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Summary. This article addresses the issue of building discrete tpoél spaces from con-
tinuous data measured on a complex system and then theisshtcharacterization of the
obtained space. As an illustration, the sensitivity of ¢iproperties to thresholding is ana-
lysed. A possible way to cope with that flaw is the multilevelnt of view. We extend this
approach toz-ary relations usingimplicial complexesstatistical independence is shown to
be an appropriate framework for characterizing the obthspmace.

Key words: knowledge representation, random graph, binary relatiomselation, indepen-
dence, simplicial complex, persistent homology

1 Introduction

In the complex systems litterature, a whole field or resedsattedicated to expressing the
organizational principles that shape large-scale netsvfrkand their evolution].

Let's take an example. In biology, three types of macromdirmetworks rule the inner orga-
nization of cells: metabolic, protein-protein, and geaegigulation networks. It has been pro-
posed that metabolic networks should be encoded in a graietic way, which allows ran-
dom graph theory to characterize them [3]: the elementdafion that units two metabolites
of the network is the existence of a reaction catalyzed bgrgienzymes. Similar principles
rule intracellular processes in many organisms, in a stakemanner that entails for example
a remarkable resistance to errors. However, the greatdgdaeity of reaction strengths [2]
questions the rationale of using unweighted graphs to sepitehe network activity.

In neurophysiology, brain networks can be examined fronesd\points of view; structural
or anatomical studies on one hand and functional and efteoties on the othe®]. The first
area deals with the physical connection at different péssitales, whether at the level of indi-
vidual neurons or of brain areas. The former involves lagale network while the latter lays
stress on small-scale networks. We don't pick example irfité of structural connectivity,
but rather from functional and effective connectivity catigat both examine the activity either
of neurons of brain areas. The functional case favors statisnterdependence irrespective of
causality while the effective connectivity case is prequed by causal explanation of activi-
ties of neural areas. The often quoted articles [7] illustthe first approach. See alsy ] in
the artificial networks context.

The two examples above underline one limit of graph-likeespntations: the topology of the
graph may strongly depend on the definition of the binantiatethat conditions the existence
of an edge between two nodes. One solution would be to assightg to edges? 3] that
take the stand to generalize invariants defined for unwedybtaphs to weighted ones. In this
article we explore an alternative proposition: first we defanthreshold-dependent relation to
ground the existence of edges, and to superpose severakdi@pifferent threshold values,
then we characterize the global structure.
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In the following, section 2 reviews relationship represgiotn in from the experimental con-
text, then we state definitions of relationship between rsg¢wariables in statistical terms.
Section 3 is devoted to examining a detailed example of apidation that involves corre-
lation and thresholding while section 4 gives a multileveinp of view on graph that allows
a characterization that includes threshold shifts. Sediputs forward tools from computa-
tional topology by extending works on binary relationstopitary relationship.

2 Organizing similaritiesin time series

The system under study consists of ainits (we suppose is big) whose activities are in-
terdependent in an unknown manner. We assume this systebrecdoservecoy means of a
finite set of scalar variables, whose values are indexeddmyetie time instants. We hold those
time-varying activities to be random, and stationary. Thipats are time-dependent station-
ary and continuous signal. The purpose of this article isisouss theorganization rather
than the explanation of such data. In particular, we looka&aepresentation of the overall
interaction between theses units. The meaning of the oelsttip between units will be rooted
in statistical inference, since little is known about theqasses, except their stationarity.

A first approach would be to define a function wfvariables, whose behaviour would be
examined and would reveal interdependence. But gsows this method tends to become
untractable. By limiting the output domain onff@ 1}, one may state a satisfactory answer if
we lay stress on the organization of a set of relationshigs ¢ections 3-5).

Letu; andu; be two units whose activities are measured. To make thiregs,clunitsy; andu;
are related” is often understood atrelated enough However this term says nothing about
two rv being “sufficiently correlated”. Theorrelation coefficients a meaningful measure of
dependence

cor(x, y) = p £ E[IXY] = E[g(X, V)] |sep-sy (1)

so that < p? < 1, the latter upper inequality holding X andY are in strict linear functional
relationship. Indeedp is a coefficient of linear dependence, and it does not caphome
complex forms of interdependence. It remains an open durestihich function ofp should
be used as a measureinferdependence p? is more directly interpretable thamitself. On
the other hand, ip = 0 does not implyindependencet is difficult to interpretp as a measure
of interdependence.

