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Abstract

In part 1 (Gouin, [[1d]), we proposed a model of dynamics of wet-

ting for slow movements near a contact line formed at the interface
of two immiscible fluids and a solid when viscous dissipation remains
bounded. The contact line is not a material line and a Young-Dupré
equation for the apparent dynamic contact angle taking into account
the line celerity was proposed.
In this paper we consider a form of the interfacial energy of a solid
surface in which many small oscillations are superposed on a slowly
varying function. For a capillary tube, a scaling analysis of the micro-
scopic law associated with the Young-Dupré dynamic equation yields
a macroscopic equation for the motion of the contact line. The value
of the deduced apparent dynamic contact angle yields for the average
response of the line motion a phenomenon akin to the stick-slip mo-
tion of the contact line on the solid wall. The contact angle hysteresis
phenomenon and the modelling of experimentally well-known results
expressing the dependence of the apparent dynamic contact angle on
the celerity of the line are obtained. Furthermore, a qualitative ex-
planation of the maximum speed of wetting (and dewetting) can be
given.

Key words: contact angle, contact line, hysteresis.

1 Introduction

In [3], henceforth referred to as part 1, we proposed a model of non-
Newtonian fluids for slow movements in the immediate vicinity of the contact
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line that is formed at the interface of two immiscible fluids and a solid. Fluid
interfaces are modelled by differentiable manifolds endowed with constant
capillary energy. Solid surfaces are also regarded as differentiable manifolds
endowed with a position dependant surface energy (we only consider the case
of surfaces without surfactant). The kinematics of slow isothermal move-
ments close to the contact line, revisited in the framework of continuum
mechanics, required the adherence condition to be relaxed at the contact
line. The velocity field is discontinuous at the contact line and generates a
concept of line friction but viscous dissipation remains bounded.

Simple observations associated with the motion of two fluids in contact with
a solid wall reveal the following behaviour: depending upon whether the
fluid on the wall advances or retreats, a variable contact angle is observed.
The value of this apparent dynamic contact angle, also called simply Young’s
angle, depends upon the contact line celerity. These observations resolve
distances which are not shorter than a few microns.

The most notable unanswered problem is connected with the equation
controlling the macroscopic motion of the contact line and the justification
of contact-angle hysteresis when the fluid is advancing or receding on a solid
wall.

To verify the accuracy of the model proposed in part 1 and, particularly to
justify the Young-Dupré equation for the apparent dynamic contact angle
associated with the notion of line friction, a simple academic example is
considered for which the equations of motion together with the boundary
conditions can be integrated in a suitable approximation. This is the case
of a thin cylinder containing an incompressible fluid separated from air by a
meniscus. The apparatus is a capillary test-tube with rotation of symmetry.
In our example, we assume that the solid wall of the tube is endowed with a
fluid-solid surface energy which oscillates periodically with small variations
with very short wave length relative to the length of the tube'. The fact
that we have chosen oscillations superposed on a slowly varying function may
be justified by the possibility to solve the equations of motion analytically.
More general forms could also be considered.

For suitable dimensionless numbers corresponding to slow movements, the
equations of motion of the liquid and conditions on interfaces take simplified
forms. The two-fluid interface can then be modelled as a spherical cap. It

!Surface energies of solid walls with many small wiggles, arising from small-scale mi-
crostructural changes, appear often in scientific problems; for example, phase transforma-
tions, protein folding and friction problems (Abeyaratne, Chu and James, ) The scale
of microstructural changes is a microscopic one and consequently is of an order smaller
than the length of the tube.



turns out that the microscopic motion of the contact system is governed by
a simple differential equation. This equation is analytically decoupled from
those of the liquid motion. When the irregularities of the liquid-wall-surface
energy vary over a length that is vanishingly small relative to the size of the
capillary tube, the solution of the microscopic motion tends to a limit which
is the solution of a new differential equation. This differential equation of
the macroscopic or homogenized motion is not the limit of the microscopic
equation.

The liquid in the capillary tube is controlled by a piston. We deduce the
motion of the two-fluid interface and we study the behaviour of the apparent
dynamic contact angle for the advance and retreat of the contact line. In so
doing a hysteresis phenomenon appears. The deduced results are compared
with those obtained in the literature with methods of statistical physics and
experimental measurements.

2 The capillary tube apparatus

The apparatus is a cylindrical tube of radius a with a vertical symmetry
axis 0k. A liquid of volume Vj fills the cylinder above a position deter-
mined by a piston. In accordance with the hypotheses and notations of part
1, the liquid is in contact with air through an interface Yo;; the constant
air-liquid-surface energy is 09 = o4p. In the motion, air is considered as
incompressible. The wall of the cylinder (piston included) is denoted by 1.
The wall is inhomogeneous and the surface energy o1 = 045 — opg (differ-
ence between the superficial energies of solid-liquid and solid-air) depends
on the geometrical position on Yq4. The value o is assumed to be rotation-
ally invariant. The contact line is the curve I'y connecting the two interfaces
Y1+ and 9. Due to the axi-symmetric geometry, its representation in fig.
1 is a point P of which the position is given by the abscissa z; the point J
of the piston, the position of which is given by the abscissa L, is a function
of time commanded by an operator.

