to the uniformly ergodic chains is new (Section 5.3).

5.1. A general statement. To state the local limit theorem, one needs to introduce the two
following conditions. The first one is the central limit assumption stated under IP π for which
one may appeal to Corollary 2.1 for instance. The second one is a spectral non-arithmeticity
condition. Recall that, by hypothesis, we have π(ξ) = 0, so that IEπ[Sn] = 0.

Condition (CLT) : Under IP π, Sn√
n

D >N (0,Γ), with a non-singular matrix Γ.

Condition (S) : For all t ∈ IRd, Q(t) ∈ L(B), and for each compact set K0 in IRd \ {0}, there
exist ρ < 1 and c ≥ 0 such that we have, for all n ≥ 1 and t ∈ K0, ‖Q(t)n‖B ≤ c ρn.

Condition (S) constitutes the tailor-made hypothesis in order to operate in Nagaev’s method
the proofs of the i.i.d. limit theorems involving Fourier techniques and the so-called non-
lattice assumption. It will be reduced to more practical hypotheses in Section 5.2.

We want to prove that, given some fixed positive function f on E, we have

(LLT ) lim
n

(√
det Γ (2πn)

d
2 IEµ[ f(Xn) g(Sn − a) ]− e−

1
2n
〈Γ−1a,a〉 π(f)

∫
IR
g(x)dx

)
= 0,

for all compactly supported continuous function g : IRd→ IR and for all a ∈ IRd.
The conditions on f and µ will be specified below.

Theorem 5.1. Assume that Condition (CLT) holds, that (Q, ξ) satisfies Conditions (K) (of
section 4.1) and (S) w.r.t. some function space B, and suppose f ∈ B, f ≥ 0. Then we have
(LLT) under IP π. If (K) is replaced with (K̃), then (LLT) holds under IPµ if µ ∈ B′ ∩ B̃′.

Proof. In order to use Lemmas 4.3-4 and to write out the Fourier techniques of the i.i.d. case
[?], one needs to establish a second-order Taylor expansion for λ(t).

Lemma 5.2. If assumptions (K) (of section 4.1) and (CLT) are fulfilled, then we have
4These two limit theorems could also be deduced from respectively Conditions C(2) and C(3) of Section

7, but in practice, these two conditions are slightly more restrictive that those of Sections 5-6. For instance,
compare C(2) and C(3) for uniformly ergodic chains (see Prop. 7.3) with the conditions of Coro. 5.5 and 6.3.
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λ(u) = 1− 1
2〈Γu, u〉+ o(‖u2‖) near u = 0.

Proof (sketch). For d = 1, the proof of Lemma 5.2 is presented in [?], let us just recall
the main ideas. By hypothesis, Sn√

n
D >N (0, σ2) under IP π, with σ2 > 0. It follows from

Lévy’s theorem and Lemma 4.3 that limn λ( t√
n
)n = e−

σ2

2
t2 , with uniform convergence on any

compact set in IR. Then the fact that log λ( t√
n
)n = n log λ( t√

n
) and log λ( t√

n
) ∼ λ( t√

n
)− 1

gives for t 6= 0 :

(
√
n

t
)2(λ(

t√
n

)− 1) +
σ2

2
= o(1) when n→+∞.

Setting u = t√
n
, it is then not hard to deduce the stated Taylor expansion (see [?] Lem. 4.2).

These arguments can be readily repeated for d ≥ 2. (To get log λ( t√
n
)n = n log λ( t√

n
) in

d ≥ 2, proceed as in [?] with ψ(x) = λ(x t√
n
), x ∈ [0, 1].) 2

If f = 1E , then (LLT) follows from Lemma 4.3 or 4.4, according that µ = π or not, by writing
out the i.i.d. Fourier techniques of [?]. In particular, Condition (S) plays the same part that
the nonlattice condition of [?]. If f ∈ B, f ≥ 0, one can proceed in the same way by using
the following equality, whose (CF) is a special case (see e.g [?] p. 23),

(CF ′) IEµ[f(Xn) eitSn ] = µ(Q(t)nf),

and some obvious extensions of Lemmas 4.3-4. See [?] for details in d = 1. 2

Neglecting for the moment the non-arithmeticity condition (S), we want now to complete
the comparison with the usual Nagaev’s method. Let us suppose that (Xn)n satisfies the
strong ergodicity condition (K1) of Section 2. As already mentioned in Section 3, in order to
establish (LLT), one may suppose that the kernel ξ(y)2Q(x, dy) has a continuous action on
B : one then obtains directly a second-order Taylor expansion for λ(·), from which one can
deduce both the clt and (LLT), see e.g [?]. Here the previous condition is replaced by the
conditions (K2) (K3) (K4) of Theorem (K-L) which are fulfilled under very weak hypotheses
in our examples. From Theorem 5.1, at least in the stationary case, (CLT) then implies
(LLT) : of course, the conditions for (CLT) are weaker (and often much weaker) than the
above second-order operator-moment condition. In other words, concerning the local limit
theorem, Theorem 5.1 improves all the prior statements obtained with the help of the usual
Nagaev’s method, see e.g [?, ?, ?, ?]. This will be first illustrated in Section 5.3 with the
uniformly ergodic Markov chains, see also Sections 10-11.

5.2. Study of Condition (S). When Nagaev’s method is applied with the standard per-
turbation theory, it is well-known that the spectral condition (S) can be reduced to a more
practical condition on (Q, ξ), see e.g [?] [?] [?]. This reduction is based on some spectral
arguments, and on simple properties of strict convexity which require some additional con-
ditions on the function space B, see (b1) (b2) below. Here the spectral arguments will be
derived from Keller-Liverani theorem. To this end, conditions (K2)-(K4) must be extended
to the whole family {Q(t), t ∈ IRd} as stated below. Moreover the use of a general semi-norm
on B (instead of π(| · |)) in Keller-Liverani theorem will be here helpful in practice.

More precidely, let us assume that there exists a semi-norm q(·) on (B, ‖ · ‖) such that we
have q(·) ≤ c ‖ · ‖ for some c > 0, and
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(K̂2) ∀t ∈ IRd, Q(t) ∈ L(B) and lim
h→ 0

sup{q (Q(t+ h)f −Q(t)f) , f ∈ B, ‖f‖B ≤ 1} = 0

and, for all compact set K0 in IRd, there exists κ ∈ (0, 1) such that :

(K̂3) ∃C > 0, ∀n ≥ 1, ∀f ∈ B, ∀t ∈ K0, ‖Q(t)nf‖B ≤ C κn ‖f‖B + C q(|f |)

(K̂4) ∀t ∈ K0, ress(Q(t)) ≤ κ.

We call (K̂) the whole conditions (K1) (of section 2), (K̂2), (K̂3), (K̂4).

Notice that, if q(·) = π(| · |), then (K2’) implies (K̂2), see Rk. (a) in § 4.1. The uniformly
ergodic chains satisfy with q(·) = π(| · |) all the previous conditions on B∞

and ILp(π) for
p > 1, see Prop. 4.1. This will be still valid, for geometrically ergodic chains w.r.t the
weighted supremum-normed spaces of Section 10, and for the iterative models (by using
another semi-norm) w.r.t. the weighted Lipschitz-type spaces of Section 11.

As usual, the relation ”f ≤ g” in B means, either ”f ≤ g on E” if B is composed of functions,
or ”f ≤ g π-a.s. on E” if B is composed of equivalence classes of functions (as the ILp(π)’s).
Finally, for e′ ∈ B′, we say that e′ ≥ 0 if we have e′(g) ≥ 0 for all g ∈ B, g ≥ 0.

In the next non-arithmeticity condition, we shall suppose that B is a function space satisfying,
either the following general condition (b1), in which f, g, fn (n ≥ 0) denote elements of B,

Condition (b1) :
f ≥ 0, f 6= 0 ⇒ ∃e′ ∈ B′, e′ ≥ 0, e′(f) 6= 0

[ limn fn = f in B and g ≤ fn for all n ≥ 0 ] ⇒ g ≤ f ,

or the following stronger Condition (b2) : ∀x ∈ E, δx ∈ B′.
We set : B0 = B ∩ IL∞(π) under Condition (b1), and B0 = B ∩ B∞

under Condition (b2).

Let us recall that A ∈ E is π-full if π(A) = 1, and Q-absorbing if Q(a,A) = 1 for all a ∈ A.

A non-arithmetic condition on ξ. Under the condition (b1) or (b2), we shall say that
(Q, ξ), or merely ξ, is arithmetic w.r.t. B (and non-arithmetic w.r.t. B in the opposite case)
if there exist t ∈ IRd, t 6= 0, λ ∈ C , |λ| = 1, a π-full Q-absorbing set A ∈ E, and a function
w in B0 such that |w| is nonzero constant on A, satisfying :

(∗) ∀x ∈ A, ei〈t,ξ(y)〉w(y) = λw(x) Q(x, dy)− a.s..

The two next propositions are expected results, and for convenience they will be proved in
Section 12.

Proposition 5.3. Assume that Hypothesis (K̂) holds, and that we have (b1) or (b2). Then
Condition (S) holds w.r.t. B if and only if ξ is non-arithmetic w.r.t. B.

In the usual Nagaev’s method, this statement is for instance established in [?] (Prop. V.2)
under Condition (b2). Let us notice that (b2), which clearly implies (b1), doesn’t hold on
ILp(π), while (b1) is fulfilled on this space (take e′ = π). The proof of Proposition 5.3 is an
extension of that in [?]. See Section 12.1.

We now present a lattice-type criterion for (S) which is a natural extension of the i.i.d. case,
and a well-known condition in the general context of Markov random walks.
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A nonlattice condition on ξ. We shall say that (Q, ξ), or merely ξ, is lattice (and non-
lattice in the opposite case) if there exist a ∈ IRd, a closed subgroup H in IRd, H 6= IRd, a
π-full Q-absorbing set A ∈ E, and a bounded measurable function θ : E→ IRd such that

(∗∗) ∀x ∈ A, ξ(y) + θ(y)− θ(x) ∈ a+H Q(x, dy)− a.s..

Proposition 5.4. In addition to the hypotheses of Proposition 5.3, assume that B0 is stable
under product, that Condition (CLT) of Section 5.1 is fulfilled, and that π(| · |) ≤ c q(·). If ξ
is nonlattice, then (S) holds on B. The converse is true when, for any real-valued measurable
function ψ on E, we have eiψ ∈ B.

This expected result, based on the study of the set G = {t ∈ IRd : r(Q(t)) = 1}, will be
established in Section 12.2. For the uniformly ergodic chains, Condition (S) w.r.t. B∞

, or
ILp(π) for p > 1, is equivalent to the previous non-lattice hypothesis, provided π(|ξ|22) < +∞
in order to get (CLT) (see § 2.3). This will be extended to v-geometrically ergodic chains
w.r.t. the spaces used in Section 10, if we have |ξ|22 ≤ C v for some C > 0. For the iterative
models, the above non-arithmetic condition on ξ will be a necessary and sufficient condition
for (S) to be valid on the spaces used in Section 11, and the non-lattice assumption will be
a sufficient condition for (S), but not (a priori) a necessary condition.

Condition (S) and invertibility of Γ. Observe that, if the conclusion of Proposition
2.4 holds for some real-valued measurable function g on E, then we clearly have (∗) with
w(·) = ei g(·) and λ = 1. Moreover, (∗∗) is satisfied with a = 0, θ(x) = {g(x)} t

|t|22
, and

H = (IR · t)⊥ + ZZ t
|t|22

, where {·} stands for the fractionary part. Finally Condition (S) with
respect to any B containing w is then false because, in this case, the above mentioned equality
(∗) easily implies that r(Q(t)) ≥ 1, see Lemma 12.2.

Consequently, given any function spaces B and B2, one can deduce the following facts from
the previous remarks and the results of Section 2.2. If the hypotheses of Corollary 2.1 hold
w.r.t. B2 and if ei ψ(·) ∈ B for all ψ ∈ B2, then we have the following implications, in which
Γ denotes the covariance matrix of Section 2.2.

Condition (S) w.r.t. B ⇒ Γ is invertible

Non-arithmeticity w.r.t. B ⇒ Γ is invertible

(Q, ξ) is non-lattice ⇒ Γ is invertible.

The above condition on B is unnecessary for the last implication.

5.3. (LLT) for the uniformly ergodic Markov chains. Let us suppose that (Xn)n≥0 is
uniformly ergodic. Recall that, if π(|ξ|22) < +∞, then (n−

1
2Sn)n converges in distribution to

a normal distribution N (0,Γ) (see § 2.3). The next statement is new to our knowledge.

Corollary 5.5. Let us assume that π(|ξ|22) < +∞, that ξ is nonlattice, and that dµ = φdπ
with φ ∈ ILr(π) for some r > 1. Then we have (LLT) for each function f ≥ 0 in ILp(π)
provided p > r

r−1 .

Proof. Let r′ = r
r−1 and p > r′. From Proposition 4.1, we have (K), and even (K̂) with

q(·) = π(| · |), on B = ILp(π). Moreover, Proposition 4.5 yields (K̃) with B̃ = ILr
′
(π). Besides,
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since ξ is nonlattice, (S) holds on ILp(π) by Proposition 5.4. Finally B′ ∩ B̃′ = (ILr
′
(π))′ may

be identified with ILr(π). Then Corollary 5.5 follows from Theorem 5.1. 2

6. A one-dimensional uniform Berry-Esseen theorem. Here we assume d = 1 (i.e. ξ is
real-valued), we denote byN the distribution function ofN (0, 1), we suppose that Hypothesis
(CLT) of section 5.1 holds with Γ = σ2 > 0, and we set for any u ∈ IR :

∆n(u) =
∣∣∣∣ IPµ( Sn

σ
√
n
≤ u)−N (u)

∣∣∣∣ and ∆n = sup
u∈IR

∆n(u).

Theorem 6.1 and Proposition 6.2 below have been already presented in [?], we state them
again for completeness. As in the previous section, the application to the uniformly ergodic
chains, presented in Section 6.3, is new and it will give a good understanding of the present
results in comparison with the usual Nagaev’s method (and even with the application of
Bolthausen’s theorem to this special example). Other comparisons with prior works are
presented in [?], they will be partially remembered in Sections 10-11.

6.1 A general statement. Let us reinforce Condition (CLT) by the following one :

Condition (CLT’) : ∃C > 0, ∀t ∈ [−
√
n,
√
n], |IEπ[e

it Sn
σ
√

n ] − e−
t2

2 | ≤ C |t|√
n
.

Theorem 6.1 [?]. Assume that Condition (K̃) of Section 4.3 and (CLT’) are fulfilled, with
the continuity condition of (K̃) strengthened by ‖Q(t) − Q‖B,B̃ = O(|t|). Then we have

∆n = O(n−
1
2 ) for any µ ∈ B′ ∩ B̃′.

Proof (sketch). See [?] for details. Let us assume for convenience that µ = π. In order to
copy the Fourier techniques used for the i.i.d. Berry-Essen theorem (see [?] [?]), we have to
improve Lemmas 4.3 and 5.2 as follows :

(a) sup
t∈O

1
|t|
|IEπ[ei〈t,Sn〉]− λ(t)n `(t)| = O(κn), with sup

t∈O

|`(t)− 1|
|t|

< +∞.

(b) λ(u) = 1− σ2 u2

2 +O(u3) near u = 0.

Assertion (a) can be easily derived from ‖Q(t)−Q‖B,B̃ = O(|t|) by proceeding as in Lemma
4.4. To get (b), one may repeat the short proof of Lemma 5.2 by starting here from the

property λ( t√
n
)n − e−

σ2

2
t2 = O( |t|√

n
) which follows from (CLT’) and (a). One then obtains

(
√
n
t )2(λ( t√

n
) − 1) + σ2

2 = O( |t|√
n
), and setting u = t√

n
, this leads to the expansion (b) (see

Lem. IV.2 in [?]). 2

6.2. A sufficient condition for (CLT’). Actually, one of the difficulties in the previous
theorem is to show Hypothesis (CLT’). By the use of martingale techniques derived from [?],
we showed in [?] the next statement.

Proposition 6.2 [?]. We have (CLT’) when the two following conditions hold :

(G1) ξ̆ =
∑+∞
n=0Q

nξ absolutely converges in IL3(π).

(G2)
∑+∞
p=0Q

pψ absolutely converges in IL
3
2 , where ψ = Q(ξ̆2)−(Qξ̆)2−(π(ξ̆2)−π((Qξ̆)2) 1E.

Let us notice that ξ̆ is the solution of the Poisson equation ξ̆ − Qξ̆ = ξ, already introduced
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in Gordin’s theorem (see § 2.2). Also observe that the above function ψ can be expressed as
ψ = Q(ξ̆2)− (Qξ̆)2 − σ2 1E , where σ2 is the asymptotic variance of Gordin’s theorem.

About the practical verification of (G1) (G2).
In practice, one often proceeds as follows to verify the two above conditions. Since π(ξ) = 0,
Condition (G1) holds if Q is strongly ergodic w.r.t. some B ↪→ IL3(π) and if ξ ∈ B. If
moreover Q is strongly ergodic w.r.t. some B2 ↪→ IL

3
2 (π) containing all the functions g2,

g ∈ B, then Condition (G2) holds. Indeed, under these hypotheses, ξ̆ ∈ B, thus ψ ∈ B2, and,
since π(ψ) = 0, the series

∑+∞
p=0Q

pψ absolutely converges in B2, thus in L
3
2 (π).

6.3. Application to uniformly ergodic Markov chains. Let us suppose that (Xn)n≥0 is
uniformly ergodic. It is proved in Nagaev’s work [?], and in some of its extensions (see e.g [?]),
that ∆n = O(n−

1
2 ) under the strong moment condition supx∈E

∫
E |ξ(y)|3Q(x, dy) < +∞.

