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Abstract. It is well known that the entropy-based concept of mutual information
provides a measure of dependence between two discrete random variables. There
are several ways to normalize this measure in order to obtain a coefficient simi-
lar e.g. to Pearson’s coefficient of contingency. This paper presents a measure of
independence between categorical variables and is applied for clustering of mul-
tidimensional contingency tables. We propose and study a class of measures of
directed discrepancy. Two factors make our divergence function attractive: first,
the coefficient we obtain a framework in which aBregman divergencecan be used
for the objective function ; second, we allow speciafication of a larger class of
constraints that preserves varous statistics.

1 Formulation and analysis

Clustering is the problem of partitoning a finite set of points in a multidimensional
space into classes (calledclusters) so that points belonging to the same class aresimi-
lar. An important step in designing a clustering technique is defining a way to measure
the quality of partitioning in terms of the above objective. Given such a measure, an
appropriate partition can be computed by optimizing some quantity (e.g.the sum of the
distances of the points to the cluster centroids). However, if the data vectors contain
categorical variables, geometric approaches are inappropriate and other strategies have
to be found [1]. This is often the case in applications where the data are described by
binary attributes.
Many algorithms have been designed for clustering analysis of categorical data [2, 3,
4, 5]. For instance, entropy-type metrics forsimilarity among objects have been devel-
opped from early on. In this paper, we address the following 2 questions:(i) what class
of discrepancy function admit efficient clustering algorithms ?(ii) how to vizualize the
classes and the explanatory variables ?
In this paper, we show that an entropy-based clustering criterion can be formally derived
from the heterogeneity of clusters and interpreted as a Bregman measure. Bregman in-
formation principle generalizes the maximum entropy principle.

Definition 1 (Bregman divergence)Letφ be a real valued strictly convex function de-
fined on the convex setS ⊆ R, the domain ofφ such thatφ is differentiable on int(S)
the interior ofS. The Bregman divergenceBφ : S × int(S) 7→ R+ is defined as
Bφ(z1, z2) = φ(z1)− φ(z2)− (z1 − z2,∇φ(x2)), where∇φ is the gradient ofφ.

For instance, letφ(z) = a log z. For z1, z2 ∈ R+,Bφ(z1, z2) = z1 log(z1/z2) −
(z1 − z2). Based on Bregman divergences, it is possible to define as useful concept of
Bregman informationwhich captures the information in a random variable and, hence,
formulate the clustering problem in these terms. This paper is not (directly) concerned
in mumerical estimates of multidimensional entropy such as sample-spacings, kernel
density plug-in estimates, splitting data estimates, etc.
The rest of the paper is organized as follows: section 2 set down notations and shows
the equivalence between the entropy-based criterion and Bregman divergence, section
3 formulates the problem of categorical clustering of variables, section 4 establishes
presents our experimental results.
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2 Maximum entropy and minimum Chi-square

Consider the general class of measures of directed divergenceD(p‖q) =
∑n

i=1 f(pi, qi)
wherep = {pi}, q = {qi} are probabilities sets. Important class of such measures
is given byD(p‖q) =

∑n
i=1 qif(pi

qi
), qi > 0 wheref is twice differentiable and a

strictly convex function. Whenf(x) = −x lnx, f ′(x) = 1 + lnx, f ′′(x) = 1
x > 0

if x > 0. Accordingly,D(p‖q) =
∑n

i=1 qi
pi

qi
ln(pi

qi
) =

∑
i pi ln(pi

qi
). This is the

Kullback-Leibler measure of directed divergence. This measure is non-negative and
vanishes iffqi = pi,∀i1.
LetJ andI two finite sets indexing two categorical variables and letM be aI×J table
of frequencies (Tab. 2). Letfij be the frequency in the cell in theith row andjth column
of anm× n contingency table and letfJ = (f·j)j∈J andfI = (fi·)i∈I be the sums of
elements in theith row andjth column respectively,i.e. pij = fij

f0
, pi· = fi·

f0
, p·j = f·j

f0
,

wheref0 =
∑m

i=1

∑n
j=1 fij =

∑m
i=1 fi· =

∑n
j=1 f·j .

f11 f12 . . . f1n f1·
f21 f22 . . . f2n f2·
...