On the interval JI of the wall, the surface energy o; is assumed to be
constant with the value g19. We consider the case when the surface energy
o1 on the interval I P of the wall is such that

z
o1 =o010(1—ksin — ), 1
1 10 ( —u ) (1)
where 0 < € < 1 is a small dimensionless parameter, | k |< 1 and koqg is
positive.
Let us note that for sufficiently small e, the average value of o1 on any
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Figure 1: Circular cylinder with vertical axis filled with a liquid of volume
Vo held in position by a piston having cap form. The part of the cylinder
wall with the constant surface energy oqg is colored in grey; the part of the
cylinder wall with the non-uniform surface energy oy is hachured (see main
text). Referred to the orthonormal axis 0ik, z denotes the position of the
contact line, L = L(t) determines the position of the piston (z = y. + L).
The meniscus at the upper free surface is rotational symmetric; the apparent
dynamic contact angle between the meniscus and the wall is denoted by 6;
h is the height of the meniscus.

unspecified macroscopic set of the wall tends to 19 when ¢ tends to zero.
In relation (1) the interfacial energy oy is built by two terms. The second

is fe = —k o010 sin (z/(a a)) . The distribution f. converges to zero when ¢

tends to zero and its virtual work on ¥4 is null>. We understand that the

?Let us calculate the value of the distribution g. = sin (z/¢) when ¢ — 0, (¢ > 0). For
any function ¢ € C*°[R, R] with compact support
< Gy >= fj;osin(x/a) Ydx = sf sinvg(ev)dv = —e[cosvp(ev)]T +
e? f cos v ¢’ (ev) dv.
The first term [cosv ¢(ev)]T2 = 0 and |< g, ¢ >| < &° fj;o | ¢'(ev) | dv = Efj;o |

¢'(x) | dz . From f_Jroo | ¢'(z) | do < oo, we obtain lim < ge,¢>=0and lim g. =0
o e—0 e—0
in a weak sense.



associated force has an action only on the contact line I'y.

It is proposed to study the motion of the contact line, i.e. to determine the
value of the position z(t) as a function of time. To this end, it is necessary
to study the liquid motion.

3 Equations of motion and boundary conditions

In part 1, we proposed the equations of motion and boundary conditions of
a capillary motion of two fluids in contact with a solid wall. The equations
of motion are

pai +pi=¢; +Ql;,
where ¢ denotes the volumetric force, p the density, a the acceleration vec-
tor, Q the (non-Newtonian) viscous stress tensor and p the pressure. At the

solid wall, adherence conditions are required except at the contact line. On
the meniscus Y9, the boundary condition is

2048

7 = ( in - Qfgi) naj + (pB — pa) N2, (2)

where the indices A and B refer to the fluids L4 and Lp, ny is the unit
vector of ¥4 external to Lg, and R,,! is the mean curvature of ¥;s.

The boundary conditions on X introduce an additional unknown scalar
expressing the action of the solid wall on the fluids (see Eq. (7), in part 1).
The only pertinent parameter in the vicinity of the contact line is the appar-
ent dynamic contact angle, formulated as an implicit function of the contact
line celerity (see Section 5, in part 1); the intrinsic contact angle (see Eq.
(10), in part 1) does no longer appear in our continuum mechanics point of
view. Consequently, we denote simply by 6 the apparent dynamic contact
angle and, in the following, we refer to it as the Young angle. The dynamic
Young-Dupré equation on the contact line is

ogcos 0+ o1 +vu=0 (3)

where v is the line friction and u the contact line celerity. The functional
representation of v and its value were studied for a plane two-dimensional
motion in part 1 and can be extended to an axi-symmetric motion. The
line friction depends on the apparent dynamic contact angle (see Eq. (27)
in part 1), and is positive.

It is the problem of the meniscus that determines the moving boundary
including the contact line. To this end, a complete picturing of the fluid-fluid



interface is necessary. In fact, the geometry of the meniscus is a consequence
of the flow of the two fluids in the vicinity of the meniscus and this flow is a
functional of pertinent dimensionless parameters. Without wanting to redo
what many authors have previously done, it is useful to recall the main
results known in the literature.

Many papers are concerned with the shape of the meniscus near the contact
line in capillary tubes. West, [BI]], was among the first to study this problem.
Concus, [[], presented an analysis of the static meniscus in a right cylinder.
Analysis using the Navier-Stokes equations and comparing results with ex-
periments of advancing interfaces in cylinders were undertaken by Hoffman,
5, Legait and Sourieau, [1J], Finlow, Kota and Bose, [[[1], Ramé and
Garoff, [P4]. Zhou and Sheng, [BJ], analyzed the link between macroscopic
behaviour of the displacement of immiscible fluids in a capillary tube and
the microscopic parameters governing the dynamics of the moving contact
line; Thompson and Robbins, [@], performed molecular dynamics simula-
tions in the hydrodynamics of the contact line; Dussan, Ramé and Garoff,
0], Decker et al, [§, gave considerations on the contact angle measure-
ments; Voinov, [BJ], proposed a thermodynamics approach to the motion of
the contact line. In all these papers, the following dimensionless numbers
are of significance,

Reynolds number R, = L’u’ ,

capillary number Cy, = ——— ,

A 2
Weber number W, = pua ,
02
2
Bond number B = Api ,
02

where Ap is the density difference between the two fluids, ¢ is the accelera-
tion due to gravity and g is the viscosity in the liquid bulk.