Example 1 (Naive correlations). Consider the random vdealfrv)X ~ N(0,1) andY = X2.
The covariance of the two ¥ andY

cxy = E[XY] - 27 = f RS PR )
Xy = - Xy = = =u

—c0 271

where the integral vanishes because the integrand is odusical aboutx = 0. E[.] andx
respectively stand for the expectation and the meaX. of |

In the following we defin&k(:,-) as an indicator function for grounding statistically thatst
ment “U; andU; are correlated enough”

Re(ui/ Uj) — 1COI’I’(U,', u]) > e (3)

But, this general statement says nothing aldut U; and U; are related. A wide variety
of other measures of correlation, with respect to testsridependence, is availablee-g.
intraclasscorrelation,tetrachoric correlation,biserial correlation, etc. Daniels [6] defined a
class of correlation coefficients based on the expression

L, aijbij
rp= ——d T 4)

2 2
i,j a,‘j Zi,j b,‘j
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wherea;; andb;; depend on the:-uple (x;, x;) and(y;, y;), respectively. Though correlation
constitutes a fundamental tool it has important limitasiaii) the linearity of the functional
link between rv(ii) it deals only with two variables. Since our goal, expresgebebeginning
of this section, is to account for the interdependences dé@tvthe outputs of a great number
of functions ofm arguments#: < n), we need to generalize this definitioni#oary relations.
We often met difficulties when a variable is correlated witbed of variables. If we find that
holding another variable fixed reduces the correlation betwtwo other variables, we infer
that their interdependence arises in pare-conditionnally — through this other variable. This
function is known apartial correlation Conversely, if the partial correlation is larger than the
original one, we infer that the other variable was maskirgdbrrelation. Remember that we
cannot assumecaausalconnection. We shall revert to Scharf [11, pp. 292] for destations

of the basic results.

Example 2 (Partial correlations}Suppose we haveobservations on 3 n) variates

X11,X12,X13, X21, X22,X23, « « « y X1, X2, X3

that are multinormally distributed (such an approach is netessary but simplifies the devel-
opment) and standardized. The conditional distributior;of (x;, x,)T givenx; is multinor-
mal so that

P12 — P13P23

Ja=poa—-gy

The extension of (5) for the conditional distribution(ef, x,, x3) givenxg, wherexx denotes
any subset ofxy, ..., x,) gives

®)

corr(xy, xz|x3) = pigz =

P121Kk — P13KP23IK

\/(1 - P%alk)(l - p%:&\K).

(6)

corr(xy, xa|x3, xx) =

[}

But most certainly, (6) says nothing simple about €8yiY) when cor(X, Y, Z) is greater than
€, and this hampers the rest of our approach, for reasons thappear in the following.

As an alternative in the-ary case, independence between variables may provideutiosol
since independence between two continuous rv holds Wgh< x,Y < y) = P(X <
x)P(Y < y), which can be generalized tevariables.

Stating that two units are related is half the job: given aridate set of (measured) relations
that hold between units, what do we learn from the overalVagt? Knowledge Representa-
tion Theory usually builds a graph, once a relation is defem@dngn units, as examplified by
Fig.1. Then, this graph can be characterized in many wayshenohutual interactional struc-
ture can be analyzed and explained. Furthermore graphirated to binary relations, and as
we mentionned earlier the possibility of groundimgary relations in statistical inference, one
can build hypergraphs out of continuous signals as will lmwshin section 4.

3 Organization of binary relations

In this section we limit the discussion to the case of binatgtions between different units.
As mentionned before, stating relation (3) is equivalenagsociating a graph to the set of
measured activities of the units.

Now displaying an invariant of the interaction supposesngi\a characterization of the set of
relations as a whole; to do so we look for inspiration in dieegools from computer science,
namely graph (spectral) theory and random matrix theorg fliist step is naming the graphs
we work with conveniently: we notice that the binary relatlmetween two units is symmetric
sinceR(X,Y) = Re(Y, X). Consequently vertices that represent the units in thehgcam
be either disconnected, or connected in an unoriented wayudh many extensions can be
imagined (see 6), we will focus only on undirected graph.