...
fm1 fm2 . . . fmn fm·
f·1 f·2 . . . f·n f0

→

p11 p12 . . . p1n p1·
p21 p22 . . . p2n p2·
...

...
pm1 pm2 . . . pmn pm·
p·1 p·2 . . . p·n 1

Table 1:m× n contingency tables.
From elementary courses in statistics, we know that for any contingency table with
given row and column sums, the maximum entropy value ofS12 = −

∑m
i

∑n
j

fij

f0
ln( fij

f0
)

= 1
f0

(f0 ln f0−
∑m

i

∑n
j fij ln fij) is obtained whenfij = fi·f·j

f0
or pij = pipj , so that

maxS12 = −
∑m

i=1

∑n
j=1 pi·p·j ln pi·p·j = S1 + S2. This shows thatS12 ≤ S1 + S2.

The non-negative quantityS12−S1−S2 can therefore be regarded as a measure of the
dependence of the 2 attributes. Now,

S12 − S1 − S2 =
m∑

i=1

n∑
j=1

pij ln
pij

pi·p·j
(1)

can also be interpreted in terms of Kullback-Leibler’s measure of directed divergence.
Let us find its value for a small departure from independenceeij . Letpij = pi·p·j +eij ,
then from (1),

S1 + S2 − S12 =

pX
j=1

nX
i=1

fi·f·j ln

„
1 +

eij

fi·f·j

«
+

pX
j=1

nX
i=1

eij ln

„
1 +

eij

fi·f·j

«
(2)

Using Taylor’s development ofln(1 + x), we have:

S1 + S2 − S12 =
X
j,i

»
eij −

e2
ij

2fi·f·j
+

e3
ij

3(fi·f·j)2

–
+

X
j,i

»
e2

ij

fi·f·j
−

e3
ij

2(fi·f·j)2

–
+ . . . (3)

1When0 < α < 1,
Pn

i=1 q1−α
i pα

i is a concave function and so its logarithm is also a concave function.
We cal use 1

1−α

Pn
i=1 q1−α

i pα
i , 0 < α < 1 as a measure of discrepancy. This measure was suggested by

Renyi in 1961.
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where we have omitted
∑

j,i

e4
ij

(fi·f·j)3
,
∑

j,i

e5
ij

(fi·f·j)4
, . . . Now,

∑
j,i eij =

∑
j,i(fij −

fi·f·j) = 0, so that up to this order of approximation:

S1+S2−S12 ≈
X
j,i

»
e2

ij

2fi·f·j
−

e3
ij

6(fi·f·j)2

–
=

X
j,i

»
(fij − fi·f·j)

2

2fi·f·j
− (fij − fi·f·j)

3

6(fi·f·j)2

–
(4)

In (4), as such upto a first approximation,S1 + S2 − S12 =
∑

j,i
(fij−fi·f·j)

2

2fi·f·j
= 1

2χ
2.

The above proof gives an interesting interpretation for the Chi-square which is now seen
to represent twice the difference between the observed and the maximum entropy. This
shows that Chi-square is intimately connected with entropy maximization despite many
lamentations of statisticians that Chi-square does not represent anything meaningful.
Good [6] gave a comprehensive discussion of the use of maximum entropy principle in
the case of multidimensional contingency tables. Tribus [7] brought out the relationship
between Chi-square test and maximization of entropy in contingency tables.

A measure of divergence (or deviation to independence) can be derived from (3) if

we observe that∆S = S1 + S2 − S12 =
∑

i,j

∑∞
k

(−1)k

k(k−1)pi·p·j

(
pij−pi·p·j

pi·p·j

)k

. Now,

dIJ =
∑

i,j

∑∞
k=1 pi·p·j

(−1)kxk

k(k−1) , where
∑∞

k
(−1)kxk

k(k−1) is the infinite series of the second

derivative of the functionφ(x) = 1
1+x . A primitive ofφ isψ(x) = (x+1) ln(x+1)−x.