A vertical capillary system treated with an asymptotic simplification was
undertaken by Pukhnachev, [RJ], and Baiocci and Pukhnachev, [f]. Their
study involves Navier-Stokes fluids paired with an imposed apparent dy-
namic contact angle as an additional condition at the points of contact
between the free boundary and the solid wall. The problem of the dissipa-
tive function becoming infinite near the contact line is avoided by introduc-
ing a slip length at the solid wall. It appears that for two-dimensional or
axi-symmetric motions, when the capillary number tends to zero, the free



interface tends uniformly to the equilibrium position.

Moreover, to minimize the effect of gravity on the meniscus shape, the cap-
illary tube radii are generally of order less than 1 mm. A quantitative
assessment of relative effects of gravity and capillary forces can be made
on the basis of the Bond number. In Foister, [L], it is experimentally and
theoretically proved that the capillary effects dominate over gravity for all
systems when B < 1. Likewise, the relative importance of inertial and capil-
lary effects can be characterized by the Weber number. In all experimental
systems, when W, < 1073, inertial effects did not significantly affect the
three phase boundary motion.

In 1980, Lowndes, [24], performed numerical calculations of the steady
motion of the fluid meniscus in a capillary tube. He showed that when
R. < 1072, the meniscus formed by an incompressible Newtonian fluid can
be determined by using the creeping flow approximation. In this case, our
proposed non-Newtonian model has the same streamlines as the Navier-
Stokes model, [LJ]. The method used by Lowndes considers a slip length
less than 10 Angstroms near the contact line. This length is of the same
order as the distance from the contact line where the fluid is no longer New-
tonian. Comparisons between the calculated and observed contact angles
are in accordance with the experiments of Huh and Mason, [[L]; conclusions
agree with those in part 1. In the partial wetting case, when C, < 1072, a
Young’s angle in the interval [%, 5%] verifies Eq. (3).
In what follows, we wish to simplify the formidable mathematical problem
and describe the dynamics of the air-liquid interface by a suitable approxi-
mation with as few parameters as possible. The fluids are considered to be
Newtonian except in a close (molecular) vicinity of the contact line, [[13].
Boundary condition on the meniscus is the classical equation (2). For slow
movements, when R, < 1072, C, < 1072, W, < 1072 and B < 1, the capil-
lary flow is axi-symmetric, and the shape of the surface ¥;2 at a given time
t is described as a spherical cap where the angle with ¥;; is the apparent
dynamic contact angle.

At 20° Celsius, for water, in c.g.s. units, p = 1, 5 = 0.01 and for an air-
water interface oo = 72. When a = 0.1, the above conditions on R, Cy, W,
and B are largely verified with a velocity u of some centimeters per hour.
Similar results are obtained for glycerol (p = 1.26, gy = 11.8 and o2 = 63)
with a velocity u less than a meter per hour.

In the developments of section 4 below, these conditions are assumed to be
fulfilled.



4  The motion of the contact line

Let us present some analytical formulae related to the geometry of the con-
tact line, see fig. 1.
The volume of the spherical cap with height h and span 2a is

h
V= % (h2 + 3a2), where h € [—a,al.

The volume of the liquid in the cylindrical tube is constant, so
h
Vo = ma’y. + % (h? + 3a?)

is constant. Let Iy be such that ma®ly = V. Then,

~h 9 9 T 6 h
ye—lo——6a2 (h* +3a”) and tan(4—2)——a. (4)

If A =h/a where X\ € [—1,1], then

2\
cos = ———~ . 5
(1+ A% ©)
Egs. (4), (5) establish the connections between y. and h and between y.
and 6. From y. = z — L and taking Eq. (4) into account, we deduce

z=lg+L— (h2+3a2)zl0+L—%)\()\2+3). (6)

6a?
For a given value of ¢t and for A belonging to [—1, 1], z is a decreasing function
of A\ with values in the interval [lp + L —2a/3,lop + L + 2a/3].
With v = dz/dt and the above expressions, the dynamic Young-Dupré Eq.
(3) yields

dz  2)
Yat T (1102

where v is also a function of z through the Young angle #. Taking Eq. (1)
into account, we obtain

02 — 01,

2
= f(z,t)—{—Ksingia with f(z,t) = ﬁag—aw and K =koyg .
(7)

Remarks: The surface of the spherical cap is 7 (h?4-a?). The capillary energy
of the total system per unit length of the circumference of the capillary is
We; so,

