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Abstract

In this paper, we study the notion of entropy for a set of attributes of a table and
propose a novel method to measure the dissimilarity of categorical data. Experi-
ments show that our estimation method improves the accuracy of the popular unsu-
pervised Self Organized Map (SOM), in comparison to Euclidean or Mahalanobis
distance. The distance comparison is applied for clustering of multidimensional
contingency tables. Two factors make our distance function attractive: first, the
general framework which can be extended to other class of problems; second, we
may normalize this measure in order to obtain a coefficient similar for instance to
the Pearson’s coefficient of contingency.

1 Motivations

Clustering is the problem of partioning a finite set of points in a multidimensional
space into classes (called clusters) so that points belonging to the same class are simi-
lar. Measuring the (dis)similarity between data objects is one of the primary tasks for
distance-based techniques in data mining and machine learning, in particular in the
case of categorical data. If the data vectors contain categorical variables, geometric
approaches are inappropriate and other strategies have to be found [10]. This is often
the case in applications where the data are described by binary attributes [1, 2]. These
methods transform each data object into a binary data vector, at which each bit (0 or 1)
indicates the presence/absence of a positive attribute value.
Many algorithms have been designed for clustering analysis of categorical data [3, 4,
5, 6]. For instance, entropy-type metrics for similarity among objects have been devel-
opped from early on. SOM is a well known and quite widely used model that belongs to
the unsupervised neural network category concerned with classification processes. In
this paper, we focus on the metric choice for the prototype to observation distance esti-
mation during the self-organization and exploration phases. The distance most widely
used in SOM is the euclidean distance that consider each observation dimension with
the same significance whatever the observation distribution inside classes. Obviously,
if the data set variances are not uniformly shared out among the input dimensions, clas-
sification performances decrease. We address here the following questions: (i) what
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class of discrepancy function admit efficient clustering algorithms ? (ii) how to vizual-
ize the classes and the explanatory variables ? For answers to (ii), see e.g. Blayo [7],
Kohonen [8] or Krukal and Wish [9]. The problem corresponding to the question (i)
becomes more challenging when the data is categorical, that is when there is no inher-
ent distance measure between data objects. As a concrete example, consider a database
that stores informations about physical characteristics. A sample is a tuple expressed
over the attributes ’Age’,’Sex’, ’Height’ and ’Hair’. An instance of this database
is shown in Table 1. In this setting it is not immediately obvious how to define a qual-
ity measure for the clustering. On the other hand, for humans, a good clustering is one
where the clusters are informative about the tuples they contain, i.e. we require that the
clusters be informative about the attribute values of the tuples they hold. In this case,
the quality of measure of the clustering is the information that the clusters hold about
the attributes. Our main contribution lies in the use of a non-euclidean metric in the
learning or the explorating phase.

Age Sex Height Hair
Old Young Male Female Tall Short White Brown Blond

0 1 0 1 0 1 0 1 0
0 1 0 1 1 0 0 0 1
1 0 1 0 0 1 0 0 1
0 1 1 0 1 0 1 0 0

Table 1: An instance of the physical characteristics.

This paper is not (directly) concerned in numerical estimates of multidimensional en-
tropy such as sample-spacings, kernel density plug-in estimates, splitting data esti-
mates, etc.
The rest of the paper is organized as follows. Section 3 set down notations and shows
the equivalence between the Rényi entropy-based dissimilarity measure and χ2 diver-
gence. In section 4, we investigate the proposed measure’s properties and its computa-
tional complexity. Experiments with artificial data are presented in section 5. Conclu-
sions, suggestions for drawbacks and further work are given lastly.

2 Entropy of a table of categorical data

Let J and I two finite sets indexing two categorical variables and let M be a I × J
table of frequencies (Tab. 2). Let fij be the frequency (usually a integer) in the cell
corresponding to the ith row and jth column of an m × n contingency table and let
fJ = {f·j}j∈J and fI = {fi·}i∈I be the vector of row and column marginals, i.e.
the sums of elements in the ith row and jth column respectively. In the following

pij =
fij

f0

, pi· = fi·

f0

, p·j =
f·j

f0

, where f0 =
∑m

i=1

∑n

j=1 fij =
∑m

i=1 fi· =
∑n

j=1 f·j .

f11 f12 . . . f1n f1·
f21 f22 . . . f2n f2·

...
. . .

fm1 fm2 . . . fmn fm·

f·1 f·2 . . . f·n f0

→

p11 p12 . . . p1n p1·
p21 p22 . . . p2n p2·

...
. . .