Hence, the discrimination measureX
i,j

pij ln

„
pij

pi·p·j

«
− pij + pi·p·j (5)

which is a Bregman divergence in the sense of definition 1. Fig. 1 depicts the deviation
between functionsf1(x) = x2

2 andf2(x) = (x+ 1) ln(1 + x)− x around zero.

Fig. 1: Deviation between Chi-square metric and our Bregman-like divergence.

3 Generalized contingency table

3.1 Notations
We consider the situation in whichN individuals answer toQ questions (variables).
Each question hasmq possible answers (or modalities). The individuals answer each
questionq (1 ≤ q ≤ Q) by choosing only one modality among themq modalities.
If we assume thatQ = 3 andm1 = 3, m2 = 2 andm3 = 3, then an answer of an
individual could be(0, 1, 0|0, 1|1, 0, 0), where 1 corresponds to the chosen modality
for each question. Let us denote byM the total number of all the modalities:M =∑Q

q=1mq. To simplify, we can enumerate all the modalities from 1 toM and denote by
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Zi, (1 ≤ i ≤M) the column vector constructed by theN answers to thei-th modality.
Thek-th element of the vectorZi is 1 or 0, according to the choice of the individualk.
Let K(N×M) = {kij} the complete disjonctive table wherekij = 1 if the individual
i chooses the modalityj and0 otherwise (see Tab.2). The marginals of the rows of
K are constant and equal to the numberQ of questions,i.e. ki· =

∑M
j=1 kij = Q.

K is essential if we want to remember who answered what, but if we only have to
study therelations between theQ variables(or questions), we can sum up the data in
a crosstabulations table, calledBurt matrix, defined byB = KTK, whereKT is the
transposed matrix ofK (see Tab.2).

m1 m2 m3
0 1 0 0 1 0 0 0 1
0 1 0 1 0 0 0 1 0
0 0 1 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0
0 0 1 1 0 1 0 0 0
1 0 0 1 0 1 0 0 0
0 1 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 0 0
1 0 0 1 0 0 0 0 1

→ B(9×9) =

4 0 1 2 2 1 0 1 2
0 5 0 2 3 0 1 3 1
0 0 3 2 1 1 2 0 0
2 2 2 6 0 1 2 1 1
2 3 1 0 6 0 1 3 2
1 0 1 2 0 2 0 1 0
0 1 2 2 1 0 3 0 0
1 3 0 1 3 0 0 4 0
2 1 0 1 2 0 0 0 3

Table 2: Left: disjunctive tableK(12×3). Right: Burt tableB(9×9) fromK(12×3).

B is a(M ×M) symmetrical matrix, composed ofQ×Q blocks, such that the(q× r)
blockBqr (1 ≤ q, r ≤ Q) contains theN answers to the questionr. The blockBqq is
a diagonal matrix, whose diagonal entries are the numbers of individuals who have re-
spectively chosen the modalities1, . . . ,mq for the questionq. The Burt tableB(M×M)

has to be seen as ageneralized contingency table, when more than 2 kinds of variables
are to be studied simultaneously (see [8]). In this case, we loose a part of the informa-
tion about the individuals answers, but we keep the information regarding the relations
between the modalities of the qualitative variables. Each row of the matrixB charac-
terizesa modality of a question(or variable). Let us denote byfij the entries of the
matrixB, then the total sum of all the entries ofB is b =

∑
i,j bij = Q2N . One de-

fines successively(i) F the table of the relative frequencies, with entrypij = bij

b with
marginspi· =

∑
j pij andp·j =

∑
i pij , (ii) R the table of the profiles which sum to

1, with entryRij = pij

pi·
.