Yt

z

2naW, = wog (h? + a?) + 271(1/ o1 dz,
L

8



Relation (1) implies,

h? a z z z
We:UQ(—+_)+/ 010 dZ—/ koyg sin — dz,
2a 2 L 27 €a

where z; denotes the abscissa of the point I (see fig. 1). Consequently,
We:WO+W1+Cte

with
2

Wo=09—+4o010(z—L), Wiy =kopea COSi, (8)
2a ea

and C%* = 09a/2 — kojpea cos(zr/ea) is an additional constant.
By taking relation (6) into account, we obtain

oh 2(12 6WO an z
PV 2T and = —f(zt — _kosin - .
0z R +az 0z (1), 0z 705 2,
Eq. (7) can now be written in the form
dz oW,
v dt 0z )

which is an equation for a unidimensional motion of a mechanism with linear
friction where the effects of inertia (associated with the second derivative
d?z/dt?) are absent. In subsection 4.1, we will see that the behaviour of the
solutions of Eq. (9), when the parameter ¢ is vanishingly small, is completely
different from what happens when the effects of inertia are present in a
dynamics equation.

4.1 Asymptotic analysis of the motion of the contact line

The differential equation (9) yields the motion of the contact line. The
behaviour of the solutions when € tends to zero has already been studied
in the literature within the framework of a problem associated with shape
memory alloys (Abeyaratne, Chu and James, [}]).

Note that Eq. (7) implies 0f/0z (z,t) = (4o2/a) (A\? — 1)/(A\* + 1)3; for
t given and A € [—1,1], f(z,t) is a decreasing function of z. We consider

the case associated with an average surface tension o1y of partial wetting
corresponding to an average Young angle 8, such that,

o9 cos b, +o19=0.



Consequently, the inequality, | 019/02 | < 1, is verified. Since oy is positive,
this relation is equivalent to the inequalities

o9+010>0 and o9 — o019 > 0. (10)

The equation of the contact line motion is only valid for partial wetting,
nevertheless, we obtain the following limit relations associated with the limit
values of \:

Eq. (5) expresses the connection between A\ and 6; analytically, for A = —1,
cos # = 1 and the Young angle § = 0. Eq. (6) expresses the connection
between A and z; for A = —1, z = Iy + L + 2a/3, for which Eq. (7) implies,
f(z,t) = —010 — 02.

In the same way, for A = 1, the Young angle § = 7 and z = [y + L — 2a/3,
for which f(z,t) = —o10 + 02.

Consequently, under conditions (10), for K = ko sufficiently small, the
differential equation (7) fulfills exactly the conditions of the asymptotic theo-
rem presented in the Appendix. Thus, it is possible to deduce the behaviour
of the solutions from Eq. (7) when ¢ tends to 0. Our aim is not to discuss
the general solution of Eq. (7) when L(t) is an arbitrary function of ¢. We
only consider two significant cases encountered in experiments (Raphael and
de Gennes [RY]), namely (7) piston at rest and (#) piston in uniform motion
(L(t) = vg t).

With y. =z — L(t) = lp — (a/6)A\(A\? + 3), let us define the function F' by

2

F(ye) = f(z,t) = m

o9 — 010 = —O’zCOS@—O’lo. (11)
Then, y. satisfies the relation

y%—i—y vo = F(ye) + Ksineia ,
where y:(0) = yp and v is a function of y.. Now, straightforward adapta-
tion of the asymptotic theorem in this simple case yields the macroscopic
behaviour of the contact line:
When ¢ — 0, 5.(t) converges uniformly to y(t) € C'[RT] and satisfies the
differential equation

/(o) % = Gy), (12)

10



where y(0) = yp, v is now a function of y in place of y. and
[F2(y) — K22 —vwg,  if y <y,
Gly) =4 —vvo if YT <y<yt, (13)

—[F2y) — K27 —vwp, iyt <y
y~ and y* are constants verifying the relations
Fiy')=K and F(y")=-K.

Now, we study the two main classes of the dynamical systems (Penn and
Miller, [PJ]): those in which the interface is in non-equilibrium and moves
to an equilibrium, and the others in which the advancing interface is driven
on the solid wall of the cylinder with a constant velocity.

4.2 (i) Piston at rest

In this subsection, the piston is fixed (vp = 0 and we take z = y.). In
Eq. (8), the potential Wy is now independent of ¢ and a convex function
such as that shown in fig. 2. The differential equation corresponding to the
asymptotic behaviour of Eq. (9) when ¢ — 0 is expressible in terms of the
potential Wy as follows

oW

where G(y) is defined in (13). When K is sufficiently small, the driving force
G(y) has square root singularities (see (13) with vg = 0). The functions W}
and Wy are convex, but W; is not the limit of W, when ¢ — 0 (as W)y
is). When changing the scales - i.e. when € tends to zero - Wy cannot
be regarded as the limit of the sum of separate energies associated with the
mean energy Wy and the energy of the perturbation W, — Wy. This shows
that by changing the scale we lose the additivity property of the energy for
the solution of the limit differential equation: Wy is not the potential energy
limit. However, a physical interpretation of the previous limit behaviour
can be given. When ¢ — 0, the potential W, admits on [y ,yX] a large
number of local minima whose respective distances converge to zero with e.
For any initial position yg € [yZ, y] the closest local minimum is reached in
an infinite time. When ¢ tends to zero, any initial position yg of the interval