In the stationary case (ie. µ = π), since (Xn)n≥0 is strongly mixing (see [?]), Bolthausen’s
theorem [?] implies the previous estimate if π(|ξ|p) < +∞ for some p > 3. The next statement,
which is new to our knowledge, only requires the expected third-order moment condition.

Corollary 6.3. If π(|ξ|3) < +∞ and µ = φdπ, with some φ ∈ IL3(π), then ∆n = O(n−
1
2 ).

Proof. Set ILp = ILp(π). Since Q is strongly ergodic on IL3 and IL
3
2 [?], and since ξ ∈ IL3 by

hypothesis, this implies (G1) (G2), thus (CLT’) (see § 6.2). Besides, (Q, ξ) verifies Condition
(K) w.r.t. IL3 and IL

3
2 (Prop. 4.1). Moreover we have ‖Q(t)−Q‖

IL3,IL
3
2

= O(|t|). Indeed, let

f ∈ IL3. Using |eia − 1| ≤ |a|, one gets

π( |Q(t)f −Qf |
3
2 ) ≤ π( |Q(|eitξ − 1| |f |)|

3
2 ) ≤ |t|

3
2 π(Q(|ξ|

3
2 |f |

3
2 ) ) = |t|

3
2 π(|ξ|

3
2 |f |

3
2 ),

and Schwarz inequality yields ‖Q(t)f − Qf‖ 3
2
≤ |t| (π(|ξ|

3
2 |f |

3
2 ))

2
3 ≤ |t| ‖ξ‖3 ‖f‖3 . We have

proved that the hypotheses of Theorem 6.1 are fulfilled with B = IL3 and B̃ = IL
3
2 . Finally,

µ ∈ (IL3)′ ∩ (IL
3
2 )′ = (IL

3
2 )′ if and only if µ has the stated form. 2

7. Regularity of the eigen-elements of Q(t). The goal of this section is to present an
abstract operator-type Hypothesis, called C(m) ensuring that the dominating eigenvalue λ(t)
and the others eigen-elements of Q(t) have m continuous derivatives on some neighbourhood
O of 0. The usual Nagaev’s method already exploited this idea by considering the action of
Q(t) on a single function space, but as illustrated in Section 3, the resulting operator-moment
conditions may be very restrictive in practice. The use of a “chain” of spaces developped
here enables to greatly weaken these assumptions.

As a first example we shall see in Section 7.3 that, for the uniformly ergodic chains,
Hypothesis C(m) reduces to π(|ξ|α2 ) < +∞ for some α > m. This condition is slightly
stronger than the assumption π(|ξ|m2 ) < +∞ of the i.i.d. case ensuring that the common
characteristic function hasm continuous derivatives. But it is much weaker than the condition
supx∈E(Q|ξ|m2 )(x) < +∞ required in the usual Nagaev’s method when applied with the
single space B∞

. Other simple reductions of C(m) will be obtained in Sections 10-11 for
geometrically ergodic chains ans iterative models.

Roughly speaking one can say that Hypothesis C(m) below (together with possibly the
non-arithmeticity condition) allows to extend to strongly ergodic Markov chains the classical
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i.i.d. limit theorems established with Fourier techniques. This will be illustrated in Sections
8-9 by proving a one-dimensional Edgeworth expansion and a multi-dimensional Berry-Esseen
type theorem in the sense of Prohorov metric. This has been also exploited in [?] to prove a
multi-dimensional renewal theorem.

7.1. Regularity of (z−Q(·))−1. Before dealing with the regularity of the eigen-elements of
Q(t), we investigate that of the function t 7→ (z −Q(t))−1, where (z −Q(t))−1 is seen as an
operator from a Banach space B to a Banach space B̃. The arguments below were partially
developped in [?] in the special case of iterative models, and in [?] which presents a statement
similar to Proposition 7.1 below, but only concerning the Taylor expansions of (z −Q(·))−1

at t = 0.

Let O be an open subset of IRd, X a vector normed space. Then, for m ∈ IN , we shall say
that U ∈ Cm(O, X) if U is a function from O to X which admits m continuous derivatives.
For convenience, C`(O,B1,B2) will stand for C`(O,L(B1,B2)).

Let B and B̃ be two function spaces such that B ↪→ B̃. Let m be a positive integer.

Hypothesis C(m). There exist an interval I, a family of function spaces (Bθ, θ ∈ I) and two
functions T0 : I → IR and T1 : I → R such that, for all θ ∈ I, there exists a neighbourhood
Vθ of 0 in IRd such that we have for j = 1, ...,m :

(0) [T0(θ) ∈ I ⇒ Bθ ↪→ BT0(θ)] and [T1(θ) ∈ I ⇒ Bθ ↪→ BT1(θ)]

(1) If T0(θ) ∈ I, then Q(·) ∈ C0(Vθ,Bθ,BT0(θ))

(2) If θj := T1(T0T1)j−1(θ) ∈ I, then Q(·) ∈ Cj(Vθ,Bθ,Bθj
), and each partial derivative

∂jQ
∂tp1 ···∂tpj

(t) is defined by means of the kernel

Q(p1,...,pj)(t)(x, dy) = ij

 j∏
s=1

ξps(y)

 ei〈t,ξ(y)〉Q(x, dy)

(3) Q(·) satisfies the hypothesis (K) of section 4.1 on Bθ
(4) There exists a ∈

⋂m
k=0

[
T−1

0 (T0T1)−k(I) ∩ (T1T0)−k(I)
]

such that we have B = Ba and

B̃ = B(T0T1)mT0(a).

To fix ideas, let us introduce a more restrictive but simpler hypothesis :

Hypothesis C′(m). There exist A > m and a family of function spaces (Bθ, θ ∈ [0, A]) such
that B0 = B, BA = B̃ and, for all θ, θ′ ∈ [0, A] with 0 ≤ θ < θ′ ≤ A, we have :

(a) Bθ ↪→ Bθ′,
(b) there exists a neighbourhood V = Vθ,θ′ of 0 in IRd such that, for any j ∈ {0, ...,m} with
j < θ′ − θ, we have Q ∈ Cj (V,Bθ,Bθ′),
(c) Q(·) satisfies the hypothesis (K) of section 4.1 on Bθ.

It is easy to see that Hypothesis C′(m) implies Hypothesis C(m) (by taking a = 0, T0(x) = x+ε
and T1(x) = x+1+ε for some well chosen ε > 0). Actually Hypothesis C′(m) will be satisfied
in all our examples, but Hypothesis C(m) is more general and, despite its apparent complexity,
might be more natural to establish than hypothesis C′(m) (see the end of section 7.3).
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Let us come back to hypothesis C(m). The condition on a in (4) means that a, T0a, T1T0a,
T0T1T0a,...,(T0T1)mT0(a) belong to I, and from (0), it follows that the corresponding family
of Bθ’s is increasing with respect to the continuous embedding. In particular, θ := T0(a) and
θm := T1(T0T1)m−1(θ) are in I, therefore we have Q(·) ∈ Cm (Vθ,Bθ,Bθm) by (2). It then fol-
lows that Q(·) ∈ Cm

(
Vθ,B, B̃

)
. In practice, we may have Q(·) ∈ Cm

(
Vθ,B,BTm

1 (a)

)
, but the

introduction of T0 will enable us to get (z−Q(·))−1 ∈ Cm
(
O,B, B̃

)
for some neighbourhood

O of t = 0 and for suitable z ∈ C.

Notation. Recall that we set Dκ = {z ∈ C : |z| ≥ κ, |z − 1| ≥ (1− κ)/2} for any κ ∈ (0, 1).
Under Hypothesis C(m), we have (K) on B, so from Theorem (K-L) of Section 4.1, if t belongs
to some neighbourhood Ua of 0 in IRd and if z ∈ Dκa for some κa ∈ (0, 1), then (z−Q(t))−1 is
a bounded operator on B, and we shall set Rz(t) = (z−Q(t))−1. It is worth noticing that we
also have Rz(t) ∈ L(B, B̃) for all t ∈ Ua and z ∈ Dκa . In the case d ≥ 2, for t = (t1, . . . , td),

R
(`)
z (t) will stand for any partial derivative of the form

∂`Rz
∂ti1 · · · ∂ti`

(t).

Proposition 7.1. Under Hypothesis C(m), there exist a neighbourhood O ⊂Ua of 0 in IRd

and κ ∈ (κa, 1) such that Rz(·) ∈ Cm(O,B, B̃) for all z ∈ Dκ, and

sup{‖R(`)
z (t)‖B,B̃, z ∈ Dκ, t ∈ O } < +∞, ` = 0, . . . ,m.

The proof of Proposition 7.1 is presented in Appendix A. It is based on general and elementary
derivation arguments. Anyway, Proposition 7.1 is valid for any family {Q(t), t ∈ O} of
operators satisfying the five conditions in C(m), except the particular form of the derivatives
in (2). Actually this special form will not be used in the proof of Proposition 7.1, but of
course, it will occur in the effective verification of Hypothesis C(m) in our examples.

Remarks.
(a) For the sake of simplicity, in our examples, we shall verify C(m) in the case d = 1, and
we shall simply denote by Q(k) the k-th derivative of Q(·) occuring in C(m), which is defined
for k = 0, . . . ,m by the kernel

Qk(t)(x, dy) = ikξ(y)keitξ(y)Q(x, dy) (t ∈ IR, x ∈ E).

(b) We know that C(m) yields Q(·) ∈ Cm
(
Vθ,B, B̃

)
, thus ∂mQ

∂tm
k

(0) ∈ L(B, B̃) ( k = 1, . . . , d).

From 1E ∈ B and π ∈ B̃′ (by (K1) on B, B̃) and from (2), it follows that π(∂
mQ
∂tm

k
(0)1E) =

im π(Qξmk ) = im π(ξmk ) is defined. So, in substance, Hypothesis C(m) implies π(|ξ|m2 ) < +∞
(this is actually true if m is even). However, in our examples, we shall need some slightly
more restrictive moment conditions to be able to prove C(m).

(c) According to the proof of proposition 7.1, we do not need (1), (2) and (3) of Hypothesis
C(m) to be true for any θ but only for θ = a, T0a, T1T0a, T0T1T0a, . . . , (T0T1)mT0(a), hence
only for a finite number of θ. This remark will be of no relevance for checking C(m), but it
will be important to define the set O and the real number κ in the proof of Proposition 7.1.

7.2. Regularity of the eigen-elements of Q(·). Suppose that Hypothesis C(m) holds
for some m ∈ IN∗, and as above let us use the notation of Theorem (K-L) of Section 4.1
for Q(t) acting on B : if t ∈ Ua, λ(t) is the dominating eigenvalue of Q(t), Π(t) is the
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associated rank-one eigenprojection, and we define in L(B) : N(t) = Q(t)− λ(t)Π(t). Since
Π(t)Q(t) = Q(t)Π(t) = λ(t)Π(t), we have N(t)n = Q(t)n − λ(t)nΠ(t) for all n ≥ 1. It follows
from Theorem (K-L) that Q(t)n = λ(t)nΠ(t) +N(t)n, with ‖N(t)n‖B ≤ Cκna .

The opertors Q(t), Rz(t), Π(t) and N(t)n are viewed as elements of L(B) when we appeal to
the spectral theory, and as elements of L(B, B̃) for stating our results of derivation.

Corollary 7.2.Under Hypothesis C(m), there exists a neighbourhood V of 0 in IRd such that :

(i) Π(·) ∈ Cm(V,B, B̃);

(ii) for all n ≥ 1, Nn(·) := N(·)n ∈ Cm(V,B, B̃), and

∃C > 0, ∀n ≥ 1, ∀` = 0, . . . ,m : sup
t∈V

‖N (`)
n (t)‖B, ˜B ≤ Cκn;

(iii) λ(·) ∈ Cm(V,C).

Proof of Corollary 7.2. Let t ∈ O, with O introduced in Proposition 7.1.
(i) As in the standard perturbation theory, the eigenprojection Π(t) is defined in [?] by

Π(t) =
1

2iπ

∫
Γ1

Rz(t) dz,

where this line integral is considered on the oriented circle Γ1 centered at z = 1, with radius
(1− κ)/2 (thus Γ1 ⊂ Dκ). Then, by Proposition 7.1, Π(·) ∈ Cm(O,Ba, B̃).
(ii) In the same way, one can write

N(t)n =
1

2iπ

∫
Γ0

znRz(t) dz,

where Γ0 is here the oriented circle, centered at z = 0, with radius κ (thus Γ0 ⊂ Dκ).
By Proposition 7.1, we have Nn(·) ∈ Cm(O,B, B̃) with N

(`)
n (t) = 1

2iπ

∫
Γ0
znR

(`)
z (t) dz for

` = 1, . . . ,m. Hence the stated inequalities.
(iii) Since limt→ 0 π(Π(t)1E) = π(Π1E) = 1 (see Th. (K-L)), there exists a neighbourhood V
of 0 contained in O such that π(Π(t)1) 6= 0 for any t ∈ V. From Q(t) = λ(t)Π(t) +N(t), it
follows that

λ(t) =
π(Q(t)1E −N(t)1E)

π(Π(t)1E)
.

Besides, from the remark following the statement of C(m), we have Q(·) ∈ Cm(V,B, B̃) (with
possibly V reduced). Now, since 1E ∈ B and N(·), Π(·) are in Cm(V,B, B̃), the functions
Q(·)1E , N(·)1E , Π(·)1E are in Cm(V, B̃). Finally we have π ∈ B̃′ (by (K1) on B̃). This gives
(iii). 2

7.3. Hypothesis C(m) for the uniformly ergodic chains. Let us suppose that (Xn)n≥0

is uniformly ergodic. Let m ∈ IN∗, and let us investigate Hypothesis C(m) by using a family
{Bθ = ILθ(π), r ≤ θ ≤ s} for some suitable 1 < r < s.

Proposition 7.3. If π(|ξ|α2 ) < +∞ with α > m, then C(m) holds with B = ILs(π) and
B̃ = Lr(π) for any s > α

α−m and 1 < r < αs
α+ms .

We give the proof for d = 1. The extension to d ≥ 2 is obvious by the use of partial derivatives.

Proof. Let us notice that the condition on s implies that αs
α+ms > 1, so one may choose r as

stated, and we have r < s. Let ε > 0 be such that r = αs
α+ms+ε(m+1)s . Let us prove C(m) with

22



Bθ = ILθ(π), I = [r; s], a = s, and finally T0(θ) = αθ
α+εθ and T1(θ) = αθ

α+θ . Since T0T1 = T1T0,
one gets T0

kT1
j(θ) = αθ

α+(j+εk)θ , in particular (T0T1)mT0(s) = r, so the space B̃ introduced in

C(m) is B̃ = Lr(π). Since T0(θ) < θ and T1(θ) < θ, we have (0), and Proposition 4.5 gives (1)
of C(m). To prove (2), let j ∈ {1, . . . ,m}, and let θ ∈ I such that θj := T1(T0T1)j−1(θ) ∈ I.
We have θj < T j1 (θ), thus ILT

j
1 (θ)(π) ↪→ ILθj (π), so the regularity property in (2) follows from

the following Lemma where Qk(t) stands for the kernel defined in remark (a) of Section 7.1.

Lemma 7.4. Let 1 ≤ j ≤ m. Then Q(·) ∈ Cj
(
IR, ILθ(π), ILT

j
1 (θ)(π)

)
with Q(k) = Qk

(k = 0, . . . , j).

Proof. We denote ‖ · ‖p for ‖ · ‖ILp(π), and ‖ · ‖p,q for ‖ · ‖ILp(π),ILq(π). Let us first show that

Qk(·) ∈ C0
(
IR,Bθ,BT1

j(θ)

)
for any k = 0, . . . , j. The case k = 0 follows from Proposition 4.5.

For 1 ≤ k ≤ j, we have for t0, h ∈ IR and f ∈ ILθ,

‖Qk(t0 + h)f −Qk(t0)f‖T1
j(θ) = ‖Qk(t0 + h)f −Qk(t0)f‖ αθ

α+jθ

≤ 2
∥∥∥ξk min{1, |hξ|}f

∥∥∥
αθ

α+jθ

≤ 2
∥∥∥ξk min{1, |hξ|}

∥∥∥
α
j

‖f‖θ

with
∥∥∥ξk min{1, |hξ|}

∥∥∥
α
j

→ 0 when h→ 0 by Lebesgue’s theorem. Now let us prove Q′
k = Qk+1

in L
(
Bθ,BT1

j(θ)

)
for k = 0, . . . , j − 1. Using |eia − 1 − ia| ≤ 2|a|min{1, |a|}, one gets for

t0, h ∈ IR and f ∈ Bθ :

‖Qk(t0 + h)f −Qk(t0)f − hQk+1(t0)f‖ αθ
α+jθ

≤
∥∥∥Q(|ξ|k(eihξ − 1− ihξ)f |

∥∥∥
αθ

α+jθ

≤ 2|h|
∥∥∥|ξ|(k+1) min{1, |h| |ξ|}|f |

∥∥∥
αθ

α+jθ

,

and the previous computations yield ‖Qk(t0 + h)−Qk(t0)− hQk+1(t0)‖θ,T1
j(θ) = o(|h|). 2

We know that Q satisfies (K) on Lp(π) for every p ∈]1;+∞[ (Prop. 4.1). Hence we have (3)
of C(m), and (4) is obvious from the definition of T0, T1 and r. 2

For this example, one can also use proposition 4.5 and lemma 7.4 to prove that Hypothesis
C′(m) is satisfied by taking A > m such that r = αs

α+As and by setting Bθ := L
αs

α+θs (π).