pm1 pm2 . . . pmn pm·

p·1 p·2 . . . p·n 1

Table 2: m× n contingency tables.
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From elementary courses in statistics, we know that for any contingency table with
given row and column sums, the maximum entropy value of

D12 = −

m
∑

i

n
∑

j

fij

f0
ln(

fij

f0
) =

1

f0
(f0 ln f0 −

m
∑

i

n
∑

j

fij ln fij) (1)

is obtained when fij =
fi·f·j

f0

or pij = pipj , so that

max(D12) = −
m

X

i=1

n
X

j=1

pi·p·j ln pi·p·j =

m
X

i=1

pi· ln pi· +

n
X

j=1

p·j ln p·j = D1 + D2. (2)

This shows that D12 ≤ D1 + D2. The non-negative quantity D12 − D1 − D2 can
therefore be considered as a measure of the dependence of the 2 attributes. Now,

D12 −D1 −D2 =

m
∑

i=1

n
∑

j=1

pij ln
pij

pi·p·j
(3)

can also be interpreted in terms of Kullback-Leibler’s measure of directed divergence
(see section 3). Let us find its value for a small departure from independence eij . Let
pij = pi·p·j + eij , then from (3),

D1 + D2 − D12 =

m
X

i=1

n
X

j=1

pi·p·j ln

„

1 +
eij

pi·p·j

«

+

m
X

i=1

n
X

j=1

eij ln

„

1 +
eij

pi·p·j

«

(4)

Using Taylor’s development of ln(1 + x) in (4), we have:

D1 +D2 −D12 =
X

j,i

»

eij −
e2

ij

2pi·p·j

+
e3

ij

3(pi·p·j)2

–

+
X

j,i

»

e2
ij

pi·p·j

−
e3

ij

2(pi·p·j)2

–

+ . . . (5)

where we have omitted
∑

j,i

e4

ij

(pi·p·j)3
,
∑

j,i

e5

ij

(pi·p·j)4
, . . .

Now,
∑

j,i eij =
∑

j,i(pij − pi·p·j) = 0, so that up to this order of approximation, (5)

becomes:

D1 + D2 − D12 ≈
X

j,i

»

e2
ij

2pi·p·j

−
e3

ij

6(pi·p·j)2

–

=
X

j,i

»

(pij − pi·p·j)
2

2pi·p·j

−
(pij − pi·p·j)

3

6(pi·p·j)2

–

(6)

In (6), as such upto a first approximation, D1 +D2−D12 =
∑

j,i

(pij−pi·p·j)
2

2pi·p·j
= 1

2χ
2.

The above proof gives an interesting interpretation for the Chi-square which is now
seen to represent twice the (approximated) difference between the observed and the
maximum entropy. This shows that Chi-square is intimately connected with entropy
maximization despite many lamentations of statisticians that Chi-square does not rep-
resent anything meaningful.
Good [11] gave a comprehensive discussion of the use of maximum entropy principle
in the case of multidimensional contingency tables. Tribus [12] brought out the rela-
tionship between Chi-square test and maximization of entropy in contingency tables.
A measure of divergence (or deviation to independence) can be derived from (5) if we
observe that

∆D = D1 +D2 −D12 =
∑

i,j

∞
∑

k

(−1)k

k(k − 1)
pi·p·j

(

pij − pi·p·j
pi·p·j

)k

, k > 1. (7)

3



Now, dIJ =
∑

i,j

∑

∞

k=1 pi·p·j
(−1)kxk

k(k−1) , where
∑

∞

k
(−1)kxk

k(k−1) is the infinite series of

the second derivative of the function φ(x) = 1
1+x

. A primitive of φ is ψ(x) = (x +

1) ln(x+ 1) − x.

3 Maximum entropy and minimum Chi-square

As a whole information theory (IT) provides the necessary foundations for the statis-
tical analysis of categorical variables. It may be used to characterize single variables
(entropy) as well as group of variables (joint entropy, mutual information, conditional
entropy). A major advantage of information theory is its nonparametric nature. En-
tropy does not require any assumptions about the distribution of variables.
Consider the general class of measures of directed divergence

D(p‖q) =

n
∑

i=1

f(pi, qi) (8)

where p = {pi}, q = {qi} are probabilities sets of the same size. An important class of
such measures is given by

D(p‖q) =

n
∑

i=1

qif(
pi

qi
), qi > 0 (9)

where f is twice differentiable and a strictly convex function. When f(x) = −x lnx,

f ′(x) = 1+lnx, f ′′(x) = 1
x
> 0 if x > 0. Accordingly,D(p‖q) =

∑n

i=1 qi
pi

qi
ln(pi

qi
) =

∑

i pi ln(pi

qi
). This is the so-called Kullback-Leibler measure of divergence. This mea-

sure is non-negative and vanishes iff qi = pi,∀i
1. Table 3 shows several common

discrepancy measures, in which f is twice differentiable and a strictly convex function.
These functions also attain their global minimum when p = q.