[y, yX] is located between two local minima whose gap tends to zero with
€. On a macroscopic scale the local minima find themselves together with

11
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Figure 2: Traces of the three potentials W,, Wy, W, when the piston is at
rest. In suitable units, we can take the values a = 1, K = 0.005, 019 =
—0.5, 09 = 1. The curves are centered around z = z,, associated with
0, = Arccos 0.5 (coordinate z is defined up to an additive constant). The
potentials Wy, W, and W have been shifted up or down for better visibility
(since potentials are defined up to an additive constant). Note that W
is the limit of W, when ¢ tends to 0, but this is not so for Wy which is
fundamentally different: tangent lines at the limiting points z~ and 2z are
parallel to the z-axis and the function G(z) = —0W/dz is of square root
type at these points.

the initial value which becomes a position of equilibrium. Note that the
angle 04(0), given by the value A, drawn from Egs. (5), (6), corresponds to
the y- -position. In the same way, an angle #z(0) corresponds to the y-
position. In fact K = koo is positive and, consequently, 64(0) and 6z(0)
are solutions of the relations
— k — —k
cosOr(0) = ZO0 TR0 g cosf4(0) = — 10— 710 (14)
09 g2
Then,
Or(0) < 0,, < 04(0) .

An angle 6 € [0r(0),0.4(0)] corresponds to an initial position yo € [y=,yZ].
This is not so for yo ¢ [y-,y7|. Indeed, in this case, the second member G(y)

12



of the asymptotic equation of motion (12) of the contact line, constitutes
a non zero attractive force toward the points y- and yX. The points y-
and yI are now reached in finite time due to the explicit convergence of the
solutions of Eq. (12) (see Appendix for the computation of these times).
The position y- (resp. yr) is the position of equilibrium associated with
Yo < y- (resp. yo > yI) to which angle 64(0) (resp. 0z (0)) corresponds.
This static case indicates that the Young angle 6 is included in the interval
[0r(0),04(0)]. The final value of #, denoted by 0, depends on the initial
position yg of ¥ and, consequently, on the initial value 6y of . We obtain
the asymptotic behaviour

bo € (0r(0),04(0)) = 0p=0bo,
Oy < HR(O) - 9f = HR(O) s (15)
9029,4(0) - HfZGA(O) .

4.3 (ii) Piston in uniform motion

When vg # 0, it is easy to prove that for all initial conditions yg, a constant
solution to Eq. (12) is reached in a finite time. In the Appendix, an order
of magnitude of this time is calculated. We obtain u = vy.

When the piston advances, vo = u > 0 and when the piston retreats,
vg = u < 0. The constant solutions of Eq. (12) are given by

F2(y) —k? o3y — *u?=0.

Taking into account the definition of F' in relation (11), the value of the
advancing angle 6 4(u) is

— 010 — /K202y + V2 u?
Oa(u) = Arccos( o L ) . (16)1

02

The same arguments yield the value of the retreating angle 6 (u)

— 010+ /K202 + 1202
Or(u) = Arccos ( 10 ,

02

(16)2

and we deduce the inequalities

Or(u) < 0r(0) <6, <04(0) <BOa(u) .

13



The Young angle 6 is a function of the contact-line celerity u in an universal
form. In fact, the line friction v depends on 6 but v/vg, (where vq is a
constant friction value) belongs to the interval [1,1.7] when 6 € [30°,150°]
(see part 1). A simple approximation of (16) consists to consider v as a
constant (for example an average value of the line friction like 1.35 vp).

(a) (b)
175} 6 175} g
140 140
105 105
70 70
35 35
u u
1 0 1 1 0 1
(c) 180 (d)
170} © 2]
140 150
120
90 90
60 60
30 30
u u
-1 0 1 -1 0 1

Figure 3: Values of the Young angle as functions of the celerity u of the
contact line. We plot different formal cases associated with relations (16);
and (16)2 and convenient values of 01,02, k,v. In panel (a), k = 0 and the
Young angle 6,,, is 90°. In panels (b), (c¢) and (d), k¥ # 0 and the Young
angle 6, has values 90°, 120° or 60°. In cases (b), (c) and (d), we note a
hysteresis phenemenon due to the discontinuity of 6 for v = 0. The unit of
the u-axis depends on the fluids.

14



5 Comparison between results, experimental data
and other models obtained in the literature

We propose a model of hysteresis of the contact system at the interface
liquid-fluid-solid with the aid of which experimental results can be inter-
preted. Moreover, we find that the behaviour matches that obtained by
kinetic molecular arguments in the literature.