8. A one-dimensional first-order Edgeworth expansion. In this section we assume
that d = 1 (i.e. ξ is a real-valued mesurable function on E).
Let us recall that, when (Xn)n is Harris recurrent, the regenerative method provides Edge-
worth expansions under some “block” moment conditions [?] [?]. Here we do not assume
Harris recurrence. We present an alternative statement. To that effect, we shall appeal to
Hypothesis C(3) of section 7.1 which ensures (Corollary 7.2) that the dominating eigenvalue
λ(t) of Q(t) is three times continuously differentiable : then one shall be able to repeat the
arguments of the i.i.d. first-order Edgeworth expansion of [?] (Th. 1 p. 506). By assuming
C(m) for any fixed m ≥ 3 and writting out the i.i.d. arguments of [?] (Th. 2 p. 508), the
present method may also be employed to prove higher-order Edgeworth expansions.
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We denote by η the density function of N (0.1) and by N its distribution function. The next
theorem extends the first-order Edgeworth expansion of the i.i.d. case, with an additional
asymptotic bias, namely bµ = limn IEµ[Sn] which depends on the initial distribution µ. As
for i.i.d.r.v., this bias is zero in the stationary case (i.e. bπ = 0).

Theorem 8.1. Suppose that Hypothesis C(3) of section 7.1 holds with some function spaces
B, B̃, that the non-arithmeticity condition (S) of Section 5.1 holds on B, and finally that the
initial distribution µ is in B̃′. Then the real numbers

σ2 = lim
n

1
n
IEµ[S2

n] = lim
n

1
n
IEπ[S2

n], m3 = lim
n

1
n
IEπ[S3

n], bµ = lim
n
IEµ[Sn],

are well-defined, and if σ > 0, the following expansion holds uniformly in u ∈ IR

(E) IPµ

(
Sn
σ
√
n
≤ u

)
= N (u) +

m3

6σ3
√
n

(1− u2) η(u)− bµ
σ
√
n
η(u) + o(

1√
n

).

It will be seen in the proof of Lemmas 8.3-4 below that∣∣∣∣σ2 − 1
n
IEµ[S2

n]
∣∣∣∣ = O(

1
n

) and |m3 − 1
n IEπ[S

3
n] | = O( 1

n).

Case of uniformly ergodic Markov chains.
In this special case, the expansion (E) was established in [?] for any initial distribution,
under some hypothesis on the absolute continuous component of Q(x, dy) w.r.t. π and under
the following restrictive operator-moment condition : there exists g : IR→ IR such that
g(u)→+∞ when |u|→+∞ and supx∈E

∫
E |ξ(y)|3 g(|ξ(y)|)Q(x, dy) < +∞. In [?], this result

is slightly improved, more precisely (E) is established under the weaker (but still restrictive)
moment condition supx∈E

∫
E |ξ(y)|3Q(x, dy) < +∞ and under some refinements of the non-

lattice condition given in [?].
In the stationary case (i.e. under IP π), the general asymptotic expansions established in [?]
apply to this example. They yield (E) when π(|ξ|4) < +∞ and the r.v. ξ(X0) satisfies the
so-called Cramér’s condition. With the help of Theorem 8.1, one obtains here the following
improvement.

Corollary 8.2. Let us suppose that (Xn)n≥0 is uniformly ergodic. If π(|ξ|α) < +∞ with
some α > 3 and if ξ satisfies the nonlattice condition of Proposition 5.4, then we have (E)
for any initial distribution of the form dµ = φdπ, where φ ∈ ILr′(π) for some r′ > α

α−3 .

Proof. Let r′ be fixed as above and let r be such that 1
r + 1

r′ = 1. Then 1 < r < α
3 , and

since αs
α+3s ↗

α
3 when s→+∞, on can choose s such that s > α

α−3 and αs
α+3s > r. By

Proposition 7.3, we have C(3) with B = ILs(π) and B̃ = ILr(π). Finally we have (S) on ILs(π)
by Proposition 5.4. 2

Proof of Theorem 8.1. We shall appeal repeatedly to the notations and the conclusions of
Theorem (K-L) (cf. § 4.1) and of corollary 7.2 (case m = 3). The existence of σ2, m3 and bµ
follows from the two next lemmas.

Lemma 8.3. We have λ′(0) = 0 and µ(Π′(0)1E) = i
∑
k≥1 µ(Qkξ) = i limn IEµ[Sn].

Proof. By deriving the equality Q(·)Π(·)1E = λ(·) Π(·)1E , one gets

Q′(0)1E +QΠ′(0)1E = λ′(0) 1E + Π′(0)1E in B̃.
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Thus π(Q′(0)1E) + π(Π′(0)1E) = λ′(0) + π(Π′(0)1E). This gives λ′(0) = i π(Qξ) = i π(ξ) =
0, and iQ(ξ) + QΠ′(0)1E = Π′(0)1E in B̃. Therefore we have Π′(0)1E − π(Π′(0)1E) =
i
∑
k≥1Q

kξ. This serie is absolutely convergent in B̃ since π(Qξ) = 0, Qξ = −iQ′(0)1E ∈ B̃
and Q is strongly ergodic on B̃. Moreover, we have π(Π′(0)1E) = 0. Indeed, by deriving
Π(t)2 = Π(t), we get 2π(Π′(0)1E) = π(Π(0)Π′(0)1E + Π′(0)Π(0)1E) = π(Π′(0)1E). Since
µ ∈ B̃′, this yields the first equality of the second assertion. The second one is obvious. 2

Lemma 8.4. We have limn
1
n IEµ[S

2
n] = −λ′′(0) and limn

1
nIEπ[S

3
n] = iλ(3)(0).

Proof of Lemma 8.4. For convenience, let us assume that µ = π and prove the two equalities
of Lemma 8.4 at once (see Rk. below). Since IEπ[ |ξ(Xk)|3 ] = π(|ξ|3) < +∞, we have
IEπ[ |S3

n| ] < +∞, so

IEπ[eitSn ] = 1− IEπ[S2
n]
t2

2
− i IEπ[S3

n]
t3

6
+ on(t3).

Besides, Formula (CF) (cf. § 3) and the equality Q(t)n = λ(t)nΠ(t) +N(t)n (see § 7.2) give

IEπ[eitSn ] = λ(t)n π(Π(t)1E) + π(N(t)n1E),

and, since λ′(0) = 0 and π(Π′(0)1E) = 0 (Lemma 8.3), it follows from Hypothesis C(3) and
Corollary 7.2 that

λ(t)n = 1 + n
λ′′(0)

2
t2 + n

λ(3)(0)
6

t3 + on(t3), π(Π(t)1E) = 1 + ct2 + dt3 + o(t3),

with some c, d ∈ C, and since N(0)1E = 0, we have π(N(t)n1E) = ent+fnt2+gnt3+on(t3) for
all n ≥ 1, with some en, fn, gn ∈ C. Moreover, from Assertion (ii) in Corollary 7.2, it follows
that the sequences (en)n, (fn)n and (gn)n are bounded. From the previous expansions, one
can write another third order Taylor expansion for IEπ[eitSn ], from which we easily deduce
the following equalities (and so Lemma 8.4) :

nλ′′(0) + 2c+ 2fn = −IEπ[S2
n] and nλ(3)(0) + 6d+ 6gn = −i IEπ[S3

n]. 2

Remark. By using the above arguments with second-order Taylor expansions, it can be easily
proved that the first equality of Lemma 8.4 is valid under Hypothesis C(2) for any µ ∈ B̃′. To
prove IEµ[S2

n] < +∞ under Hypothesis C(2) and for µ ∈ B̃′, notice that Q′′(0)1E = −Q(ξ2) ∈
B̃, so Qk(ξ2) ∈ B̃ for k ≥ 1, and IEµ[ξ(Xk)2] = µ(Qkξ2) < +∞.

The proof of the Edgeworth expansion (E) is close to that of the i.i.d. case [?] (XVI.4).
For convenience, one may assume, without any loss of generality, that σ = 1 (of course this
reduction also leads to alter the constants m3 and bµ). Set

Gn(u) = N (u) +
m3

6
√
n

(1− u2) η(u)− bµ√
n
η(u) (u ∈ IR).

Then Gn has a bounded derivative gn on IR whose Fourier transform γn is given by

γn(t) = γ0,n(t)+γµ,n(t), where γ0,n(t) = e−
1
2
t2
(

1+
m3

6
√
n

(it)3
)

and γµ,n(t) = e−
1
2
t2
(
i
bµ√
n
t

)
.

Let us notice that the part γ0,n(t) has the same form as in the i.i.d. context.
Let φn(t) = IEµ[eitSn ]. The first question is to prove the so-called Berry-Esseen inequality

sup
u∈IR

∣∣∣∣ IPµ( Sn√n ≤ u)−Gn(u)
∣∣∣∣ ≤ 1

π

∫ T

−T

∣∣∣∣ φn( t√
n
)− γn(t)

t

∣∣∣∣ dt +
24m
πT

,
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where m = sup{|G′
n(u)|, n ≥ 1, u ∈ IR}. To do this, let us observe that all the hypotheses of

Lemma 2 in Section XVI.3 of [?], which provides this inequality, are satisfied, except γ′n(0) = 0
because of the additional term γµ,n(t) in γn(t). However it can be easily seen that the above
cited lemma of [?] still holds under the condition that γn(t)−1

t is continuous at the origin.
Indeed the argument in [?] (p. 511) deriving from the Riemann-Lebesque theorem then
remains valid. Obviously the previous condition on γn is fulfilled since γµ,n(t)

t = i
bµ√
n
e−

1
2
t2 .

Thus we have the desired Berry-Esseen inequality and we can now proceed as in [?] : let
ε > 0, let T = a

√
n with a such that 24m

πa < ε. So 24m
πT ≤ ε√

n
.

Let 0 < δ < a such that [−δ, δ] is contained in the interval O of Theorem (K-L) applied on
B, and write

∫ a
√
n

−a
√
n

∣∣∣∣ φn( t√
n
)− γn(t)

t

∣∣∣∣ dt =
∫
δ
√
n≤|t|≤a

√
n

+
∫
|t|≤δ

√
n

:= An +Bn.

The property (E) then follows from the two next lemmas. 2

Lemma 8.5. There exists N0 ∈ IN∗ such that An ≤ ε√
n

for all n ≥ N0.

Proof. From Formula (CF) (cf. § 3), Condition (S) (cf § 5.1) on B applied with K0 =
[−a,−δ] ∪ [δ, a], and from µ ∈ B̃′ ⊂ B′, there exist ρ < 1 and c′ ≥ 0 such that we have, for
n ≥ 1 and u ∈ K : |φn(u)| = |µ(Q(u)n1E)| ≤ c′ ρn. So

∫
δ
√
n≤|t|≤a

√
n

|φn( t√
n
)|

|t|
dt =

∫
δ≤|u|≤a

|φn(u)|
|u|

du ≤ 2a
δ
c′ ρn.

Moreover, for n sufficiently large, we have
∫
δ
√
n≤|t|≤a

√
n
|γn(t)|
|t| dt ≤

∫
|t|≥δ

√
n |γn(t)|dt. We easily

deduce Lemma 8.5 from the two last estimates. 2

Lemma 8.6. There exists N ′
0 ∈ IN∗ such that Bn ≤ ε√

n
for all n ≥ N ′

0.

Proof. Using γn(t) = γ0,n(t)+γµ,n(t) and the equality φn(t) = λ(t)n µ(Π(t)1E)+µ(N(t)n1E)
which follows from (CF) and from Theorem (K-L), one can write for any t such that |t| ≤ δ

√
n

φn(
t√
n

)− γn(t) =
(
λ(

t√
n

)n − γ0,n(t)
)

+ λ(
t√
n

)n
(
µ(Π(

t√
n

)1E)− 1− i bµ
t√
n

)
+ i bµ

t√
n

(
λ(

t√
n

)n − e−
1
2
t2
)

+ µ(N(
t√
n

)n1E)

:= in(t) + jn(t) + kn(t) + `n(t).

Therefore : Bn ≤
∫
|t|≤δ

√
n

(
|in(t)|+ |jn(t)|+ |kn(t)|+ |`n(t)|

)
dt

|t|
:= In + Jn +Kn + Ln.

Then Lemma 8.6 follows from the assertions (i)-(l) below for which, as in the i.i.d. case,
we shall repeatedly appeal to the following remark : using the Taylor expansion λ(t) =
1− t2

2 + o(t2) near 0 (use Lemma 8.3-4 and σ2 = 1), one can choose the real number δ such

that |λ(u)| ≤ 1− u2

4 ≤ e−
u2

4 when |u| ≤ δ, hence we have |λ(
t√
n

)|n ≤ e−
t2

4 for any |t| ≤ δ
√
n.

(i) ∃N1 ∈ IN∗,∀n ≥ N1, In ≤ ε√
n
. This can be proved exactely as in the i.i.d. case [?] since
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we have λ(t) = 1− t2

2 − i m3
6 t

3 + o(t3) (Lemmas 8.3-4).

(j) ∃N2 ∈ IN∗,∀n ≥ N2, Jn ≤ ε√
n
. Indeed, since u 7→ µ(Π(u)1E) has two continuous deriva-

tives on [−δ, δ] (Coro. 7.2) and µ(Π′(0)1E) = ibµ (Lemma 8.3), there exists C > 0 such that :

Jn ≤
∫
|t|≤δ

√
n
e−

t2

4
Ct2

n

dt

|t|
≤ C

n

∫ +∞

−∞
e−

t2

4 |t| dt.

(k) ∃N3 ∈ IN∗,∀n ≥ N3, Kn ≤ ε√
n
. Indeed we have Kn ≤

|bµ|√
n

∫
|t|≤δ

√
n

∣∣∣∣λ(
t√
n

)n − e−
1
2
t2
∣∣∣∣ dt,

and from the already mentioned second order Taylor expansion of λ(t) and Lebesgue’s theo-
rem, it follows that this last integral converges to 0 when n→+∞.

(l) ∃N4 ∈ IN∗,∀n ≥ N4, Ln ≤ ε√
n
. Indeed, the function χn : u 7→ µ(N(u)n1E) is con-

tinuously derivable on [−δ, δ] and there exists C ′ > 0 such that we have for all n ≥ 1
and u ∈ [−δ, δ] : |χ′n(u)| ≤ C ′κn (Corollary 7.2(ii)). Since N(0)1E = 0, one then obtains
|µ(N(u)n1E)| ≤ C ′ κn |u| for |u| ≤ δ, so Ln ≤ C′√

n
κn 2δ

√
n = 2C ′δ κn = o( 1√

n
). 2

9. A multi-dimensional Berry-Esseen theorem. We want to estimate the rate of
convergence in the central limit theorem for a IRd-valued function ξ = (ξ1, . . . , ξd). A natural
way to do this is in the sense of the Prohorov metric. Let us recall the definition of this
metric and some well-known facts about it. We denote by B(IRd) the Borel σ-algebra of IRd

and by M1(IRd) the set of probability measures on (IRd,B(IRd)).

The Prohorov metric [?, ?]. For all P,Q in M1(IRd), we define :

P(P,Q) := inf
{
ε > 0 : ∀B ∈ B(IRd), (P (B)−Q(Bε)) ≤ ε

}
,

where Bε is the open ε-neighbourhood of B.

The Ky Fan metric for random variables. If X and Y are two IRd-valued random
variables defined on the same probability space (E0, T0, P0), we define :

K(X,Y ) := inf {ε > 0 : P0 (|X − Y |2 > ε) < ε} .

Let us recall that limn→+∞K(Xn, Y ) = 0 means that (Xn)n converges in probability to Y .

Proposition ([?] Corollary 11.6.4). For all P,Q in M1(IRd), the quantity P(P,Q) is the
infimum of K(X,Y ) over the couples (X,Y ) of IRd-valued random variables defined on the
same probability space, whose distributions are respectively P and Q.

For any n ≥ 1, µ∗
(
Sn√
n

)
stands for the law of Sn√

n
under IPµ, and we denote by S⊗2

n the
random variable with values in the set of matrices of order d given by :(

Sn
⊗2
)
i,j

=
n∑

k,`=1

ξi(Xk)ξj(X`).

Theorem 9.1. Let us fix m := max (3, bd/2c+ 1). Suppose that Hypothesis C(m) (of section
7.1) holds on some function spaces B, B̃ and that µ is in B̃′. Then the following limits exist
and are equal :

Γ := lim
n→+∞

1
n
IEπ[Sn⊗2] = lim

n→+∞

1
n
IEµ[Sn⊗2].
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If Γ is invertible, then
(
Sn√
n

)
n

converges in distribution under IPµ to the gaussian distribution
N (0,Γ), and we have

P
(
µ∗

(
Sn√
n

)
,N (0,Γ)

)
= O(n−1/2).

In the i.i.d. case, the conclusion of Theorem 9.1 holds if the random variables admit a moment
of order m. For the uniformly ergodic Markov chains, one gets the following close statement
which is a consequence of theorem 9.1 and of proposition 7.3 (proceed as for Corollary 8.2).

Corollary 9.2. Let us suppose that (Xn)n≥0 is uniformly ergodic, that π(|ξ|α2 ) < +∞ for
some α > m := max(3, bd/2c + 1), and that the initial distribution satisfies dµ = φdπ with
φ ∈ ILr′(π) for some r′ > α

α−m . Then the conclusion of theorem 9.1 is true.

Concerning still the special case of uniform ergodicity, notice that [?] provides a multidimen-
sional uniform Berry-Esseen type estimate when π(|ξ|42) < +∞. However, the hypothesis
µ = π (i.e. (Xn)n is stationary) and Cramér’s condition for ξ(X0) are required in [?], while
the (Prohorov) estimate in Corollary 9.2, and more generally in Theorem 9.1, is valid in the
non-stationary case and without any lattice-type condition.