Among many standard tools available from random graph thesae [?]), we choose to depict
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x1(t)
t > IC(xi, x)) > €2
xo(t) ‘
t
xi(t)
U; Un
t
X, (1)
t 14 Us
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Us

Fig. 1. From stationary time dependent signals to graph via cdrogla

graphs in term of degree, that quantifies the typical numbeoonections of a given vertex.

This quantity can be seen in a probabilistic context: fotdnse the estimated probability
density function (pdf) of the degree.

The process of characterization of a graph using selectedegits of random graph and ran-
dom rlnatrix theory is depicted by Fig.2; the following sentimow applies this scheme to real
signals.

Fig. 2. Two characteristics computed from the grapiap)(the spectrum of the adjacency
matrix of the graph,down) the probability density function of the degree~> P(K = k).

In that perspective, we aim at comparing graphs associatétetactivity of different sets of
units. Rather than specifying complex interdependenctepest between time-dependent ac-
tivities of several units, we found it convenient to considestochastic process defined as a
family (X;):; of rv indexed byt taken from a continuous interva) from which we extract
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a finite set of rv{X, ,...,X;,...X,}, as shown by Fig.3. Thus, to each type of stochastic
process is associated a set of vertices, whose relationisecaomputed from a finite number
of realizations of the stochastic process over a finite timerval. For the sake of diversiy,
we generate graphs from different sorts of stochastic jmsE® (random walk, long-range de-
pendent process) as well as deterministic time series gateby a Lorenz system in chaotic
regime.

0.02
0.00
-0.02
-0.04

—-0.06

1
100 200 300 400 500 600 700 800 900 1000

Fig. 3. Realizations of rv taken from one realization of a brownitothastic process.

Questions are the following: is there a type of process spording to a given type of random
graph such as Erdds-Rényi random graphs, small-worldalesfree graphs?, ?, ?]. At first
sight, graphs built from signals usiriy look quite similar, as evidenced by Fig. 4.

(a) Brownian(b) Long-range (c) Lorenz (d) Erdos-Rény{e) Small World
motion dependent graph graph

Fig. 4. Graph topologieqa,b,c)are built from signals using,, for values ofe ensuring that
the number of edges & 60) and the number of nodes & 30) are uniform. On the contrary
(d,e) are classical random graphs, with a probability of rewirofgl /4 in the Small World
case.

Hence we turn to a more quantitative comparison, as evokeireavith the degree distri-
bution Two possibilities were explored: the first dris to choose a signal and to generate a
set of graphs for that type of signal, then to compute theetegdistribution for each graph
realization, and lastly to build a global histogram for ea@mal in order to approximate the
underlying distribution. For Erdds-Rényi and Small Wbgraphs, the theoretical distribution

3 The second method was to compare pairwise each realizatithve alegree distribution,
with the help of a statistical test (e.g. Kolmogorov-Smirray Wilcoxon), and to count
the number of positive tests, for all possible combinati¢mg. Lorenz generated graph
compared to Small-World graph), but this method didn’t grosefull
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is known (see 7], [?]), and following the law of large numbers, the histogramwarges in
probability to the theoretical distributions. AccordiggFig.5 displays empirical degree dis-
tributions generated from five types of graphs, three of Whiere built thanks t&,., the last
two being Erdds-Rényi random and Small World graphs, asgm.

degree

Fig. 5. Degree histograms (a) Brownian motion, (b) Lorenz, (c) L-oagge dependent noise
(d) Erdos-Rényi (e) Small World. In all cases, graphs amposed o650 nodes, however the
number of edges varies: on the left p&30 edges are present, agaifi200 on the right side.

Before commenting on these results, we must remark thahihora graph theory if one needs
to compare two graphs from their properties, it may be nergd® ensure that their number
of nodes (and edges) is of the same order of magrfitude

Now, we noticed that depending on the thresholdsed to make a graph out of a process,
the number of edges depends of the type of signal (this faeasly explained thanks to the
difference of autocorrelation functions). The degreerttigtion are made comparable so that
disparity doesn't fit with the constraint just stated, thdges and number of nodes should be
approximately equal. ConsequentR;-induced graphs can be compared from random graph
theory, we must choose different valuesafepending on the type of signal before proceeding
so that the number of edges is kept constant.