Divergence measure condition Ref.

D(p‖q) =
∑n

i=1 qif(pi

qi
) qi > 0 ∀i

D(p‖q) =
∑n

i=1(a+ bqi)f(a+bpi

a+bqi
) a+ bqi > 0 ∀i

D(p‖q) =
∑m

j=1

∑n

i=1(aj + bjqi)f(
aj+bjpi

aj+bjqi
) aj + bjqi > 0 ∀i, j

D(p‖q) =
∑n

i=1 qif(pi

qi
) +

∑n

i=1 pif( qi

pi
)

or
∑n

i=1 qiφ(pi

qi
) φ(x) = f(x) + xf( 1

x
)

Table 3: Some classes of measures.

1When 0 < α < 1,
Pn

i=1 q
1−α
i pα

i is a concave function and so its logarithm is also a concave function.

We cal use 1
1−α

Pn
i=1 q

1−α
i pα

i , 0 < α < 1 as a measure of discrepancy. This measure was suggested by

Rńyi in 1961.
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4 Generalized contingency table

4.1 Notations

We consider the situation in which N individuals answer to Q questions (variables).
Each question has mq possible answers (or modalities). The individuals answer each

question q (1 ≤ q ≤ Q) by choosing only one modality among the mq modalities.
If we assume that Q = 3 and m1 = 3, m2 = 2 and m3 = 3, then an answer of an
individual could be (0, 1, 0|0, 1|1, 0, 0), where 1 corresponds to the chosen modality
for each question. Let us denote by M the total number of all the modalities: M =
∑Q

q=1mq. To simplify, we can enumerate all the modalities from 1 toM and denote by

Zi, (1 ≤ i ≤M) the column vector constructed by theN answers to the i-th modality.
The k-th element of the vector Zi is 1 or 0, according to the choice of the individual k.
Let K(N×M) = {kij} the complete disjonctive table where kij = 1 if the individual

i chooses the modality j and 0 otherwise (see Tab.4). The marginals of the rows of

K are constant and equal to the number Q of questions, i.e. ki· =
∑M

j=1 kij = Q.

K is essential if we want to remember who answered what, but if we only have to
study the relations between the Q variables (or questions), we can sum up the data in

a crosstabulations table, called Burt matrix, defined by B = KTK, where KT is the
transposed matrix of K (see Tab.4).

m1 m2 m3
0 1 0 0 1 0 0 0 1
0 1 0 1 0 0 0 1 0
0 0 1 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 0 0
1 0 0 1 0 0 0 0 1

→ B(9×9) =

4 0 1 2 2 1 0 1 2
0 5 0 2 3 0 1 3 1
0 0 3 2 1 1 2 0 0
2 2 2 6 0 1 2 1 1
2 3 1 0 6 0 1 3 2
1 0 1 2 0 2 0 1 0
0 1 2 2 1 0 3 0 0
1 3 0 1 3 0 0 4 0
2 1 0 1 2 0 0 0 3

Table 4: Left: disjunctive table K(12×3). Right: Burt table B(9×9) from K(12×3).

B is a (M ×M) symmetrical matrix, composed of Q×Q blocks, such that the (q× r)
block Bqr (1 ≤ q, r ≤ Q) contains the N answers to the question r. The block Bqq is
a diagonal matrix, whose diagonal entries are the numbers of individuals who have re-
spectively chosen the modalities 1, . . . ,mq for the question q. The Burt tableB(M×M)

has to be seen as a generalized contingency table, when more than 2 kinds of vari-
ables are to be studied simultaneously (see [13]). In this case, we loose a part of the
information about the individuals answers, but we keep the information regarding the
relations between the modalities of the qualitative variables. Each row of the matrix B
characterizes a modality of a question (or variable). Let us denote by fij the entries of

the matrix B, then the total sum of all the entries of B is b =
∑

i,j bij = Q2N . One

defines successively (i) F the table of the relative frequencies, with entry pij =
bij

b

with margins pi· =
∑

j pij and p·j =
∑

i pij , (ii) R the table of the profiles which

sum to 1, with entry Rij =
pij

pi·
.
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4.2 Clustering row profiles