Let us mention that Theorem 9.1 remains true when Γ is non invertible if, for every β ∈ IRd
such that 〈β,Γβ〉 = 0, we are able to prove that supn ‖〈β, Sn〉‖∞ < +∞. In this case, up to
a linear change of coordinates and to a possible change of d, we are led to the invertible case
(see section 2.4.2 of [?]). This remark applies to the Knudsen gas model (see § 2.3).

When d = 1, Theorem 9.1 gives the uniform Berry-Esseen result under Condition C(3) if the
asymptotic variance σ2 is nonzero. This is an easy consequence of the definition of P by
taking B = (−∞, x] and B = (x,+∞). However, as already mentioned, C(3) is in practice a
little more restrictive than the conditions of Section 6 ; for instance, compare the expected
condition π(|ξ|3) < +∞ of Corollary 6.3 with that of Corollary 9.2 (case d = 1).

The proof of theorem 9.1 is based on corollary 7.2, on lemmas 8.3 and 8.4 and on the
following result due to Yurinskii [?] :

Proposition 9.3. Let Q be some non degenerate d-dimensional normal distribution. There
exists a real number c0 > 0 such that, for any real number T > 0 and for any Borel probability
measure P admiting moments of order bd2c+ 1, we have :

P (P,Q) ≤ c0

 1
T

+

∫
|t|2<T

b d
2
c+1∑
k=0

∑
{i1,...,ik}∈{1,...,d}k

∣∣∣∣∣ ∂k

∂ti1 ...∂tik

(
P (ei〈t,·〉)−Q(ei〈t,·〉)

)∣∣∣∣∣
2

dt


1
2

 .
Proof of theorem 9.1. The proof uses corollary 7.2 which is applied here under Hypothesis
C(m) with m defined in Theorem 9.1. In particular we have m ≥ 3, and we shall use
repeatedly the fact that 1E ∈ B and π, µ ∈ B̃′ (the fact that π ∈ B̃′ follows from Condition
(K1) on B̃). Since the proof has common points with the proof given in section 2.4.1 of [?],
we do not give all the details. We shall refer to [?] for some technical points.
The existence of the asymptotic covariance matrix Γ as defined in Theorem 9.1 follows from
the next lemma in which ∇ and Hess denote the gradient and the Hessian matrix.
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Lemma 9.4. We have ∇λ(0) = 0 and limn
1
n IEµ[S

⊗2
n ] = −Hessλ(0).

Proof. These properties have been proved in the case d = 1 (Lemmas 8.3-4). We deduce from
them the multidimensional version by considering, for any α ∈ IRd, the function t 7→ Q(tα)
defined on IR. 2

Without any loss of generality, up to a linear change of variables, we may suppose that the
covariance matrix Γ is the identity matrix.

Let β > 0 be such that the closed ball {u ∈ IRd : |u|2 ≤ β} is contained in the set O of
Corollary 7.2. In the following, the couple (t, n) (t ∈ IRd, n ≥ 2) will always satisfy the
condition |t|2 < β

√
n. For such a couple, we have : t√

n
∈ O. As already stated by convention

in Section 7, for any function F defined on an open set of IRd, F (k) will merely denote any
partial derivative of order k of F (·).

Set Ξn(t) := IEµ[e
i〈t, Sn√

n
〉] − e−

|t|22
2 . According to Proposition 9.3, it is enough to prove that

we have for k = 0, . . . , [d2 ] + 1

(I)

(∫
|t|2≤β

√
n
|Ξ(k)
n (t)|2 dt

) 1
2

= O

(
1√
n

)
.

From the decomposition IEµ[ei〈u,Sn〉] = λ(u)n µ(Π(u)1E) + µ(N(u)n1E) which is valid for
u ∈ O, it follows that

Ξ(k)
n =

(
λ(

·√
n

)n − e−
|·|22
2

)(k)

+
{
λ(

·√
n

)n
(
µ(Π(

·√
n

)1E)− 1
)}(k)

+
(
µ(N(

·√
n

)n1E)
)(k)

:= A(k)
n +B(k)

n + C(k)
n

where the functions An, Bn and Cn, defined on the set {t : |t|2 < β
√
n}, are implicitely given

by the above equality. In the sequel, we merely use the notation Fn(t) = O(Gn(t)) to express
that |Fn(t)| ≤ C |Gn(t)| for some C ∈ IR+ independent of (t, n) such that |t|2 ≤ β

√
n.

Setting Nn(·) = N(·)n, Proposition 7.2(ii) yields

|C(k)
n (t)| = n−

k
2 |µ(N (k)

n (
t√
n

)1E)| = O(n−
k
2 κn) with some κ < 1.

So
∫
|t|2≤β

√
n
|C(k)
n (t)|2 dt = O(n

d
2
−k κ2n) = O(

1√
n

). Now (I) will be clearly valid provided

that we have, for some square Lebesgue-integrable function χ(·) on IRd :

(II) |A(k)
n (t)|+ |B(k)

n (t)| = O

(
1√
n
χ(t)

)
.

To prove this estimate for the term A
(k)
n , one can proceed as in the i.i.d. case. Indeed,

according to the previous lemma, the function λ(·) then satisfies the same properties and
plays exactly the same role, as the common characteristic function of the i.i.d. case (see
section 3 of [?] and lemma 8 of [?]).

To study B(k)
n (t), set λn(t) = λ( t√

n
)n for any (t, n) such that |t|2 ≤ β

√
n and, for |u|2 ≤ β,

set α(u) = µ(Π(u)1E) − 1. With these notations, we have Bn(t) = λn(t)α( t√
n
), and any

partial derivative B(k)
n (t) is a finite sum of terms of the form

29



B(k)
n,p,q(t) := λ(p)

n (t)n−
q
2 α(q)(

t√
n

) with p+ q = k.

Lemma 9.5. For p = 0, . . . ,m, we have |λ(p)
n (t)| = O

(
(1 + |t|p2) e−

|t|22
4

)
.

Assume this lemma for the moment. Since we have, by Proposition 7.2(i), α( t√
n
) = O( |t|2√

n
)

and α(q)( t√
n
) = O(1) for 1 ≤ q ≤ m, this lemma gives for q = 0

B
(k)
n,k,0(t) = O

(
(1 + |t|k2) e−

|t|22
4

)
O(
|t|2√
n

) = O

(
1√
n

(1 + |t|k+1
2 ) e−

|t|22
4

)
,

and for q ≥ 1 : B(k)
n,p,q(t) = O

(
(1 + |t|p2) e

−
|t|22
4

)
O(n−

q
2 ) = O

(
1√
n

(1 + |t|k+1
2 ) e−

|t|22
4

)
.

So all the B(k)
n,p,q(t)’s are O( 1√

n
χ(t)) with χ(t) = (1+ |t|k+1

2 ) e−
|t|22
4 , and this gives the estimate

(II) for B(k)
n (t), and finally the proof of (I) is complete.

Proof of Lemma 9.5. Recall Γ is by hypothesis the identity matrix, so λ(u) = 1− |u|22
2 +o(|u|22)

as u goes to 0 (use Lemma 9.4). Hence, for |u|2 ≤ β with β possibly reduced,

|λ(u)| ≤
∣∣∣∣∣λ(u)− 1 +

|u|22
2

∣∣∣∣∣+
∣∣∣∣∣1− |u|22

2

∣∣∣∣∣ ≤ |u|22
4

+ (1− |u|22
2

) ≤ 1− |u|22
4

≤ e−
|u|22
4 ,

so |λ( t√
n
)| ≤ e−

|t|22
4n and |λ( t√

n
)n| ≤ (e−

|t|22
4n )n = e−

|t|22
4 . This gives the estimate of the lemma

for p = 0. Now, in the case p ≥ 1, one can prove by a straightforward induction that λ(p)
n (t)

is a finite sum of terms of the form

γ(t, n) := n(n− 1) · · · (n− j + 1)n−
p
2 λ(s1)(

t√
n

) · · ·λ(sj)(
t√
n

)λ(
t√
n

)n−j ,

with j ∈ {1, . . . , p}, si ≥ 1, and s1 + · · · + sj = p (for convenience, j, s1, . . . , sj have been
neglected in the above notation γ(t, n)). So we must prove that, given such fixed j, s1, . . . , sj ,

we have γ(t, n) = O

(
(1 + |t|p2) e−

|t|22
4

)
. To that effect, let us observe that λ(1)( t√

n
) = O( |t|2√

n
)

since λ(1)(0) = 0, and that λ(s)( t√
n
) = O(1) for any s = 2, . . . ,m. This leads to define

a = Card{i : si = 1}. Then we have

γ(t, n) = O

(
nj−

p
2
|t|a2
n

a
2

(e−
|t|22
4n )n−j

)
= O

(
e

j
4

∣∣∣ t√
n

∣∣∣2
2nj−

p
2
−a

2 |t|a2 e−
|t|22
4

)
= O

(
n

1
2
(2j−p−a) (1 + |t|p2) e

−
|t|22
4

)
.

For the last estimate, we used the fact that
∣∣∣ t√

n

∣∣∣
2
≤ β and a ≤ p. Finally observe that we

have p = s1 + · · ·+ sj ≥ a+ 2(j − a) by definition of the number a, thus 2j − p− a ≤ 0, so
that the desired estimate on γ(t, n) follows from the previous one. 2

10. Application to geometrically ergodic Markov chains. For the moment, the ab-
stract results of the previous sections have been only applied to the simple but restrictive
example of uniformly ergodic Markov chains. This section and the next one present applica-
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tions to more general and practicable markovian models, namely the so-called geometrically
ergodic Markov chains and the random iterative models. The interest of these models for sta-
tistical applications and for stochastic algorithms are fully described in [?] [?], and of course,
the rate of convergence in the c.l.t. and the Edgeworth expansions are of great importance
in practice, see e.g [?] [?]. For these models, all the previously studied limit theorems will be
stated under general and simple moment conditons.

Throught this section, we suppose that the σ-field E is countably generated, that (Xn)n≥0 is
aperiodic and ψ-irreducible w.r.t. a certain positive σ-finite measure ψ on E.

Moreover, given an unbounded function v : E→[1,+∞[, we assume (Xn)n≥0 is v-geometrically
ergodic, that is π(v) < +∞ and there exist real numbers κ0 < 1 and C ≥ 0 such that we
have, for all n ≥ 1 and x ∈ E,

sup
{
|Qnf(x)− π(f)| , f : E→C measurable, |f | ≤ v

}
≤ C κn0 v(x).

If w is an unbounded function defined on E and taking values in [1,+∞[, we denote by
(Bw , ‖ · ‖w) the weighted supremum-normed space of measurable complex-valued functions f
on E such that

‖f‖w = sup
x∈E

|f(x)|
w(x)

< +∞.

Let us observe that µ ∈ B′
w

if µ(w) < +∞. In particular we have π ∈ B′
v

by hypothesis.
Clearly, v-geometrical ergodicity means that Q is strongly ergodic w.r.t. Bv .

For 0 < θ ≤ 1, we set B
θ

= B
vθ

and ‖ · ‖
θ

= ‖ · ‖vθ . In particular B1 = Bv and ‖ · ‖1 = ‖ · ‖v .
The next lemma will be repeatedly used in the proofs below (here ξ is only supposed to be
measurable).

Lemma 10.1. For all 0 < θ ≤ 1, Condition (K̂) of section 5.2 holds on B
θ

with the
semi-norm q(·) = π(| · |). In particular Condition (K) of Section 4.1 holds on B

θ
.

Proof. The property (K1) (cf. section 2) on B
θ

- i.e. (Xn)n≥0 is vθ-geometrically ergodic -
follows from the well-known link between geometric ergocity and the so-called drift criterion
[?]. More precisely, under the aperiodicity and ψ-irreducibility hypotheses, the w-geometric
ergodicity for some w : E→[1,+∞[ is equivalent to the following condition : there exist
r < 1, M ≥ 0 and a small set C ∈ E such that Qw0 ≤ rw0 +M1C , where w0 is a function
equivalent to w in the sense that c−1w ≤ w0 ≤ cw for some c ∈ IR∗

+. From that and since
the function t 7→ tθ is concave on IR+, v-geometric ergodicity implies, by virtue of Jensen’s
inequality, that

Q(vθ0) ≤ (rv0 +M1C)θ ≤ rθvθ0 +M θ1C ,

where v0 stands for some function equivalent to v. Thus (Xn)n≥0 is vθ-geometrically ergodic.
Besides, since π(|ei〈h, ξ〉 − 1| |f |) ≤ ‖f‖

θ
π(|ei〈h, ξ〉 − 1| vθ) for f ∈ B

θ
, Condition (K2’) (cf. §

4.1), thus (K̂2), is fulfilled by Lebesgue’s theorem. Besides we have (K̂3) by Remark (c) in
§ 4.1. The property (K̂4) w.r.t. B

θ
is a consequence of [?], see [?]. 2

If |ξ|22 ≤ C v for some C > 0, then ( Sn√
n
)n converges to a normal distribution N (0,Γ) for any

initial distribution. This is a classical result [?] which can be also deduced, in the stationary
case, from the statements of Section 2.2. Indeed, the condition |ξ|22 ≤ C v implies that the
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coordinate functions ξi of ξ belong to the space B 1
2
. Since π(v) < +∞, we have B 1

2
↪→ IL2(π),

and the previous lemma shows that Q is strongly ergodic on B 1
2
. So the desired c.l.t. follows

from Proposition 2.2 and Corollary 2.1 both applied with B = B 1
2
.

Recall that, without additional assumptions, this central limit theorem does not hold under
the weaker condition π(|ξ|22) < +∞ (see [?]). In the same way, the limit theorems below will
hold under moment conditions of the type |ξ|α2 ≤ C v with some suitable exponent α ≥ 2,
and some positive constant C. So the real number α will measure the order in these moment
conditions, and as for the uniformly ergodic Markov chains (see the summary given in § 2.3),
the values of α will be similar or very close to the optimal orders of the i.i.d. case.

The hypotheses of Assertions (a)-(d) below will imply that the above cited c.l.t. holds, and
it will be then understood that Γ is non-singular (this means σ2 > 0 in case d = 1). The
nonlattice condition below is that of Proposition 5.4. Finally we suppose that the initial
distribution µ is such that µ(v) < +∞.

Corollary 10.2.
(a) If |ξ|22 ≤ C v and ξ is nonlattice, then we have (LLT) of Theorem 5.1 with B = B 1

2
.

(b) (Case d = 1) If |ξ|3 ≤ C v, then the uniform Berry-Essen estimate holds : ∆n = O(n−
1
2 ).

(c) (Case d = 1) If |ξ|α ≤ C v with some α > 3 and ξ is nonlattice, then the first-order
Edgeworth expansion (E) of Theorem 8.1 holds.

(d) If |ξ|α2 ≤ Cv with some α > max (3, bd/2c+ 1), then the (Prohorov) Berry-Essen estimate
holds : P

(
µ∗
(
Sn√
n

)
,N (0,Γ)

)
= O(n−1/2).

Using the usual Nagaev method, (a) was established in [?] for bounded functional ξ. Assertion
(a) extends the result of [?] stated under a kernel condition on Q. From Bolthausen’s theorem
[?], the one-dimensional uniform Berry-Esseen theorem holds under IP π (stationary case) if
π(|ξ|p) < +∞ for some p > 3. Assertion (b), already presented in [?], extends this result
to the non-stationary case under an alternative third-order moment condition. Assertion (c)
was established in [?] for bounded functional ξ, and (d) is new to our knowledge.

Proof of Corollary 10.2. (a) Condition (CLT) of section 5.1 is fulfilled by hypothesis, and we
have (K) on B = B 1

2
(Lem. 10.1). Besides, since g := |ξ|2 ∈ B 1

2
, one gets for all f ∈ B 1

2

|Q(t)f −Qf | ≤ Q(|ei〈t, ξ〉 − 1| f)‖ ≤ |t|2 ‖g‖ 1
2
‖f‖ 1

2
Qv.

Since Qv
v is bounded, this proves the continuity condition of (K̃) (cf. section 4.3) with B̃ = Bv.

Finally, from Lemma 10.1, the non-arithmeticity condition (S) of section 5.1 (w.r.t. any space
B

θ
) is equivalent to the nonlattice condition of Proposition 5.4. So Theorem 5.1 applies.

(b) We have (K) (of section 4.1) w.r.t. B = B 1
3

(Lem. 10.1). Since B 1
3
⊂ IL3(π) and ξ ∈ B 1

3
,

Condition (G1) of § 6.2 is satisfied, and we have also (G2) of § 6.2 because (K1) holds on
B 2

3
↪→ IL

3
2 (π) and this space contains all the functions g2, g ∈ B 1

3
. Finally, as above, one

gets |Q(t)f −Qf | ≤ |t| ‖ξ‖ 1
3
‖f‖ 1

3
Qv

2
3 for all f ∈ B 1

3
. Since Qv

2
3

v
2
3

is bounded, the continuity

condition in Theorem 6.1 holds with B = B 1
3

and B̃ = B 2
3
. So (b) follows from Theorem 6.1.

Assertions (c) and (d) are direct consequences of Theorems 8.1 and 9.1 (respectively) and of
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the next proposition. 2

Proposition 10.3. If |ξ|α2 ≤ C v with α > m ( m ∈ IN∗), then C(m) holds with B = Bε,
B̃ = Bv, for any ε > 0 such that ε+ m+(2m+1)ε

α ≤ 1.

Proof. For convenience, let us assume that d = 1. The extension to d ≥ 2 is obvious by the
use of partial derivatives. We take I = [ε, 1] and Bθ = Bvθ , T0(θ) = θ + ε

α , T1(θ) = θ + 1+ε
α ,

a = ε. With these notations, the proof of C(m) is a direct consequence of the two following
lemmas.

Lemma 10.4. For any k = 0, . . . ,m and γ, γ′ > 0 such that γ + k
α < γ′ ≤ 1, we have

Qk ∈ C0(IR,Bγ ,Bγ′).