5.1 The dynamic line tension behaviour

The differential equation (7) is equivalent to Eq. (3) in the form
dz

v— = —0gcosf —oq .
pr 2 1
Following the expression for the solid-surface energy, the emerging equation
admits a macroscopic behaviour expressed by the differential equation (12).
When the piston is at rest, the macroscopic contact-line motion is governed

by the equation (see Eq. (12)):

dz

v pri

where the sign + or — depends on the direction of the line motion and

ko1p = max | o1 — o019 | is the maximum of the fluctuations in the fluid-
solid energy with respect to its average value 7.

The average value of the surface tension is 7 = g9 cosf + o19. It has the

+ (o9 cosf + a10)% — k? 0%0]% ; (17)

dimension of a force per unit length. If 7,, = —koqg represents the value
of T at 8 = 6,4(0) (see relation (14)), when the angle 6 is close to 64(0), we
obtain

d
v = (7 = TR V2T (T - T)? (18)
When the Young angles are small, on expanding 6 to order 2, we obtain
02 — 6%(0) = Bo(T — Tm) , (19)

where (3 is a suitable constant.
The results are extendable to the case of a piston in advancing motion. Eq.
(17) remains unchanged, but the dynamic angle of contact is such that

(o2cos8 +019)? — ko?y —v2u? =0.

Noting that 7, = —\/(02 cos + 019)? — v? u?, the previous results are un-
changed but | 7, |<| 7, |.
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When the contact line retreats, it is easy to present similar calculations and
to obtain analogous results.

These results are similar to those obtained in the literature by molecular
statistics or single defects (Ruckenstein and Dunn, [€]). For example, Eq.
(18) and Eq. (19) and an analysis of their consequences are also presented
in Raphael and de Gennes, [RH], Joanny and Robbins, [1§].

5.2  Limit velocities of the contact line

Limit velocities for advancing and retreating contact lines have been exper-
imentally found and described in detail (Hoffmann, [[L5], Dussan, [{], Blake
and Ruschak, [ff], Chen, Ramé and Garoff, [§], Decker et al, [§]). These ve-
locities are generally outside the domain of validity of Eq. (3). Nevertheless,
we formally extend our calculations to the case 6 € (0,7), and the asymp-
totic behaviour obtained in subsection 4.1 makes it possible to calculate the
limit velocities! Of course, this extension corresponds to the fact that the
forms of the graphs of 6 as a function of u presented in fig. 3 are similar
to experimental graphs proposed in the literature. Indeed, the advancing
Young angle must be smaller than m. The celerity of the contact line is u,
and the associated line friction v,. Relation (16); yields

Uy Uy = \/(02 —010)2 — k203, . (20)

In the same way the retreating Young angle must be larger than 0. The
celerity of the contact line is now wug and the associated line friction vq.
Relation (16)2 yields

Vouoz—\/(02+010)2—k20%0- (21)

Notice that the velocities ug and u, do not have the same absolute value.
With this crude approximation, when the line friction is chosen with a con-
stant value v, knowledge of 03, 019 = 71, ug and u, allows us to determine
K =koyg and v.

In the Appendix, it is proved that the representation (1) for the sur-
face energy is only a convenient way to consider calculations with surface
heterogeneities. The representation is extendable to any periodic function
with variations on short intervals with respect to macroscopic sizes. Con-
sequently, the previous results make it possible to investigate the surface
quality and line friction by simple measurements.
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5.3 Connection between the dynamic contact angle, the line
celerity and the line friction

The purpose of this paragraph is to show by comparison with simple exper-
iments that our model leads to qualitative and perhaps some quantitative
coincidental behaviours of the contact system with experimental evidence.
The simplest way is to consider the surface inhomogeneity given by our
model represented by relation (1). The values of 019, o2 and k, allow us to
draw the graphs of the applications given by (16); and (16)2, (see fig. 3).
Only the ratio 019/02 and the value of k are important.

We present in fig. 4 experimental layouts drawn in the literature for an
advancing motion of the contact line (Zhou and Sheng, [B3]). The similarity
of the theoretical graph and the experimental data is striking. Nevertheless,
we must note that the experimental data in the literature is always pre-
sented in logarithmic scales. This comparison makes it possible to obtain
numerical values for the line friction v (as an average) and the limit veloc-
ities up and u,. We use the experimental results for liquid flows in contact
with air in capillary tubes. Results do not take any explicit account of the
inhomogeneity of the tube walls. In the model suggested by relation (1), the
solid surface inhomogeneity is represented by the factor k. In fact, k < 1,
and in relations (20) and (21) the term k% o3 is neglected in comparison to
the terms (02 — 019)? and (02 4 019)?.

In order to be in agreement with the experimental conditions, we suppose the
diameter of the tube to be about 1 mm. We deduce the numerical relations
between the celerities C, and u for two liquids. These expressions are given
in c.g.s. units. For water we obtain u = 7200 C, and for glycerol u = 4.2C,.
The experimental curves yield limit velocities of the contact line. In various
measurements they represent values for C, and range between 1072 and
10~!. For an air-glycerol interface, these values correspond to the limit
celerity u, with a value between 0.042 cm s ~! and 0.42 cm s ~!, and for
an air-water interface the limit celerity u, lies between 72 cm s ~! and 720
cm s ~'. They are widely out of the range of validity of our model, but for
a wonder, they are in good agreement with experimental results!

