Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces - Archive ouverte HAL
Article Dans Une Revue IMA Journal of Numerical Analysis Année : 2010

Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces

Résumé

A discretisation scheme for heterogeneous anisotropic diffusion problems on general meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control volumes and at some internal interfaces which may for instance be chosen at the diffusion tensor discontinuities. The scheme is therefore completely cell centred if no edge unknown is kept. It is shown to be accurate on several numerical examples. Mathematical convergence of the approximate solution to the continuous solution is obtained for general (possibly discontinuous) tensors, general (possibly non-conforming) meshes, and with no regularity assumption on the solution. An error estimate is then drawn under sufficient regularity assumptions on the solution.
Fichier principal
Vignette du fichier
suchirev.pdf (534.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00203269 , version 1 (09-01-2008)
hal-00203269 , version 2 (14-01-2008)
hal-00203269 , version 3 (21-01-2008)
hal-00203269 , version 4 (19-09-2008)
hal-00203269 , version 5 (09-12-2008)

Identifiants

Citer

Robert Eymard, Thierry Gallouët, Raphaele Herbin. Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces. IMA Journal of Numerical Analysis, 2010, 30 (4), pp.1009-1043. ⟨10.1093/imanum/drn084⟩. ⟨hal-00203269v5⟩
798 Consultations
1029 Téléchargements

Altmetric

Partager

More