Proof. Let 0 < δ ≤ 1 such that γ + k+δ
α ≤ γ′. Using the inequality |eia − 1| ≤ 2|a|δ (a ∈ IR),

one gets for t, t0 ∈ IR and f ∈ Bγ :

|Qk(t)f −Qk(t0)f | ≤ Q(|ξ|k |ei(t−t0)ξ − 1| |f |) ≤ C
k+δ

α |t− t0|δ ‖f‖γQ(v
k+δ

α
+γ),

hence ‖Qk(t)f −Qk(t0)f‖γ′ ≤ C
k+δ

α |t− t0|δ ‖f‖γ ‖Q(vγ
′
)‖

γ′ . 2

Lemma 10.5. For any k = 0, . . . ,m− 1 and γ, γ′ > 0 such that γ + k+1
α < γ′ ≤ 1, we have

Qk ∈ C1(IR, γ, γ′) with Q′
k = Qk+1.

Proof. Let 0 < δ ≤ 1 such that γ+ k+1+δ
α ≤ γ′. Using |eia−1−ia| ≤ 2|a|1+δ and proceeding as

above, one gets ‖Qk(t)f −Qk(t0)f − (t− t0)Qk+1(t0)f‖γ′ ≤ C
k+1+δ

α |t− t0|1+δ‖f‖γ ‖Q(vγ
′
)‖

γ′

for t0, t ∈ IR and f ∈ Bγ . Since Qk+1 ∈ C0(IR, γ, γ′), this yields the desired statement. 2 2

Remark. The above proof of (b) shows that Assertion (b) holds also under the alternative
following hypotheses : (Xn)n≥0 is v

2
3 -geometrically ergodic, µ(v

2
3 ) < +∞, |ξ|3 ≤ C v, and

finally π(v) < +∞ in order to have B 1
3
⊂ IL3(π).

11. Applications to iterative Lipschitz models. Here (E, d) is a non-compact metric
space in which every closed ball is compact. We endow it with its Borel σ-field E .

11.1. Iterative Lipschitz models. Let (G,G) be a measurable space, let (θn)n≥1 be a
sequence of i.i.d.r.v. taking values in G. Let X0 be a E-valued r.v. independent of (θn)n,
and finally let F : E ×G→E be a measurable function. We set

Xn = F (Xn−1, θn), n ≥ 1.

For θ ∈ G, x ∈ E, we set Fθx = F (x, θ) and we suppose that Fθ : E→E is Lipschitz
continuous. Then (Xn)n≥1 is called an iterative Lipschitz model [?] [?]. It is a Markov chain
and its transition probability is :

Qf(x) = IE[ f(F (x, θ1)) ].

Let x0 be a fixed point in E. As in [?], we shall appeal to the following r.v :

C = sup
{
d(Fθ1x, Fθ1y)

d(x, y)
, x, y ∈ E, x 6= y

}
and M = 1 + C + d(F (x0, θ1), x0).

As a preliminary, let us present a sufficient condition for the existence and the unicity of an
invariant distribution. The following proposition is proved in [?] [Th. I].
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Proposition 11.1. Let α ∈ (0, 1], θ ∈ IR+. Under the moment condition IE[Mα(θ+1)] < +∞
and the mean contractivity condition IE[Cα max{C, 1}αθ] < 1, there exists a unique stationary
distribution, π, and we have π(d(·, x0)α(θ+1)) < +∞.

More precise statements can be found in the litterature (see e.g [?] [?]). However, the hy-
potheses occuring in Proposition 11.1 are convenient in our context and are similar to those
introduced later.

Finally, we shall suppose that ξ satisfies the following condition, with given S, s ≥ 0 :

(L)s ∀(x, y) ∈ E × E, |ξ(x)− ξ(y)|2 ≤ S d(x, y) [1 + d(x, x0) + d(y, x0)]s.

For convenience, Condition (L)s has been stated as a weighted-Lipschitz condition w.r.t. to
the distance d(·, ·) on E. However, by replacing d(·, ·) with the distance d(·, ·)a (0 < a ≤ 1),
Condition (L)s then coresponds to the general weighted-Hölder condition of [?].

Section 11.2 below will introduce weighted Hölder-type spaces and investigate all the hypothe-
ses of the previous sections. Using these preliminary statements, we shall see in Section 11.3
that the limit theorems of the preceding sections then apply to (ξ(Xn))n under some mean
contractivity and moment conditions. These conditions will focus on the random variables
C, M and will depend on the real number s of Condition (L)s.

To compare with the i.i.d. case, let us summarize the results obtained in Section 11.3 in the
following special setting : (Xn)n is a IRd-valued iterative Lipschitz sequence such that C < 1
a.s.. For convenience we also assume that (Xn)n is stationary, with stationary distribution
π, and we consider the random walk associated to ξ(x) = x− IEπ[X0], that is :

Sn = X1 + . . .+Xn − nIEπ[X0].
Finally suppose that IE[M2] < +∞. Then the sequence ( Sn√

n
)n converges to N (0,Γ) [?],

and we shall assume that Γ is invertible. Corollaries of § 11.3 will then provide the following
results :

(i) Local limit theorem : ξ nonlattice ⇒ (LLT) of section 5.1 with f = 1E ,

(ii) (d = 1) Uniform Berry-Essen type theorem : IE[M3] < +∞ ⇒ ∆n = O(n−
1
2 ),

(iii) (d = 1) First-order Edgeworth expansion : IE[M6+ε0 ] < +∞, ξ nonlattice ⇒ (E) of
section 8,

(iv) Multi-dimensional Berry-Esseen theorem (with Prohorov metric) : IE[M2m+ε0 ] < +∞
with m = max (3, bd/2c+ 1) ⇒ the conclusion of theorem 9.1 holds.

More generally, the previous assertions will apply to (ξ(Xn))n whenever ξ is a Lipshitz con-
tinuous function on E (i.e. s = 0 in (L)s).

Example. The autoregressive models.
A simple and typical example is the autoregressive chain defined in IRd by

Xn = AnXn−1 + θn (n ∈ IN∗),
where (An, θn)n≥1 is a i.i.d. sequence of r.v. taking values in Md(IR) × IRd, independent of
X0. (Md(IR) denotes the set of real d × d-matrices.) Assume that we have |A1| < 1 a.s.,
where | · | denotes here both some norm on IRd and the associated matrix norm. Taking the
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distance d(x, y) = |x− y| on IRd, we have C = |A1| and M≤ 2 + |θ1|. So the above moment
conditions in (i)-(iv) only concern |θ1|.
The special value An = 0 corresponds to the i.i.d. case (Sn = θ1 + . . . + θn − nIE[θ1]), and
Statements (i) (ii) give again the corresponding classical i.i.d. limit theorems. On the other
hand, the moment condition in (iii) is more restrictive than that of the i.i.d. case : indeed
the i.i.d. first-order Edgeworth expansion is valid under the condition IE[|θ1|3] < +∞ [?].
The moment condition in (iv) is also stronger than the expected one. (See Rk. in § 11.3.)

Finally let us recall that, in the case when An = A is a fixed nonrandom contractive matrix,
and θ1 has a density w.r.t. the Lebesgue measure on IRd, with a moment of order r > 0, then
(Xn)n is v-geometrically ergodic with v(x) = (1 + |x|)r, see [?] (§ 15.5.2). So, in this case,
one can apply the statements of Corollary 10.2 which, when they are applied as above with
ξ(x) = x− IEπ[X0], yield the first-order Edgeworth expansion if ξ is nonlattice and r ≥ 3 + ε
for some ε > 0, and the multi-dimensional Berry-Esseen theorem if r ≥ max (3, bd/2c+ 1)+ε.
These moment conditions are the expected ones up to ε > 0.

11.2. Preliminary results. The function spaces used here are weighted Hölder-type spaces
defined as follows.

For x ∈ E, we set p(x) = 1 + d(x, x0). Given α ∈ (0, 1] and γ > 0, we denote by Bα,γ the
space of C-valued functions on E satisfying the following condition

mα,γ(f) = sup
{ |f(x)− f(y)|
d(x, y)α p(x)αγp(y)αγ

, x, y ∈ E, x 6= y

}
< +∞.

Set |f |α,γ = sup
x∈E

|f(x)|
p(x)α(γ+1)

and ‖f‖α,γ = mα,γ(f) + |f |α,γ .

Then (Bα,γ , ‖ · ‖α,γ) is a Banach space. The next result which concerns Condition (K1) on
Bα,γ is established in [?] [Th. 5.5].

Proposition 11.2. Let γ > 0. If IE[Mα(γ+1) + CαM2αγ ] < +∞, IE[Cα max{C, 1}2αγ ] < 1,
then Q is strongly ergodic on Bα,γ.

Now we give a sufficient condition for the central limit theorem in the stationary case. Similar
statements are presented in [?], and in [?] when ξ is Lipshitz continuous (i.e. s = 0 in (L)s).

Proposition 11.3. If IE[M2s+2 + C
1
2 M2s+1 ] < +∞ and IE[C

1
2 max{C, 1}2s+ 3

2 ] < 1, then,
under IP π, ( Sn√

n
)n converges to a normal distribution N (0,Γ).

Proof. We apply proposition 11.1 with α = 1
2 and θ = 4s + 3. This yields the existence

and the unicity of π, and π(d(·, x0)2s+2) < +∞. Set here B = B 1
2
,2s+1. For f ∈ B, we have

|f | ≤ |f | 1
2
,2s+1 p(x)

s+1. Thus B ↪→ IL2(π). Besides, from (L)s, it can be easily seen that the
coordinate functions of ξ belong to B, and by Proposition 11.2, Q is strongly ergodic on B.
We conclude by applying Proposition 2.2 and Corollary 2.1 with B = B 1

2
,2s+1. 2

The possibility of considering α < 1 as above is important. To see that, consider for instance
the case s = 0 (i.e. ξ is Lipschitz continuous on E). Then ξ ∈ B1,γ for any γ > 0, and we
could also consider B = B1,γ in the previous proof, but it is worth noticing that the condition
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B1,γ ↪→ IL2(π) would then require the moment condition π(d(·, x0)2(1+γ)) < +∞ which is
stronger than π(d(·, x0)2) < +∞ used above. Anyway, we shall often appeal below to the
conditions γ ≥ 1 + s, namely γ ≥ 1 in the case s = 0, and IE[Mα(γ+1)] < +∞. If γ = 1 for
instance, the previous condition is IE[M] < +∞ if α = 1

2 , while it is IE[M2] < +∞ if α = 1.

Now we investigate the action of the Fourier kernels Q(t) on the space Bα,γ . The proofs of
Propositions 11.4-8 below present no theoretical problem. However the presence of Lipshitz
coefficients in the definition of Bα,γ makes the computations quite more technical than those
seen for uniformly ergodic, or geometrically ergodic, chains. For convenience, these proofs
are presented in Appendix B. The arguments will be derived from [?]. However, the next
four statements improve the corresponding ones in [?].

Proposition 11.4. Condition (K) of section 4.1 holds w.r.t. the function space Bα,γ if
γ ≥ 1 + s and IE[Mα(γ+1) + CαM2αγ ] < +∞, IE[Cα max{C, 1}2αγ ] < 1.

Proposition 11.5. We have ‖Q(t) − Q‖Bα,γ,Bα,γ′
→ 0 when t→ 0 if γ′ > γ ≥ 1 + s and

IE[Mα(γ′+1) + CαMα(γ′+γ) ] < +∞.

Proposition 11.6. We have ‖Q(t) − Q‖Bα,γ,Bα,γ′
= O(|t|) if γ > 0, γ′ ≥ γ + s+1

α , and

IE[Mα(γ′+1) + CαMα(γ′+γ) + CαMαγ′ ] < +∞.

Proposition 11.7. We have C(m) of section 7.1 (m ∈ IN∗) with B = Bα,η and B̃ = Bα,η′
for any η, η′ such that η ≥ 1 + s, η′ > η + m(s+1)

α , and IE[Mα(η′+1) + CαM2αη′ ] < +∞,

IE[ Cα max{C, 1}2αη′ ] < 1.

Concerning the spectral condition (S) of section 5.1, we now study the possibility of applying
the results of Section 5.2. Observe that this cannot be done with the help of Proposition 11.4
because it only yields (K3) (K4) near t = 0. By considering another auxiliary semi-norm
on Bα,γ , we shall prove in Appendix B.5 the following result for which the hypotheses are
somewhat more restrictive than that of Proposition 11.4.

Proposition 11.8. Assume IE[Mα(γ′+1)+CαMα(γ′+γ)] < +∞ and IE[Cα max{C, 1}2αγ ] < 1
for some γ′ > γ > 1 + s. Then we have (S) on Bα,γ iff ξ is non-arithmetic w.r.t. Bα,γ. If
moreover (CLT) holds, then the two previous equivalent conditions hold if ξ is nonlattice.

11.3. Limit theorems for (ξ(Xn))n. The hypotheses of Corollaries 11.9-11 below will
imply those of Proposition 11.3. Consequently the clt stated in this proposition will hold
automatically, and it will be understood that Γ is non-singular.

Concerning the conditions imposed in this section on the initial distribution µ, it is worth
noticing that, if µ(d(·, x0)α(1+γ)) < +∞, then µ ∈ B′α,γ . Also mention that the next conditions
imposed on µ will be always satisfied for µ = π or µ = δx (x ∈ E) (for π it comes from
proposition 11.1).

Local limit theorem. To present a simple application of Theorem 5.1, let us simply investigate
Statement (LLT) of section 5.1 with f = 1E . We want to prove that, for any compactly
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supported continuous function g : IRd→ IR, we have

(LLT ′) lim
n

(√
det Γ (2πn)

d
2 IEµ[ g(Sn − a) ]− e−

1
2n
〈Γ−1a,a〉

∫
IR
g(x)dx

)
= 0.

Corollary 11.9. Suppose that IE[M2s+2 + C
1
2 M2s+1+δ] < +∞ for some δ > 0, that

IE[C
1
2 max{C, 1}2s+ 3

2 ] < 1, that ξ satisfies (L)s and is nonlattice, and finally that we have
µ(d(·, x0)

2+s+δ
2 ) < +∞. Then we have (LLT’).

Proof. By using the above preliminary statements, we can prove that the hypotheses of
Theorem 5.1 are fulfilled. Indeed, the mean contractivity and moment hypotheses imply
those of Proposition 11.3, so we have (CLT). Besides, let α = 1

2 , ε > 0, and set γ = 1 + s+ ε

and γ′ = γ+ ε. Then, by choosing 0 < ε ≤ δ
2 sufficiently small, we have (K) on B = B 1

2
,γ and

(K1) on B̃ = B 1
2
,γ′ (Prop. 11.4, 11.2). Moreover the continuity condition in (K̃) of section

4.3 holds (Prop. 11.5), and finally, since ξ is nonlattice, (S) holds on Bα,γ (Prop. 11.8).
Furthermore we have B′ ∩ B̃′ = B̃′, and µ(d(·, x0)

2+s+δ
2 ) < +∞ implies µ ∈ B̃′. 2

According to the previous proof, the property (LLT) may be also investigated with positive
function f ∈ B 1

2
,γ (for some suitable γ > 1 + s), and the sufficient nonlattice condition can

be replaced by the more precise non-arithmeticity condition (w.r.t. B 1
2
,γ) of Proposition 5.3.

Finally, if s = 0 (i.e. ξ is Lipschitz continuous on E), as for example ξ(x) = ‖x‖, and if we
have C < 1 a.s., then (LLT’) is valid under the expected moment condition IE[M2] < +∞.

Uniform Berry-Essen type theorem. Here we assume d = 1.

Corollary 11.10. Suppose IE[M3(s+1) + C
1
2M4s+3 ] < +∞ and IE[C

1
2 max{C, 1}4s+3] < 1,

that ξ satisfies (L)s, and µ(d(·, x0)2(s+1)) < +∞. Then ∆n = O(n−
1
2 ).

Proof. To apply Theorem 6.1, we have to prove (CLT’) of section 6.1 and to find some spaces
B and B̃ on which (K̃) holds with the additional condition ‖Q(t) − Q‖B,B̃ = O(|t|). To
investigate (CLT’), we shall use the procedure based on conditions (G1)-(G2) (see § 6.2). In
particular this procedure requires that ξ ∈ B ↪→ IL3(π). Since (L)s implies ξ ∈ B 1

2
,2s+1, let

us consider B = B 1
2
,2s+1. We have (K) on B (Prop. 11.4). Now set B̃ = B 1

2
,4s+3. Then Q is

strongly ergodic on B̃ (Prop. 11.2), and the above estimates on ‖Q(t)−Q‖B,B̃ is valid (Prop.

11.6). Moreover, for f ∈ B, we have |f | ≤ |f | 1
2
,2s+1 p

s+1, and since π(d(·, x0)3(s+1)) < +∞
(use Prop. 11.1 with α = 1

2 , θ = 6s + 5), one gets B ↪→ IL3(π). This gives (G1). Besides, it
can be easily seen that B̃ contains all the functions g2, g ∈ B, and since each f ∈ B̃ satisfies
|f | ≤ |f | 1

2
,4s+3 p

2(s+1), one obtains B̃ ↪→ IL
3
2 (π). This proves (G2). Finally the moment

condition on µ implies µ ∈ B̃′ = B′ ∩ B̃′. 2

The first-order Edgeworth expansion. We assume d = 1, and for convenience, we investigate
the property (E) of Theorem 8.1 under the hypothesis that C is stricly contractive a.s..