3.2 Clustering row profiles

The classical multiple correspondence analysis (MCA) ([9]) is aweightedprincipal
component analysis (PCA) performed on the row profiles or column-profiles of the
matrixR, each row being weighted bypi·. MCA would provide a simultaneous repre-
sentation of theM vectors on a low dimensional space which gives some information
about the relations between theQ variables and minimizeχ2. In [5], Cottrell et al.
consider the Euclidean distance between rows, each being weighten bypi., to anal-
yse multidimensional data, involving qualitative variables and feed a Kohonen map
with these row vectors. We can do better: from (5), is comes that the distance be-
tween two rowsr(i) andr(i′) of the tableR is “exactly” given byd{r(i), r(i′)} =∑∞

k

∑M
j=1

(−1)k

(p·j)k−1k(k−1)

(
pij

pi·
− pi′j

pi′·

)k

. Letx =
(

pij

pi·p·j
− pi′j

pi′·p·j

)
.
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Now, d{r(i), r(i′)} =
∑

j p·j
∑∞

k=1
(−1)kxk

k(k−1) , which is the infinite series of the second

derivative of the functionφ(x) = 1
1+x . A primitive ofφ isψ(x) = (x+1) ln(x+1)−x.

Hence, thetotal deviation rateto independence ofQ categorical variables comes as
above from Pearson’s approximation of independence:

dQ =
X
i,i′

X
j

p·j{(αij + 1) ln(αij + 1)− αij}, (6)

with αij = pij

pi·p·j
− pi′j

pi′·p·j
. So it is equivalent to compute a profile matrixC whose

entry iscij = pij

p·jpi·
and to consider the “distance”d{r(i), r(i′)} between its rows.

A remark has to be made at this stage: two modalities or more will be close if there is a
large proportion of individuals that choose them simultaneously. We would like to get
these individuals grouped in the same region.

4 Experiments

It is possible at this stage to use a Kohonen algorithm to get such a representation
(for which there is no more constraint of linearity of the projection), as it has been
already proposed by [10]. we propose to train a Kohonen network with theserow-
profilesas inputs and to study the resulting map to extract the relevant information about
the relations between theQ. See [11] for further details on the Kohonen algorithm.
The difference with the usual Kohonen algorithm sets in the search of the winner unit
ω0 = arg minu ψ(ω(u), ci), where each unitu is represented in theRM space by its
weight-vectorω(u) and ci = ( p1j

p·jp1.
, . . . ,

pMj

p·jpM.
), among all the units of the lattice

using the fonctionψ which rules now the metric space.ψ is now the Bregman measure
to take advantage of the convexity of the criterion.
Using a black and white image of rice grains, one can illustrates a process on binary
variables. The imageI in Fig. 2 is a(100×256)−matrix containing only0/1 ((pixels).

Fig. 2: Left: image of rice grains. Right : Kohonen map of columns of pixel.

To represent the columns ofI in R256, we train a Kohonen network with the rows of the
Burt Matrix and using the Bregman divergence (see previous section). After training,
each row profile can be represented by its corresponding winner unit : in Fig. 2, ’+’
represent the pixel columns, ’•’ the units of the Kohonen grid. To evaluate the effect
of the Bregman divergence in the representation space, we plot in Fig. 3 the kernel-
density estimation of the distributions of the distances between row-profiles ofB, i.e.
RowProfile(i,:) andRowProfile(j,:) : Euclidean (’–’), Citybloc
(’ ····’), Minkowski with p = 4 (’ ·−·−’) and ourBregman metric (’·−·−’). Clearly,
the most favourable case is the Bregman because(i) the spread of the distribution is
bigger,(ii) the distribution is centered..
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Fig. 3: kernel-density estimation of the distributions of the inter row-profiles distances.
Left: row-profiles ofB, left : row-profiles ofR.

5 Conclusion

In this paper, we derive from the entropy-based criterion for categorical data cluster-
ing a Bregman divergence measure and illustrate its relation with other criteria. The
Bregman measure is used as a metric in a Kohonen algorithm to take advantage of the
convexity of the criterion. The experimental results indicates the effectiveness of the
proposed method. The above formulation is applicable when the data matrix directly
corresponds to an empirical joint distribution. However, there are important situation
in which the data matrix is more general and may contain for instance, negative entries
and a distorsion measure such as the Euclidean distance might be inappropriate.
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