For glycerol and a limit celerity of 0.42 cm s ~! and for a static wetting
angle 0.4(0) of about 50°, we obtain a line friction of about 240 Poise. For
water and a limit celerity of 100 cm s ~!, the line friction is about one Poise.
Let us note that the case of water is obviously less realistic than the case of
glycerol. These values of the line friction are of the same order of magnitude
as those obtained with relation (26) in part 1.
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Figure 4: Apparent dynamic contact angle plotted as a function of C, =
o u/oe. The Cy-axis is based on a logarithmic scale. Panels (a) and (b) are
associated with the data of J.P. Stokes et al. (ref. 13 from Zhou and Sheng,
[BZ). Panels (c) and (d) are associated with the data of G.M. Femigier and
P. Jenffer (ref. 12 from Zhou and Sheng, [BF]). Solid curves are calculated
with (16);. The solid surfaces are assumed to be sufficiently smooth for the
hysteresis to be small. It is easy to adjust the values of 019,092 and v to fit
the experimental data given by points.

6 Conclusion

We proposed in this paper a dynamic model of slow movements of the contact
system between two fluids and a solid surface. Comparison between our
results and recent experiments or behaviour inferred from statistical physics
shows good agreement on the qualitative level and, more unexpectedly, on
the quantitative side. The most significant innovation in this paper is the
introduction of the notion of line friction. This term is essential to the
construction of the model. The line friction depends on the Young angle,
but an order of magnitude for its average value can be obtained by using
experimental measurements in the literature.

The Young-Dupré relation (3) takes the inhomogeneity on the solid surface
into account. It describes the microscopic behaviour of the Young angle.
The inhomogeneity is distributed at distances between a few tens to some
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hundred Angstroms. This distance is that of the operating ranges of inter-
molecular forces which command the surface energies. At the lower part of
this scale, energies are homogenized and these distances on a macroscopic
scale are no longer significant. The shape of the surface is prescribed on
larger scales.

The results are independent of the radius of the tube. Indeed, the hysteresis
behaviour solely depends on the physico-chemical properties of the solid
surface. The universal form of the hysteresis loop makes it possible to discuss
the general case independently of any particular apparatus. Relations (20)
and (21) can be written without difficulty using the inhomogeneity of the
solid surface in a form different from Eq. (1).

Not all the efforts on the contact line have the same effects: the one associ-
ated with the rapid oscillations of the surface energy of the wall, (Ksin (z/ca)),
produces a work that tends to zero when the wave length of the oscillations
tends to zero. This effort appears in the macroscopic expression of the con-
tact line motion represented by Eq. (12). It is noteworthy that the weak
differences between the potentials Wy and W, have huge implications. This
may seem surprising at first sight. It is due to the fact that the contact line
is massless and consequently its motion equation is not in the same form as
for material systems. Some authors model contact lines as lines with matter
(Slattery, [7]); nevertheless, the inertial force associated with the mass of
the line is generally of an order smaller than the magnitude of the force due
to the line friction.

Finally we note that jumps on the inhomogeneity are considered by Jansons,
(7. A shift factor is proposed by Hoffman, [[§], correcting the relation
between u and #. These considerations appear unnecessary in our model
where movements are slow and 6 is the apparent dynamic contact angle.
Furthermore, the experimental literature notes the influence of evaporation
on the relaxation time for approaching the apparent dynamic contact angle
(Penn and Miller, PJ]). Similar inferences are drawn for equipments which
are subjected to vibrations (Marmur, [R1]). The relaxation time of the
apparent dynamic contact angle is obtained by phenomenological methods
(Hoffman,[[[§], Penn and Miller, [P2]). It corresponds to the calculations
carried out in the Appendix.

Lastly, other models for high-speed motions of the contact line using a notion
of dynamic surface energy are also considered in the literature: Shikhmurzaev,
[BY), Blake, Bracke and Shikhmurzaev, [[]. Their study is outside the scope
of our slow movement model.
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7 Appendix: Proof of the fundamental theorem

Consider the differential equation

v(z) % = f(z,t) + Ksing (A1)

(we present the same differential equation as Eq. (7), but f may be a more
general function than listed in (7), and @ = 1 corresponds to the choice of a
convenient unit of length).

The following hypotheses are assumed:
e K and € (¢ < 1) are two strictly positive constants;
e f is continuously differentiable for any z € R, and for any t € R,
af/0z <0
e There exist 2z~ and z* belonging to C*(R) such that for any t € R+

f(z7,t) =K and f(z",t) = —K; (A2)

e v is a strictly positive continuous function of z.