Corollary 11.11. Let us suppose that C < 1 a.s. and that IE[M6(s+1)+ε0 ] < +∞ for some
ε0 > 0, that ξ satisfies (L)s and is nonlattice, and µ(d(·, x0)3(s+1)+ε0) < +∞. Then we have
(E).
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Proof. To check the hypotheses of Theorem 8.1, let us first observe that the hypothesis C < 1
a.s. implies IE[Cα max{C, 1}β] < 1 for any α ∈ (0, 1] and β ≥ 0. We have π(d(·, x0)6(s+1)) <
+∞ (Prop. 11.1). From |ξ(x)| ≤ p(x)s+1, it follows that π(|ξ|3) < +∞. Let us prove that
C(3) holds w.r.t. B = Bα,η and B̃ = Bα,η′ for suitable α, η, η′. Let δ > 0, η = s+ 1 + δ, and
η′ = η + 3(s+1)

α + δ. We have α(η′ + 1) ≤ 2αη′, and 2αη′ = 6(s+ 1) + 2α(η + δ). Now let us
choose 0 < α ≤ 1 such that 2αη′ ≤ 6(s + 1) + ε0. Then Proposition 11.7 yields the desired
property. To study Condition (S), observe that the hypotheses of Proposition 11.8 are fulfilled
with γ = η and γ′ = η+ δ (to check the moment condition, use γ′ ≤ η′). Therefore, since ξ is
nonlattice, we have (S) on Bα,η. Finally, we have αη′ = 3(s+ 1) + α(η + δ) ≤ 3(s+ 1) + ε0

2 ,
and we have α ≤ ε0

2(η+δ) ≤
ε0
2 , thus α(η′ + 1) ≤ 3(s+ 1) + ε0. So the moment hypothesis on

µ implies that µ ∈ B̃′. 2

Other similar statements may be derived by proceeding as above. For instance, let us consider
0 < α ≤ 1 (fixed here), η = s + 1 + δ, and η′ = η + 3(s+1)

α + δ with some small δ > 0,
and suppose that we have IE[Mα(η′+1) + CαM2αη′ ] < +∞, IE[Cα max{C, 1}2αη′ ] < 1, and
µ(d(·, x0)α(η′+1)) < +∞. Then we have (E) if ξ is non-arithmetic w.r.t. Bα,η.

The multi-dimensional Berry-Essen theorem with Prohorov distance. Again we give a state-
ment in the particular case when C < 1. From theorem 9.1 and 11.7, we get the following.

Corollary 11.12. Suppose C < 1 a.s and IE[M2m(s+1)+ε0 ] < +∞ for some ε0 > 0 and with
m := max (3, bd/2c+ 1), that ξ satisfies (L)s and µ(d(·, x0)m(s+1)+

ε0
2

+1) < +∞. Then the
conclusion of theorem 9.1 holds.

Proof. Let α ∈ (0, 1) be such that (1+ s) < ε0
2α . Let us take η = 1+ s and η′ = m(1+s)

α + ε0
2α >

η + m(1+s)
α . We have : IE[M2αη′ ] < +∞. Since C < 1 and since α(η′ + 1) ≤ 2αη′, the

hypothesis of proposition 11.7 is satisfied. Hence we have C(m) with B = Bα,η and B̃ = Bα,η′ .
Moreover, the moment hypothesis on µ insures that µ is in B̃′. 2

Remark. The moment conditions on M in Corollaries 11.11-12 is twice the expected one.
This is due to the weight p(x)αγ p(y)αγ in the definition of Bα,γ which yields the term M2αγ

when one investigates mα,γ(Q(t)f), see Appendix B. This drawback, which only occurs here
when C(m) is used, could be possibly removed with a more appropriate choice of spaces.

Extension. Mention that all the previous statements remain valid when, in the hypotheses,
the r.v. C is replaced with the following one :

C(n0) = sup
{
d(Fθ1 · · ·Fθn0

x , Fθ1 · · ·Fθn0
y)

d(x, y)
, x, y ∈ E, x 6= y

}
(n0 ∈ IN∗).

The proofs of the preliminary statements in Section 11.2 are then similar.

12. More on the non-arithmeticity condition. This section presents some complements
concerning the spectral condition (S) of Section 5.1, in particular we prove Propositions 5.3-4.

12.1. Proof of Proposition 5.3. We suppose that the conditions of Proposition 5.3 hold.
Recall that Condition (S) on B states that, for each compact set K0 in IRd \ {0}, there exist
ρ < 1 and c ≥ 0 such that we have, for all n ≥ 1 and t ∈ K0, ‖Q(t)n‖B ≤ c ρn.
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We have to prove that (S) is not true if and only if there exist t ∈ IRd, t 6= 0, λ ∈ C, |λ| = 1,
a π-full Q-absorbing set A ∈ E , and a function w in B0 such that |w| is nonzero constant on
A, satisfying :

(∗) ∀x ∈ A, ei〈t,ξ(y)〉w(y) = λw(x) Q(x, dy)− a.s.,

where B0 is defined as B0 = B∩ IL∞(π) or B0 = B∩B∞
according that we have (b1) or (b2).

Lemma 12.1. Let t ∈ IRd such that r(Q(t)) ≥ 1. Then
(i) r(Q(t)) = 1 and Q(t) is quasi-compact.
(ii) We have (∗) with λ, A and w as above stated.

Proof. (i) By (K̂4), we have ress(Q(t)) < 1 ≤ r(Q(t)), thus Q(t) is quasi-compact on B. Now
let λ be any eigenvalue of modulus r(Q(t)), and let f 6= 0 be an associated eigenfunction
in B. We have |λ|n|f | = |Q(t)nf | ≤ Qn|f |. By (b1), there exists e′ ∈ B′, e′ ≥ 0, such that
e′(|f |) 6= 0, and (K1) of Section 2 gives supn e′(Qn|f |) < +∞. From |λ|n e′(|f |) ≤ e′(Qn|f |),
it then follows that |λ| ≤ 1, and finally r(Q(t)) = 1. Hence (i).

By (i), there exists λ ∈ C, |λ| = 1 and w ∈ B, w 6= 0, such that Q(t)w = λw. From
Q(t)nw = λnw, one gets |w| ≤ Qn|w|, and since Qn|w|→π(|w|) in B by (K1), it follows from
(b1) that |w| ≤ π(|w|), either on E, or π-a.s. on E, according to the nature of B. From
now, if B is composed of equivalence classes (w.r.t. π), w is replaced with any measurable
function of its class, and for convenience, this fonction will be still denoted by w. Since
v = π(|w|)− w ≥ 0 and π(v) = 0, we have |w| = π(|w|) π-a.s. Let us define the set

A0 = {z ∈ E : |w(z)| = π(|w|)}.
Then we have π(A0) = 1 (i.e. A0 is π-full).

Proof of (ii) under Condition (b2). It is proved in [?] (Prop. V.2) that, under Condition
(b2), we have (∗) with w ∈ B ∩ B∞

and A = A0. Let us briefly resume the main arguments.
From (b2), we have here |w| ≤ π(|w|) on E. Thus w ∈ B∞

. Besides, the equality Q(t)w(x) =∫
E e

i〈t,ξ(y)〉w(y)Q(x, dy) = λw(x) is valid for all x ∈ E. Let x ∈ A0. Then this equality,
together with the previous inequality, give (∗). Finally (∗) shows that A0 is Q-absorbing.

Proof of (ii) under Condition (b1). Here one may have Q(t)w = λw a.s., so the previous
arguments must be slightly modified as follows. First, by proceeding as in the proof of
Proposition 2.4, one can easily get a π-full Q-absorbing set B ⊂ A0. Besides the following
set is clearly π-full :

C = {z ∈ E : ∀n ≥ 1, Q(t)nw(z) = λnw(z)}.
So the set A = B ∩ C is also π-full. Let x ∈ A. We have

Q(t)w(x) =
∫
E e

i〈t,ξ(y)〉w(y)Q(x, dy) = λw(x).

Since Q(x,B) = 1 (B is Q-absorbing), one can replace E by B in the previous integral, and
since |λ−1w(x)−1 ei〈t,ξ(y)〉w(y)| = 1 for all y ∈ B, we then obtain the equality (∗). It remains
to prove that A is Q-absorbing. To that effect, we must just prove that Q(x,C) = 1 for any
x ∈ A. Set Dx = {y ∈ E : ei〈t,ξ(y)〉w(y) = λw(x)}. We know that Q(x,Dx) = 1, and from
λn+1w(x) =

∫
Dx
ei〈t,ξ(y)〉Q(t)nw(y)Q(x, dy) (n ≥ 1), we deduce that

λn =
∫
Dx
w(y)−1Q(t)nw(y)Q(x, dy).

Since Q(x,B) = 1, this equality holds also with B instead of Dx. Besides, for any y ∈ B, we
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have |Q(t)nw(y)| ≤ Qn|w|(y) =
∫
B |w(z)|Qn(y, dz) = π(|w|), so that |w(y)−1Q(t)nw(y)| ≤ 1.

So, for some Dx,n ∈ E such that Q(x,Dx,n) = 1, we have Q(t)nw(y) = λnw(y) for each
y ∈ Dx,n. From ∩n≥1Dx,n ⊂ C, one gets Q(x,C) = 1 as claimed. 2

Lemma 12.2. Let t ∈ IRd. If the equality (∗) holds with λ, A and w as stated at the beginning
of this section, then we have r(Q(t)) ≥ 1.

Proof. By integrating (∗), one gets Q(t)w = λw on A, and since A is Q-absorbing, this
gives Q(t)nw = λnw on A for all n ≥ 1. Suppose r(Q(t)) < 1. Then limnQ(t)nw = 0
in B, and since B ↪→ IL1(π), we have limn π(|Q(t)nw|) = 0, but this is impossible because
|Q(t)nw| = |w| on A, and by hypothesis |w| is a nonzero constant on A and π(A) = 1. 2

The previous lemmas show that, for any fixed t ∈ IRd, we have r(Q(t)) ≥ 1 iff the equality
(∗) holds for some λ, A and w as stated at the beginning of this section. Consequently, in
order to prove the equivalence of Proposition 5.3, it remains to establish the following lemma
whose proof is based on the use of Keller-Liverani theorem.

Lemma 12.3. We have : (S) ⇔ ∀t ∈ IRd, t 6= 0, r(Q(t)) < 1.

Proof. The direct implication is obvious. For the converse, let us consider a compact set K0

in IRd \ {0}. Let us first prove that
rK0 = sup{r(Q(t)), t ∈ K0} < 1.

For that, let us assume that rK0 = 1. Then there exists a subsequence (τk)k in K0 such
that we have limk r(Q(τk)) = 1. For k ≥ 1, let λk be a spectral value of Q(τk) such that
|λk| = r(Q(τk)). By compactness, one may assume that the sequences (τk)k and (λk)k
converge. Let τ = limk τk and λ = limk λk ; observe that τ ∈ K0, thus τ 6= 0, and |λ| = 1.
Besides, by (K̂2) (K̂3) (K̂4), the Q(t)’s satisfy the conditions of Keller-Liverani theorem near
τ . From [?] (p. 145), it follows that λ is a spectral value of Q(τ), but this impossible since,
by hypothesis, r(Q(τ)) < 1. This shows the claimed statement.
Let ρ ∈ (rK0 , 1). By applying [?] to Q(·) near any point t0 ∈ K0, there exists a neighbourhood
Ot0 of t0 such that sup{‖(z − Q(t))−1‖B, t ∈ Ot0 , |z| = ρ} < +∞. Since K0 is compact,
one gets sup{‖(z − Q(t))−1‖B, t ∈ K0, |z| = ρ} < +∞. Finally let Γ be the oriented circle
defined by {|z| = ρ}. Then the inequality stated in (S) follows from the following usual
spectral formula

Q(t)n =
1

2iπ

∫
Γ
zn(z −Q(t))−1dz. 2

12.2. Proof of Proposition 5.4. Suppose that the hypotheses of Proposition 5.4 are
fulfilled, except (CLT) for the moment. Let us recall that these hypotheses contain those of
Proposition 5.3. We set G = {t ∈ IRd : r(Q(t)) = 1}.

We know that (S) is equivalent to G = {0} (Lemmas 12.1-3). Consequently, the following
proposition implies Proposition 5.4.

Proposition 12.4. G is a closed subgroup of (IRd,+). Moreover, if Condition (CLT) of
section 5.1 holds, then G is discrete, and we have then the following properties.

(i) If G 6= {0}, then there exist a point a ∈ IRd, a closed subgroup H in IRd of the form
H = (vectG)⊥ ⊕∆, where ∆ is a discrete subgroup of IRd, a π-full Q-absorbing set A ∈ E,

40



and a bounded measurable function θ : E→ IRd such that

(∗∗) ∀x ∈ A, ξ(y) + θ(y)− θ(x) ∈ a+H Q(x, dy)− a.s..

(ii) If (∗∗) holds with a π-full Q-absorbing set A ∈ E, a subgroup H 6= IRd, and a measurable
function θ : E→ IRd such that ei〈t,θ〉 ∈ B for all t ∈ IRd, then G 6= {0}.

Proof. Let g1, g2 ∈ G, and for k = 1, 2, using Lemma 12.1, let λk, Ak, and wk be the elements
associated with gk in (∗). Then A = A1 ∩A2 is a π-full Q-absorbing set, and g1− g2 satisfies
(∗) with A, λ = λ1λ2, and with w = w1w2 in B0 since, by hypothesis, B0 is stable under
product. Thus g1 − g2 ∈ G by Lemmas 12.1-2. Besides 0 ∈ G since Q1E = 1E . So G is a
subgroup of (IRd,+). To prove that G is closed, let us consider any sequence (tn)n ∈ GIN

such that lim tn = t in IRd. By quasi-compactness (Lemma 12.1), each Q(tn) admits an
eigenvalue, say λn, of modulus one. Now let λ be a limit point of the sequence (λn)n. Then
|λ| = 1, and from [?] (p. 145), it follows that λ is a spectral value of Q(t), so r(Q(t)) ≥ 1, and
t ∈ G by Lemma 12.1. To prove G is discrete under Hypothesis (CLT), let us first suppose
for convenience that the semi-norm q(·) in (K̂) is π(| · |). Then we have (K), and Lemma 5.2
gives λ(t) = 1− 1

2〈Γt, t〉+ o(‖t‖2) for t near 0, where λ(t) denotes the dominating eigenvalue
of Q(t). Hence we have r(Q(t)) = |λ(t)| < 1 for t near 0, t 6= 0. This proves that 0 is an
isolated point in G, hence G is discrete. If q(·) 6= π(| · |), observe that Hypothesis (K̂) ensures
that the conclusions of Theorem (K-L) are valid with here q(Π(t)f −Πf)→ 0 when t→ 0 for
each f ∈ B. However, since π(| · |) ≤ c q(·) by hypothesis, the last property also holds with
π(| · |) instead of q(·), so Lemma 5.2 remains valid, and we can proceed as above.

Proof of (i). Set G = ZZa1 ⊕ . . . ZZap with p ≤ d, and let λk, Ak, and wk be the elements
associated with ak in (∗). Then A = ∩pk=1Ak is a π-full Q-absorbing set, and if x ∈ A and
g = n1a1 + . . . + npap is any element of G, we deduce from (∗) applied to each ak, and by
product that :

∀x ∈ A, ei〈g,ξ(y)〉
p∏

k=1

wk(y)nk =
p∏

k=1

λnk
k

p∏
k=1

wk(x)nk Q(x, dy)− a.s..

Since |wk| is a nonzero constant function on A, one may assume without loss of generality that
|wk|A| = 1A, so that there exists a measurable function αk : E→[0, 2π[ such that we have,
for all z ∈ A : wk(z) = eiαk(z). For z ∈ A, we set V (z) = (α1(z), . . . , αp(z)) in IRp. Since the
linear map χ : h 7→ (〈a1, h〉, . . . , 〈ap, h〉) is clearly bijective from vect(G) into IRp, one can
define the element χ−1(V (z)) which satisfies 〈ak, χ−1(V (z)〉 = αk(z) for each k = 1, . . . , p.
Finally let θ : E→ IRd be a bounded measurable function such that θ(z) = χ−1(V (z)) for
all z ∈ A. Then we have wk(z) = ei〈ak,θ(z)〉 for any z ∈ A and k = 1, . . . , p. Consequently
one gets

∏p
k=1wk(z)

nk = ei〈g,θ(z)〉 for z ∈ A, and the above equality becomes, by setting
λg =

∏p
k=1 λ

nk
k ,

∀x ∈ A, ei〈g,ξ(y)+θ(y)−θ(x)〉 = λg Q(x, dy)− a.s..

For any g ∈ G, let us define βg ∈ IR such that λg = eiβg , and for x ∈ IRd, set Tg(x) = 〈g, x〉.
The previous property yields

∀x ∈ A, ξ(y) + θ(y)− θ(x) ∈ ∩g∈G T−1
g (βg + 2πZZ) Q(x, dy)− a.s..

Now let us define H = ∩g∈G T−1
g (2πZZ). Then H is a subgroup of IRd, and the elements of

∩g∈G (T−1
g (βg + 2πZZ)) are in the same class modulo H. That is :
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∃a ∈ IRd, ∩g∈G (T−1
g (βg + 2πZZ)) ⊂ a+H.

This proves (∗∗), and it remains to establish that H has the stated form. Actually, since H
is closed, H is of the form H = F ⊕ ∆, where F and ∆ are respectively a subspace and a
discrete subgroup in IRd. So we have to prove that F = (vectG)⊥.
Let x ∈ (vectG)⊥. Since (vectG)⊥ = ∩g∈G T−1

g ({0}) ⊂ H, we have x = f + d for some
f ∈ F , d ∈ ∆, and for α ∈ IR, the fact that αx ∈ (vectG)⊥ ⊂ H yields αx = fα + dα with
some fα ∈ F and dα ∈ ∆. But we also have the unique decomposition αx = αf + αd in
F ⊕ vect∆. Hence we have αd = dα ∈ ∆, and since ∆ is discrete and α can take any real
value, we have necessary d = 0. That is, x ∈ F .
Conversely, let f ∈ F and let g ∈ G. Since F ⊂ H, we have 〈g, f〉 ∈ 2πZZ. Now let α be
any fixed nonzero irrational number. Since αf ∈ F ⊂ H, we have α 〈g, f〉 = 〈g, αf〉 ∈ 2πZZ.
Hence 〈g, f〉 = 0. This gives f ∈ (vectG)⊥.