The classical multiple correspondence analysis (MCA) ([14]) is a weighted principal
component analysis (PCA) performed on the row profiles or column-profiles of the
matrix R, each row being weighted by pi·. MCA would provide a simultaneous repre-
sentation of the M vectors on a low dimensional space which gives some information
about the relations between the Q variables and minimize χ2. In [6], Cottrell et al.
consider the Euclidean distance between rows, each being weighten by pi., to anal-
yse multidimensional data, involving qualitative variables and feed a Kohonen map
with these row vectors. We can do better: from (8), is comes that the distance be-
tween two rows r(i) and r(i′) of the table R is “exactly” given by d{r(i), r(i′)} =
∑

∞

k

∑M

j=1
(−1)k

(p·j)k−1k(k−1)

(

pij

pi·
−

pi′j

pi′·

)k

. Let x =
(

pij

pi·p·j
−

pi′j

pi′·p·j

)

.

Now, d{r(i), r(i′)} =
∑

j p·j
∑

∞

k=1
(−1)kxk

k(k−1) , which is the infinite series of the second

derivative of the function φ(x) = 1
1+x

. A primitive of φ is ψ(x) = (x+1) ln(x+1)−x.

Hence, the total deviation rate to independence of Q categorical variables comes as
above from Pearson’s approximation of independence:

dQ =
X

i,i′

X

j

p·j{(αij + 1) ln(αij + 1) − αij}, (10)

with αij =
pij

pi·p·j
−

pi′j

pi′·p·j
. So it is equivalent to compute a profile matrix C whose

entry is cij =
pij

p·jpi·
and to consider the “distance” d{r(i), r(i′)} between its rows.

A remark has to be made at this stage: two modalities or more will be close if there is a
large proportion of individuals that choose them simultaneously. We would like to get
these individuals grouped in the same region.

5 Experiments

It is possible at this stage to use a Kohonen algorithm to get such a representation
(for which there is no more constraint of linearity of the projection), as it has been
already proposed by [15]. we propose to train a Kohonen network with these row-
profiles as inputs and to study the resulting map to extract the relevant information
about the relations between theQ. See [8] for further details on the Kohonen algorithm.
The difference with the usual Kohonen algorithm sets in the search of the winner unit

ω0 = arg minu ψ(ω(u), ci), where each unit u is represented in the RM space by its

weight-vector ω(u) and ci = (
p1j

p·jp1.
, . . . ,

pMj

p·jpM.
), among all the units of the lattice

using the fonction ψ which rules now the metric space. ψ is now the Bregman measure
to take advantage of the convexity of the criterion.
Using a black and white image of rice grains, one can illustrates a process on binary
variables. The image I in Fig. 2 is a (100×256)−matrix containing only 0/1 ((pixels).

To represent the columns of I in R
256, we train a Kohonen network with the rows of the

Burt Matrix and using the Bregman divergence (see previous section). After training,
each row profile can be represented by its corresponding winner unit : in Fig. 2, ’+’
represent the pixel columns, ’•’ the units of the Kohonen grid. To evaluate the effect
of the Bregman divergence in the representation space, we plot in Fig. 3 the kernel-
density estimation of the distributions of the distances between row-profiles of B, i.e.
RowProfile(i,:) and RowProfile(j,:) : Euclidean (’–’), Citybloc
(’····’), Minkowskiwith p = 4 (’·−·−’) and our Bregmanmetric (’·−·−’). Clearly,
the most favourable case is the Bregman because (i) the spread of the distribution is
bigger, (ii) the distribution is centered.
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Figure 1: Left: image of rice grains. Right : Kohonen map of columns of pixel.

Figure 2: kernel-density estimation of the distributions of the inter row-profiles dis-
tances. Left: row-profiles of B, left : row-profiles of R.
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6 Conclusion

In this paper, we derive from the entropy-based criterion for categorical data cluster-
ing a Bregman divergence measure and illustrate its relation with other criteria. The
Bregman measure is used as a metric in a Kohonen algorithm to take advantage of the
convexity of the criterion. The experimental results indicates the effectiveness of the
proposed method. The above formulation is applicable when the data matrix directly
corresponds to an empirical joint distribution. However, there are important situation
in which the data matrix is more general and may contain for instance, negative entries
and a distorsion measure such as the Euclidean distance might be inappropriate.
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