Remarks: The fact that for ¢ fixed, f(z,¢) is a decreasing function on
[0, +00), implies 2~ < z*. Differential equation (A1) yields a single solution
2:(t) defined in R* with 2.(0) = zg, (the differentiable equation fulfills the
conditions of uniqueness of the Cauchy problem (Hartman, [[[4])).
We obtain the fundamental result that gives the behaviour of z.(t) when ¢
tends to 0 from the following theorem

Asymptotic theorem

When ¢ tends to 0, z.(t) converges uniformly to z(t) belonging to C1[R*]
and satisfying the differential equation

WD) % = g(1), (43)

where z(0) = z and
[f2— K22 if z<z (1),

g(z,t) = 0 it 27 (t) <z<2zt(t),
[f2-KYr i 2t() < 2.
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The theorem, proved for v(z) = constant, is extended without difficulty for

v(z) belonging to [a, 8] where 0 < a < 8 < 00 3.

Let us give an elementary proof of the fundamental theorem. For a
complete demonstration using Young measures, we refer to Abeyaratne, Chu
and James, [, f]. We just consider the case v = constant (v = 1 with
a convenient unit) and f independent of t. For the variable z belonging
to a compact interval, the segment [—1,1] is considered. The hypothesis

df/0z < 0 corresponds to strict convexity of W) (OWO/ﬁz = —f(z)) For a

given e, consider zg € [—1, 1] as the initial value of the solution z.(t) of Eq.
(A1). The critical points of Eq. (A1) are the roots of

f(z)—l—Ksing:O.

The roots belong to the interval [z~, 27]. Let us consider the case for which
2o is smaller than z~; when T is sufficiently small, it is the same for z.(t)
with ¢ € [0,7]. Let us calculate the limit values ¢ according to position z
when ¢ tends to zero. For ¢ < 1, the function sin (z/e) oscillates rapidly
between -1 and 1. Let zp. be the value immediately above or equal to zg
such that sin(zp./e) = —1 and let z; . be the value immediately below or
equal to z:(t) such that sin(z;./¢) =1. Then,

Zl,e dz
lim —— =1.

=0 Lo f(2) + Ksin
g

Let us divide the interval [zo, 21 c] in intervals of length emw. Then,

/Zl € dz N-1 /ZO,E+(I7+1)57T dz
20,e f(z) + K’sinE B p=0 7 70,e TP f(z) + K’SinE ’
3 9

where N = (210 — 20,)/(em)
At each interval [zo. + pem, 29 + (p+ 1)em| the change of variables s =

z
sin — yields
€

N—1
+1 eds

#1,e dz
L. fo) + Ksin® > [, (FN) + Ks)VI—2

3f ¢ = fz v(s)ds, € is a strictly increasing function of z corresponding to a bounded
change of length scale depending on the considered point and fi(&,t) = f(z,t) is a de-
creasing function of &.
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) T s . .
where A = garcsin s and A € [epm — 85, epm + 85] Because f is continuous,

this expression has the same limit when ¢ tends to zero as

1 = +1 ds
o pZ:O “r /_1 (f(epm —eZ) + Ks)VI — 52
or
1 = +1 ds
= /_1 (flepm+eZ) + Ks)VI—s2 '

which are two sums of Darboux integrals

/% </_+11 7(2) H?i)m) dz-

When ¢ tends to zero, this expression converges to

z(t) 1 +1 ds
/ZO 7 (/1 (f(2) + Ks)v1 - s2> de=t.

Because f(z)? > K2, the change of variables s = sina yields

+1 ds B T
/_1 (f(z) + Ks)WV1—3s2 /f(2)?—- K2

and finally,

z(t) dz _,
/zo VIRZE-K2
Z2=/f(2)? - K?2.

In the same way, for zg above z* we obtain,

which implies

2=—/f(2)?—-K2.

When zy belongs to the interval [z7, 2], it is easily seen that there exists a
critical point Zz of Eq. (A1) such that | Zz — zo |< be where b is a positive
constant depending only on K and f. The solution of Eq. (Al) tends in
a monotonous way towards z;. Consequently, for ¢ belonging to [0, 400,
z¢(t) converges uniformly to zy when e tends to zero. The macroscopic law
associated to zg belonging to [z7, 2] is 2 = 0.
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General oscillations

We consider the superimposed effect of an arbitrary smooth periodic func-
tion P(z/¢) in place of sin (z/¢). We can assume without loss of generality
that P(z/¢) has a zero average, (in other cases, we add a constant to f).
The amplitude of P gives the placement of the flat region as in figure 2:

—max P < f(z,t) < —min P

With the same hypotheses as in the theorem we define 2~ (¢) and 2T (¢) such
that
f(z=(t),t) = —min P and f(z"(t),t) = —max P ;

so the flat region remains [z~ (t), 27 (¢)].

In the special case when f is independent of ¢, the calculation is developed
in the same way as previously. The results are unaltered with —min P in
place of K and —max P in place of —K.

The complete proof of this extension is given in Abeyaratne, Chu and James,

B

Relaxation time associated with Eq. (A3)

We consider the case when g is explicitly independent of ¢ and v is constant.
For zp < z7, let

z du
For zp near 27, f(u) + K ~ 2K and f(u) — K ~ (u— 27 )f'(27). Then,
fw)?—K?>~2K(u—2")f(z") and

2 -
TR Ve

The x-value yields the magnitude of the relaxation time necessary to obtain
the final position of the contact line.
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