Proof of (ii). Let t ∈ H⊥, t 6= 0. Then 〈t, ξ(y)〉 + 〈t, θ(y)〉 − 〈t, θ(x)〉 = 〈t, a〉 Q(x, dy)−a.s.
for all x ∈ A. Setting w(·) = ei〈t,θ(·)〉 and λ = ei〈t,a〉, this yields for all x ∈ A

ei〈t,ξ(y)〉w(y) = λw(x) Q(x, dy)− a.s..

Since w ∈ B by hypothesis, this gives (∗), and Lemmas 12.1-2 implies that t ∈ G. 2
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Appendix A. Proof of Proposition 7.1.

The proof of Proposition 7.1 is presented in the case d = 1. The extension to d ≥ 2 is obvious
by the use of the partial derivatives. Let I be an interval in IR and let (Bθ, θ ∈ I) be a
family of function spaces. Recall that we set Dκ = {z ∈ C : |z| ≥ κ, |z − 1| ≥ (1− κ)/2} for
any κ ∈ (0, 1). Given two function spaces B and B̃ of the previous family, let us introduce
the following hypothesis.

Hypothesis D(m) (m ∈ IN∗). For all θ ∈ I there exists a neighbourhood Vθ of 0 in IRd

such that, for all j = 1, ...,m, we have :

(0) [T0(θ) ∈ I ⇒ Bθ ↪→ BT0(θ)] and [T1(θ) ∈ I ⇒ Bθ ↪→ BT1(θ)]

(1) T0(θ) ∈ I implies that Q(·) ∈ C0(Vθ,Bθ,BT0(θ))

(2) θj := T1(T0T1)j−1(θ) ∈ I implies that Q(·) ∈ Cj(Vθ,Bθ,Bθj
)

(3’) There exists a real number κθ ∈ (0, 1) such that, for all κ ∈ [κθ, 1), there exists a
neighbourhood Vθ,κ ⊆ Vθ of 0 in IRd such that, Rz(t) := (z −Q(t))−1 ∈ L(Bθ) for all z ∈ Dκ
and all t ∈ Vθ,κ, and we have Mθ,κ := sup

{
‖Rz(t)‖θ

, t ∈ Vθ,κ, z ∈ Dκ
}
< +∞

(4) There exists a ∈
⋂m
k=0

[
T−1

0 (T0T1)−k(I) ∩ (T1T0)−k(I)
]

such that we have B = Ba and

B̃ = B(T0T1)mT0(a).

Conditions (0) (1) (2) and (4) are exactly those of C(m). According to Theorem (K-L)
of section 4.1, (3) implies (3’). Hence C(m) implies D(m), and Proposition 7.1 will be a
consequence of the next proposition. Let us notice that, from (4), we have

Θa = {a, T0a, T1T0a, T0T1T0a, . . . , (T0T1)mT0(a)} ⊂ I.

Let us define κ = maxθ∈Θa κθ ∈ (0, 1), and O =
⋂
θ∈Θa

Vθ,κ.

Proposition A. Under Hypothesis D(m), if κ and O are as stated before, then we have
Rz(·) ∈ Cm(O,B, B̃) for all z ∈ Dκ, and sup{‖R(`)

z (t)‖B,B̃, z ∈ Dκ, t ∈ O } < +∞ for each
` = 0, . . . ,m.

We shall write ‖·‖θ,θ′ for ‖·‖Bθ,Bθ′ and ‖·‖θ for ‖·‖Bθ
. Moreover, f = (fz(t))z,t ∈ C`(θ, θ′) will

mean that there exists κ̃ ∈ (0, 1) such that, for all κ ∈ [κ̃, 1), there exists a neighbourhood
Uκ of 0 in IRd and we have :

∀z ∈ Dκ, fz(·) ∈ C`(Uκ,Bθ,Bθ′) and sup
z∈Dκ, t∈Uκ, j=0,...,`

‖f (j)
z (t)‖θ,θ′ < +∞.

By convention, we set (UV )z(t) := Uz(t)Vz(t), and when U = (Uz(t))z,t ∈ C`(θ, θ′), we set
U (k) = (U (k)

z (t))z,t. We shall use repeatedly the next obvious results.

Lemma. Let θ1, θ2, θ3 and θ4 be in I.
(i) If V ∈ Ck(θ2, θ3) and if Bθ1 ↪→ Bθ2 and if Bθ3 ↪→ Bθ4, then V ∈ Ck(θ2, θ4), V ∈ Ck(θ1, θ3),
and V ∈ Ck(θ1, θ4).
(ii) If V ∈ C0(θ1, θ2), U ∈ C0(θ2, θ3), then UV ∈ C0(θ1, θ3).
(iii) If V ∈ C0(θ1, θ2), U ∈ C1(θ2, θ4), and V ∈ C1(θ1, θ3), U ∈ C0(θ3, θ4), then we have
UV ∈ C1(θ1, θ4), and (UV )′ = U ′V + UV ′.
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Proof of Proposition A. Lemmas 0-1 below will be our basic statements.

Lemma 0. If θ, T0(θ) ∈ I, then (Rz(t))z,t ∈ C0(θ, T0(θ)).

Proof. Let κ ∈ [max(κθ, κT0(θ)), 1). Let U (0)
θ,κ = Vθ,κ ∩ VT0(θ),κ. From the usual operator

formula Id −Wn+1 = (Id −W )
∑n
k=0W

k, one easily deduces the following equality, which
is valid for any bounded linear operators S and T on a Banach space such that S and S − T
are invertible :

(∗) (S − T )−1 =
n∑
k=0

(S−1T )kS−1 + (S−1T )n+1(S − T )−1.

With n = 0, S = z −Q(t0), T = Q(t)−Q(t0), thus S − T = z −Q(t), Formula (∗) yields

∀z ∈ Dκ, ∀t ∈ U (0)
θ,κ, Rz(t)−Rz(t0) = Rz(t0) (Q(t)−Q(t0))Rz(t).

Using the constants Mθ,κ and MT0(θ),κ, Condition (1) in D(m) gives the desired property. 2

Lemma 1. If θ, T0(θ), T1T0(θ), T0T1T0(θ) ∈ I, then we have (Rz(t))z,t ∈ C1(θ, T0T1T0(θ))
and R′ = RQ′R.

Proof. Let us define θ1 = T0(θ), θ2 = T1T0(θ), θ3 = T0T1T0(θ) and κ(1)
θ = max(κθ, κθ1 , κθ2 , κθ3).

Let us consider a real number κ ∈ [κ(1)
θ , 1). We define U (1)

θ,κ = U (0)
θ,κ ∩ U

(0)
θ2,κ

. Let t0, t ∈ U (1)
θ,κ

and z ∈ Dκ. Formula (∗) with n = 1, S = z −Q(t0), T = Q(t)−Q(t0) gives

Rz(t) = Rz(t0) + Rz(t0) [Q(t)−Q(t0)]Rz(t0) + ϑz(t),

with ϑz(t) := Rz(t0) [Q(t)−Q(t0)]Rz(t0) [Q(t)−Q(t0)]Rz(t). But we have :
‖ϑz(t)‖θ,θ3
|t− t0|

≤ ‖Rz(t)‖θ3‖Q(t)−Q(t0)‖θ2,θ3‖Rz(t0)‖θ2
‖Q(t)−Q(t0)‖θ1,θ2

|t− t0|
‖Rz(t)‖θ,θ1

which goes to 0 as t goes to t0, uniformly in z ∈ Dκ (according to condition (2) and with the
use of Mθ3,κ, Mθ2,κ and Mθ,κ). In the same way, we have :

‖Rz(t0)(Q(t)−Q(t0))Rz(t0)− (t− t0)Rz(t0)Q′(t0)Rz(t0)‖θ,θ3

≤Mθ2,κ‖Q(t)−Q(t0)− (t− t0)Q′(t0)‖θ1,θ2Mθ,κ = o(t− t0).

This shows that R′
z(t0) = Rz(t0)Q′(t0)Rz(t0) in L(Bθ,Bθ3). Moreover, (Rz(t))z,t ∈ C0(θ, θ1),

(Q′(t))z,t ∈ C0(θ1, θ2), and (Rz(t))z,t ∈ C0(θ2, θ3), so (R′
z(t)z,t ∈ C0(θ, θ3). 2

By Lemma 0, the following assertion holds :

(H0) If θ ∈ I and if T0(θ) ∈ I, then R = (Rz(t))z,t ∈ C0 (θ, T0(θ)).

For ` = 1, . . . ,m, let us denote by (H`) the following assertion :

(H`) If θ ∈
⋂`
k=0

[
T−1

0 (T0T1)−k(I) ∩ (T1T0)−k(I)
]
, then R = (Rz(t))z,t ∈ C`

(
θ, (T0T1)`T0(θ)

)
and R(`) =

∑
(i,j,k)∈E`

R(i)Q(1+j)R(k), with

E` = {(i, j, k) ∈ ZZ3 : i ≥ 0, j ≥ 0, k ≥ 0, i+ j + k = `− 1}.
We want to prove (Hm) by induction. By Lemma 1, (H1) holds.

Lemma 2. Let 1 ≤ ` ≤ m− 1. If (H0), (H1), . . . , (H`) hold, then we have (H`+1).
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Proof. Let θ ∈
⋂`+1
k=0

[
T0

−1(T0T1)−k(I) ∩ (T1T0)−k(I)
]
. From B(T0T1)`T0(θ) ↪→ B(T0T1)`+1T0(θ)

and (H`), we haveR = (Rz(t))z,t ∈ C`(θ, (T0T1)`+1T0(θ)) and : R(`) =
∑

(i,j,k)∈E`
R(i)Q(1+j)R(k).

Let (i, j, k) ∈ E`. We have to prove that R(i)Q(1+j)R(k) ∈ C1
(
θ, (T0T1)`+1T0(θ)

)
and that :(

R(i)Q(1+j)R(k)
)′

= R(i+1)Q(1+j)R(k) +R(i)Q(2+j)R(k) +R(i)Q(1+j)R(k+1).

Since 1 ≤ k + 1 ≤ ` and by induction hypothesis, we have :

R(k) ∈ C1(θ, (T0T1)(k+1)T0(θ)) and R(k) ∈ C0(θ, (T0T1)kT0(θ)).

Moreover, since 2 + j ≤ `+ 1 ≤ m and according to D(m), we have :

Q(1+j) ∈ C0
(
(T0T1)(k+1)T0(θ), T1(T0T1)(k+j+1)T0(θ)

)
and Q(1+j) ∈ C1

(
(T0T1)kT0(θ), T1(T0T1)k+j+1T0(θ)

)
.

According to the first lemma of this appendix, Q(1+j)R(k) ∈ C1
(
θ, T1(T0T1)k+j+1T0(θ)

)
and

(Q(1+j)R(k))′ = Q(2+j)R(k) +Q(1+j)R(k+1).
Analogously we have Q(1+j)R(k) ∈ C0

(
θ, T1(T0T1)k+jT0(θ)

)
, and, since i+ 1 ≤ `, we have :

R(i) ∈ C0
(
T1(T0T1)k+j+1T0(θ), (T0T1)k+j+i+2T0(θ)

)
and R(i) ∈ C1

(
T1(T0T1)k+jT0(θ), (T0T1)k+j+i+2T0(θ)

)
.

Since k + j + i+ 2 = `+ 1, this gives the desired property. 2

Since, by hypothesis, a ∈
⋂m
k=0

[
T−1

0 (T0T1)−k(I) ∩ (T1T0)−k(I)
]
, the property (Hm) shows

that the conclusion of Proposition A is valid with some neighbourhood O of t = 0 and some
set Dκ with suitable κ ∈ (0, 1). More exactly, the previous induction proves that O and κ
may be defined as stated before Proposition A. 2
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Appendix B. Proof of Propositions 11.4-8.

B.0. Notations. For convenience we present the proofs of Propositions 11.4-8 in the case
d = 1. The extension to d ≥ 2 is straightforward for Proposition 11.4,5,6,8 (just replace the
inequality |tξ(x)| ≤ |t| |ξ(x)| with the Schwarz inequality |〈t, ξ(x)〉| ≤ ‖t‖ ‖ξ(x)‖). It is easy
for Proposition 11.7 by considering partial derivatives.

We set Θx = F (x, θ1). So Θ is a random Lipschitz transformation on E, and the transition
probability Q can be expressed as : Qf(x) = IE[f(Θx)].

For any λ ∈ (0, 1], we set pλ(x) = 1 + λ d(x, x0). Obviously, the space Bα,γ is unchanged
when mα,γ(f) is replaced with

m(λ)
α,γ(f) = sup

{ |f(x)− f(y)|
d(x, y)α pλ(x)αγpλ(y)αγ

, x, y ∈ E, x 6= y

}
,

and, setting

|f |(λ)
α,γ = sup

x∈E

|f(x)|
pλ(x)α(γ+1)

,

the resulting new norm ‖f‖(λ)
α,γ = m

(λ)
α,γ(f) + |f |(λ)

α,γ is equivalent to ‖ · ‖α,γ . Consequently, for
(α, γ) fixed, Propositions 11.4-8 can be established with ‖f‖(λ)

α,γ for any value λ ∈ (0, 1]. In
most of the next estimates, we shall asssume λ = 1, the possibility of choosing suitable small
λ will occur in the proof of (K3) (Prop. 11.4) and K̂3 (Prop. 11.8). Anyway, this already
appears in the proof of Proposition 11.2, see [?].

Let Cλ = max{C, 1}+ λ d(Θx0, x0). In the sequel, we shall use repeatedly the fact that pλ(·)
and p(·) are equivalent functions, and that (see [?] p. 1945)

sup
x∈E

pλ(Θx))
pλ(x)

≤ Cλ ≤M.

B.1. A preliminary lemma. The proofs of Propositions 11.4-8 will be based on the
following lemma.

Lemma B.1. Let q : E→C measurable, Kf(x) = IE[q(Θx) f(Θx) ], and let λ ∈ (0, 1].
Suppose that there exist constants a, A, b, B such that we have for all x, y ∈ E satisfying
d(y, x0) ≤ d(x, x0)

(i) |q(x)| ≤ Apλ(x)a ; (ii) |q(x)− q(y)| ≤ B d(x, y)α pλ(x)b.

Then we have for f ∈ Bα,γ and x, y as above stated

|Kf(x)| ≤ A |f |(λ)
α,γ pλ(x)

a+α(γ+1) IE[Ma+α(γ+1)]

|Kf(x)−Kf(y)| ≤ Am(λ)
α,γ(f) d(x, y)α pλ(x)a+αγ pλ(y)αγ IE[Cα Ca+2αγ

λ ]

+ B |f |(λ)
α,γ d(x, y)

α pλ(x)b pλ(y)α(γ+1) IE[CαMb+α(γ+1)].

Proof. We have

|Kf(x)| ≤ IE[|q(Θx) f(Θx)|] ≤ A |f |(λ)
α,γ IE[ pλ(Θx)a pλ(Θx)α(γ+1) ]

≤ A |f |(λ)
α,γ pλ(x)

a+α(γ+1)IE[Ma+α(γ+1) ].
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Moreover, for x, y ∈ E satisfying d(y, x0) ≤ d(x, x0) (thus pλ(y) ≤ pλ(x)), we have

|Kf(x)−Kf(y)| ≤ IE

[
q(Θx) |f(Θx)− f(Θy)|

]
+ IE

[
|f(Θy)| |q(Θx)− q(Θy)|

]
≤ Am(λ)

α,γ(f) IE
[
pλ(Θx)a d(Θx,Θy)α pλ(Θx)αγ pλ(Θy)αγ

]
+ |f |(λ)

α,γ B IE

[
p(Θy)α(γ+1) d(Θx,Θy)α pλ(Θx)b

]
≤ Am(λ)

α,γ(f) d(x, y)α pλ(x)a+αγ pλ(y)αγ IE
[
Cα Ca+2αγ

λ

]
+ B |f |(λ)

α,γ d(x, y)
α pλ(x)b pλ(y)α(γ+1) IE

[
CαMb+α(γ+1)

]
. 2

For the use of Lemma B.1, it is worth noticing that the supremum defining the Hölder
constants mα,γ(f) or m(λ)

α,γ(f) can be obviously computed over the elements x, y ∈ E such
that d(y, x0) ≤ d(x, x0). Lemma B.1 will be applied below with q(·) depending on the function
ξ. Remember that ξ verifies the following hypothesis :

(L)s ∀(x, y) ∈ E × E, |ξ(x)− ξ(y)| ≤ S d(x, y) [1 + d(x, x0) + d(y, x0)]s.

From (L)s, it follows that there exists C > 0 such that we have for x ∈ E
|ξ(x)| ≤ C p(x)s+1,

and for x, y ∈ E satisfying d(y, x0) ≤ d(x, x0) :

|ξ(x)− ξ(y)| ≤ C d(x, y) p(x)s and |ξ(x)− ξ(y)| ≤ C d(x, y)α p(x)s+1−α.

B.2. Proof of Proposition 11.4. This proposition states that (K) of section 4.1 holds
w.r.t. Bα,γ if γ ≥ 1+ s and I = IE[Mα(γ+1) +CαM2αγ ] < +∞, IE[Cα max{C, 1}2αγ ] < 1.

The strong ergodicity condition (K1) of section 2 holds by Proposition 11.2. Besides we have
for f ∈ Bα,γ

π(|ei〈t, ξ〉 − 1| |f |) ≤ |f |α,γ π(|ei〈t, ξ〉 − 1| pα(γ+1)).

Since π(pα(γ+1)) < +∞ (Prop. 11.1), The continuity condition (K2’) of Section 4.1 follows
from Lebesgue Theorem. To study the Doeblin-Fortet inequalities (K3), notice that Q(t) = K
where K is associated to q(x) = eitξ(x) with the notations of Lemma B.1. By using (L)s and
the inequality |eia − 1| ≤ 2|a|α, one easily gets (i)-(ii) in Lemma B.1 with A = 1, a = 0 and
B = Dλ |t|α , b = αs, where Dλ is a positive constant resulting from (L)s and the equivalence
between pλ(·) and p(·). Then we have for f ∈ Bα,γ and x, y ∈ E as stated in Lemma B.1,

|Q(t)f |(λ)
α,γ ≤ I |f |(λ)

α,γ

|Q(t)f(x)−Q(t)f(y)|
d(x, y)α pλ(x)αγ pλ(y)αγ

≤ IE[Cα C2αγ
λ ]m(λ)

α,γ(f) + I Dλ |t|α |f |(λ)
α,γ pλ(x)

αs−αγ pλ(y)α.

We have pλ(x)αs−αγ pλ(y)α ≤ pλ(x)α(s+1−γ) ≤ 1 because pλ(y) ≤ pλ(x), and s + 1 ≤ γ. Set
Eλ = I Dλ. Then the previous estimates prove that Q(t) continuously acts on Bα,γ , and that

m(λ)
α,γ(Q(t)f) ≤ IE[Cα C2αγ

λ ]m(λ)
α,γ(f) + Eλ |t|α |f |(λ)

α,γ .
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Now, using the fact that the norms ‖f‖(λ)
α,γ and ‖f‖ = m

(λ)
α,γ(f) + π(|f |) are equivalent [?]

(Prop. 5.2), one obtains with some new constant E′
λ :

m(λ)
α,γ(Q(t)f) ≤ IE[Cα C2αγ

λ ]m(λ)
α,γ(f) + E′

λ |t|α
(
m(λ)
α,γ(f) + π(|f |)

)
≤

(
IE[Cα C2αγ

λ ] + E′
λ |t|α

)
m(λ)
α,γ(f) + E′

λ |t|α π(|f |).

Since Cλ ≤ M and Cλ→max{C, 1} when λ→ 0, it follows from Lebesgue theorem that one
can choose λ such that IE[Cα C2αγ

λ ] < 1. Now let τ > 0 such that κ := IE[Cα C2αγ
λ ]+E′

λ τ
α < 1.

Then, if |t| ≤ τ , we have

m
(λ)
α,γ(Q(t)f) ≤ κm

(λ)
α,γ(f) + E′

λ τ
α π(|f |).

Since π(|Q(t)f |) ≤ π(|Qf |) = π(|f |), this gives ‖Q(t)f‖ ≤ κ ‖f‖+(1+E′
λ τ

α)π(|f |), and this
easily leads to (K3), with O = (−τ, τ).
Finally, since the canonical embedding from (Bα,γ , ‖ · ‖α,γ) into (Bα,γ , π(·)) is compact (this
easily follows from Ascosli and Lebesgue theorem, see [?] Lemma 5.4), Property (K4) is then
a consequence of (K3) and [?] [?]. 2

In the next proofs, except for Proposition 11.8, the technical parameter λ used above will
be neglected, namely we shall assume λ = 1, and the effective computation of the constants
occuring in the proofs will be of no relevance. So, to simplify the next estimates, we shall still
denote by C the constant in the above inequalities resulting from (L)s, even if it is slightly
altered through the computations (the effective constants will actually depend on parameters
as α, t0 ∈ IR fixed, k ∈ IN fixed, s, S ...).

Proposition 11.5 will follow from Lemma B.4 with k = 0.

B.3. Proof of Proposition 11.6. This proposition states that ‖Q(t)−Q‖Bα,γ,Bα,γ′
= O(|t|)

if γ > 0, γ′ ≥ γ + s+1
α , and I = IE[Mα(γ′+1) + CαMα(γ′+γ) + CαMαγ′ ] < +∞.

Let K = Q(t) − Q(0). Then K is associated to q(x) = eitξ(x) − 1. Using (L)s and the
inequality |eia − 1| ≤ |a|, one easily gets (i)-(ii) in Lemma B.1 with A = C |t|, a = s+ 1, and
B = C |t| and b = s+ 1− α. So

|Kf(x)| ≤ I C |t| |f |α,γ p(x)s+1+α(γ+1),

and, by using the fact that p(y) ≤ p(x),

|Kf(x)−Kf(y)| ≤ I C |t|mα,γ(f) d(x, y)α p(x)s+1+αγ p(y)αγ

+ I C |t| |f |α,γ d(x, y)α p(x)s+1−α p(y)αγ p(x)α

≤ I C |t| ‖f‖α,γ d(x, y)α p(x)αγ
′
p(y)αγ

′
. 2

B.4. Proof of Proposition 11.7. This proposition states that C(m) (m ∈ IN∗) holds with
B = Bα,η and B̃ = Bα,η′ if η ≥ 1 + s, η′ > η + m(s+1)

α , IE[Mα(η′+1) + CαM2αη′ ] ] < +∞
and IE[ Cα max{C, 1}2αη′ ] < 1.

Let k ∈ IN . Let us recall that we set Qk(t)(x, dy) = ikξ(y)keitξ(y)Q(x, dy) (x ∈ E, t ∈ IR).
For u ∈ IR, we set eiuξ(·) = eu(·). Let t, t0 ∈ IR, h = t− t0. We suppose that |h| ≤ 1.
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Lemma B.4. For k ∈ IN , we have Qk ∈ C0(IR,Bα,γ ,Bα,γ′) if γ ≥ 1 + s, γ′ > γ + (s+1)k
α ,

and I = IE[Mα(γ′+1) + CαMα(γ′+γ) ] < +∞.

Proof. Let K = Qk(t)−Qk(t0). Then K is associated to q(x) = (iξ(x))k (et(x)− et0(x)). Let
0 < ε < α. Using the inequality |eia − 1| ≤ 2|a|ε, one gets (i) in Lemma B.1 with A = C |h|ε
and a = (s+ 1)(k + ε). Using also |eia − 1| ≤ 2|a|α, we have for k ≥ 1 and for x, y ∈ E such
that d(y, x0) ≤ d(x, x0) (thus p(y) ≤ p(x)) :

|q(x)− q(y)| ≤ |ξ(x)k − ξ(y)k| |et(x)− et0(x)|+ |ξ(y)|k | (et(x)− et0(x))− (et(y)− et0(y)) |
≤ C |ξ(x)− ξ(y)| p(x)(s+1)(k−1) |h|ε p(x)(s+1)ε

+ C p(x)(s+1)k
(
|eh(x)− eh(y)|+ |eh(y)− 1| |et0(x)− et0(y)|

)
≤ C |h|ε d(x, y)α p(x)s+1−α p(x)(s+1)(k−1+ε)

+ C p(x)(s+1)k
(
|h|α d(x, y)α p(x)αs + |h|εp(x)(s+1)ε |t0|α d(x, y)α p(x)αs

)
≤ C |h|ε d(x, y)α p(x)(s+1)(k+ε)−α + C |h|ε d(x, y)α p(x)(s+1)(k+ε)+αs.

Hence (ii) in Lemma B.1 holds with B = C |h|ε and b = (s + 1)(k + ε) + αs. If k = 0, the
previous computation, which starts from |q(x)− q(y)| ≤ | (et(x)− et0(x))− (et(y)− et0(y)) |,
yields the same conclusion. By hypothesis, one can choose ε such that γ′ ≥ γ + (s+1)(k+ε)

α ,
and Lemma B.1 yields for f ∈ Bα,γ

|Kf(x)| ≤ I C |h|ε |f |α,γ p(x)(s+1)(k+ε)+α(γ+1) = I C |h|ε |f |α,γ p(x)α(γ′+1),

and, by using the fact that s ≤ γ − 1 and p(y) ≤ p(x),

|Kf(x)−Kf(y)| ≤ I C |h|εmα,γ(f) d(x, y)α p(x)(s+1)(k+ε)+αγ p(y)αγ

+ I C |h|ε |f |α,γ d(x, y)α p(x)(s+1)(k+ε)+α(γ−1) p(y)αγ p(x)α

≤ I C |h|ε ‖f‖α,γ d(x, y)α p(x)αγ
′
p(y)αγ

′

+ I C |h|ε ‖f‖α,γ d(x, y)α p(x)αγ
′
p(y)αγ

′
. 2

Lemma B.4’. For k ∈ IN , we have Qk ∈ C1(IR,Bα,γ ,Bα,γ′) with Q′
k = Qk+1 if γ ≥ 1 + s,

γ′ > γ + (s+1)(k+1)
α , and I = IE[Mα(γ′+1) + CαMα(γ′+γ) ] < +∞.

Proof. LetK = Qk(t)−Qk(t0)−hQk+1(t0), and q(x) = (iξ(x))k (et(x)−et0(x)−i h ξ(x) et0(x)).
For u ∈ IR, we set φ(u) = eiu − 1 − iu. Let 0 < ε < α. We shall use the following usual
inequalities

|φ(u)| ≤ 2 |u|1+ε, |φ(u)− φ(v)| ≤ 2 |u− v| (|u|ε + |v|ε).
Writting q(x) = (iξ(x))k et0(x)φ(hξ(x)), one easily gets (i) in Lemma B.1 with A = C |h|1+ε
and a = (s+1)(k+1+ ε). Proceeding as in the previous proof, one obtains for x, y ∈ E such
that d(y, x0) ≤ d(x, x0)

|q(x)− q(y)| ≤ |ξ(x)k − ξ(y)k| |φ(hξ(x))|+ |ξ(y)|k
∣∣∣∣et0(x)φ(hξ(x))− et0(y)φ(hξ(y))

∣∣∣∣
≤ C d(x, y)α p(x)s+1−α p(x)(s+1)(k−1) |h|1+ε p(x)(s+1)(1+ε)
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+ C p(x)(s+1)k
(
|φ(hξ(x))− φ(hξ(y))|+ |φ(hξ(y))| |et0(x)− et0(y)|

)
≤ C |h|1+ε d(x, y)α p(x)s+1−α+(s+1)(k+ε) + C |h|1+ε p(x)(s+1)k ×(

|ξ(x)− ξ(y)| p(x)(s+1)ε + p(x)(s+1)(1+ε) |t0|α d(x, y)α p(x)αs
)

≤ C |h|1+ε d(x, y)α p(x)s+1−α+(s+1)(k+ε)

+ C |h|1+ε d(x, y)α p(x)(s+1)k
(
p(x)s+1−α+(s+1)ε + p(x)(s+1)(1+ε)+αs

)
.

We have s + 1 − α + (s + 1)(k + ε) = (s + 1)(k + 1 + ε) − α ≤ (s + 1)(k + 1 + ε) + αs,
and finally one gets (ii) in Lemma B.1 with B = C |h|1+ε and b = (s + 1)(k + 1 + ε) + αs.
To prove Qk ∈ C1(IR,Bα,γ ,Bα,γ′), one can then apply Lemma B.1 by proceeding exactly as
in the previous proof (replace |h|ε with |h|1+ε, and k with k + 1, with ε such that αγ′ ≥
αγ + (s+ 1)(k + 1 + ε)). 2

Now one can prove Proposition 11.7. Let ε > 0 be such that η+ m(s+1)
α +(2m+1)ε ≤ η′. Let

I = [η, η′], Bθ = Bα,θ, T0(θ) = θ+ ε and T1(θ) = θ+ s+1
α + ε. With these choices, proposition

11.7 is a direct consequence of lemmas B.4-4’. 2

B.5. Proof of Proposition 11.8. This proposition states that, if we have, for some
γ′ > γ > 1 + s : IE[Mα(γ′+1) + CαMα(γ′+γ)] < +∞ and IE[Cα max{C, 1}2αγ ] < 1, then
conditon (S) holds on Bα,γ if and only if ξ is non-arithmetic w.r.t. Bα,γ. If moreover (CLT)
holds, then the two previous equivalent conditions hold if ξ is nonlattice.

This is a direct consequence of Propositions 5.3-4 and the following lemma. Notice that one
may suppose that γ′ is such that 1 + s+ (γ′ − γ) ≤ γ.

Lemma B.5. Under the above hypotheses, Condition (K̂) of section 5.2 is fulfilled on Bα,γ
w.r.t. the auxiliary semi-norm q(·) = | · |α,γ′. Moreover Bα,γ satisfies Condition (b2), and we
have c−1 π(| · |) ≤ q(·) ≤ c ‖ · ‖α,γ for some c > 0.

Proof. Condition (K1) holds by Proposition 11.2. Since | · |α,γ′ ≤ ‖ · ‖α,γ′ , we have (K̂2) by
Lemma B.4 (case k = 0). To prove (K̂3) and (K̂4), we observe that the norm ‖ · ‖α,γ and
the auxiliary semi-norm | · |α,γ′ may be replaced with any equivalent norm and semi-norm
on Bα,γ ; of course (K̂2) then remains valid. Given a real parameter λ ∈ (0, 1) on which
conditions will be imposed later, let us consider on Bα,γ the norm

‖f‖(λ)
α,γ,γ′ = m

(λ)
α,γ(f) + |f |(λ)

α,γ′

with m
(λ)
α,γ(f) and |f |(λ)

α,γ′ defined in B.0. It can be easily shown that ‖ · ‖α,γ and ‖ · ‖(λ)
α,γ,γ′

are equivalent ([?] Prop. 5.2). Besides, instead of | · |α,γ′ , we shall consider the equivalent
auxiliary semi-norm | · |(λ)

α,γ′ . Finally we have to establish that, for any compact set K0 in IR :

• ∃κ < 1, ∃C > 0, ∀n ≥ 1, ∀f ∈ Bα,γ , ∀t ∈ K0, ‖Q(t)nf‖(λ)
α,γ,γ′ ≤ C κn ‖f‖(λ)

α,γ,γ′ + C |f |(λ)
α,γ′

• ∀t ∈ K0, ress(Q(t)) ≤ κ.

We have Q(t) = K with q(x) = eitξ(x) satisfying Conditions (i)-(ii) of Lemma B.1 with A = 1,
a = 0, B = Cλ |t|α (Cλ > 0) and b = αs. Let f ∈ Bα,γ . Because of the presence of γ′ in the
above norm, Lemma B.1 cannot be directly applied here. However one can follow the proof
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of lemma B.1 and see that

|Q(t)f |(λ)
α,γ′ ≤ IE[Mα(γ′+1)] |f |(λ)

α,γ′ ≤ I |f |(λ)
α,γ′ ,

and that for x, y ∈ E such that d(y, x0) ≤ d(x, x0), we have

|Q(t)f(x)−Q(t)f(y)| ≤ m(λ)
α,γ(f) d(x, y)α pλ(x)αγ pλ(y)αγ IE[Cα C2αγ

λ ]

+ D′
λ |t|α |f |

(λ)
α,γ′ d(x, y)

α pλ(x)αs pλ(y)α(γ′+1) IE[CαMα(γ′+1)+αs].

Thus

|Q(t)f(x)−Q(t)f(y)|
d(x, y)α pλ(x)αγ pλ(y)αγ

≤ IE[Cα C2αγ
λ ]m(λ)

α,γ(f) + I D′
λ |t|α |f |

(λ)
α,γ′ pλ(x)

αs−αγ pλ(y)α(γ′−γ+1).

Besides we have pλ(x)αs−αγ pλ(y)α(γ′−γ+1) ≤ pλ(x)α(s+1+γ′−2γ) ≤ 1, and, by Lebesgue the-
orem, we have κ := IE[Cα C2αγ

λ ] < 1 for sufficiently small λ. The previous estimates then
gives the desired Doeblin-Fortet inequalities. Finally, since the canonical embedding from
(Bα,γ , ‖ · ‖α,γ) into (Bα,γ , | · |α,γ′) is compact (this easily follows from Ascosli theorem, see [?]
Lemma 5.4), the property ress(Q(t)) ≤ κ is then a consequence of [?] [?]. This proves the
first assertion of Lemma B.5.

Condition (b2) is obvious. The fact that ‖ · ‖(λ)
α,γ,γ′ dominates | · |α,γ′ and is equivalent

to ‖ · ‖α,γ easily gives the second inequality stated on q(·) = | · |α,γ′ . To prove the first
one, observe that γ′ ≤ 2γ, therefore IE[Cα max{C, 1}αγ′ ] < 1, so Proposition 11.1 yields
π(d(·, x0)α(γ′+1)) < +∞. From the inequality |f | ≤ |f |α,γ′ pα(γ′+1) (f ∈ Bα,γ), it follows that
π(|f |) ≤ c |f |α,γ′ with c = π(pα(γ′+1)). 2
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d’opérations non complètement continues. Ann. of Maths. 52 1 (1950) 140-147.

53



[33] Jan C. Vitesse de convergence dans le TCL pour des processus associés à des systèmes
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[46] Rousseau-Egele J. Un théorème de la limite locale pour une classe de transformations
dilatantes. Annals of Proba., 11, 3, pp. 772-788 (1983).

[47] Seva M. On the local limit theorem for non-uniformly ergodic Markov chains. J. Appl.
Prob. 32, 52-62 (1995).

[48] Yurinskii V. V. A smoothing inequality for estimates of the Levy-Prokhorov distance,
Theory Probab. Appl. 20, pp. 1-10 (1975); translation from Teor. Veroyatn. Primen. 20,
pp. 3-12 (1975).

54