This limit being clearly exposed, we can now compare the ekeglistribution of different
graphs. Fig. 5 shows two sets of curves, obtained for twandisedge numbers, and we shall
focus on the left part first. Three clusters can grossly bkaied: line(a), line (e), and lines
(b,c,d). On the right part of the figure, we remark that two clustens saw be identified:
curves(a, b, c) on one hand, ang, e) on the other. This counterexample shows first that clas-
sical graphs such as Erdds-Rényi random graph or smalBwgeaphs hardly approximate the

4 “Consequently in random-graph theory the occupation fiiyais defined as a function
of the system sizex represents the fraction of the edges that are present fremqpdbsible
N(N? - 1)/2. Larger graphs with the samewill contain more edges, and consequently
properties like the appearance of cycles could occur forllsmgin large graphs than in
smaller ones. This means that for many properf)éis random graphs there is no unique,
N-independent threshold, but we have to define a thresholdtibmthat depends on the
system size”, 7] p.55
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properties ofR.-induced graphs, and second that depending on the threskeltito build
graphs, their properties -the degree distribution in tlaaiee are not constant.

4 Multilevel organization

Comparing graph with the same threshold is inappropriataiise both the number of edges
and nodes matter. Considerable differences will appeaa fiame graph at distinct levels of
normalization if these conditions were standardized. Airidea developped in that section,
is therefore to take into account the history of the graphmiie normalization level moves.
We admit that for Erdos-Rényi random graphs the degreteilalision obeys a binomiallaw
B(n, p), that can be approximated by a normal law. Now, a normal lasemspletely described
by its mean and standard deviatiGn o). Though approximating the distributions of various
graphs encountered so far by a normal law would diserve memefu justification, we admit
this hypothesis just to illustrate the idea of charactagzhe graph simultaneously at different
normalization levels.
Itis easy to distinguish graphs by simply focusing on theréedglistribution. Figure 6 illustrate
this by plotting the parametrized curv@s: e — (u(e), 0%(e)) when the number of nodes
is kept constant, but the number of edgegows linearly: curves corresponding to different
grapkt\)s are easily distinguished, even if they rely on a ®mhhracteristic such as the degree
istribution.

5 10 15 20 25 30 35 40

Fig. 6. Mean and standard deviation parametrized by the numbergefsed— (u(e), o(e)) of
the degree distributionsvaries from500 to 2000, while the number of nodds remains equal
to 100. (a) Brownian motion, (b) Lorenz, (c) Long-range dependeiise (d) Erdos-Rényi (e)
Small World.

This confirm the dependence to thresholding evidenced Hiose®, and then prove the exis-
tence of an alternative position, based on embracing in@gesiepresentation several levels
of detail. It appears clearly that not only the number of edgjeould be taken into account to
build this multilevel representation, but the number of e@ds well, which raise the issue of
hierarchical agglomeration of variables.

Here we do not deal with several phenomenologically distiemels of description, and the
objects we're concerned with remain the same even when tinealization conditions evolve.
One can take advantage of the combinatorial nature of oglaiilefined on a finite set of ver-
tices to elaborate hierarchical multilevel approact®s].

5 In the case of a Erdos-Rényi random graphs N — 1 whereN is the number of nodes,
while p is the probability for two nodes to be connected, 4ff}.56
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5 n-ary relations

In this section, we extends the framework presented so fardoy relations. The underly-

ing idea is to identify a structure of relationships and aotogical space. But this cannot be
achieved directly: correlation is inappropriate to grownd-ary relationship. Then, to meet
computational requirements we need to take advantage ethiiz topology that allows algo-
rithmic processing. To take into account the multilevehstaut forward in previous section,
we introductfiltrations. Lastly we give experimental results.

5.1 Causality in n-ary relations

Let us enumerate some possibilities offered by statisbcexpressi-ary relation. €7?) is
limited by the arity of the correlation function: the predioi@nce of second-order moments
is a consequence of the prevalence of the Gaussian digbribut models if not in nature.
Indeed:

A. the Gaussian distribution ompletelydescribed by its first two moments.
B. instead of describing an unknown distribution, it mayrseeore natural to first compare
it to the normal law and to provide some distance from it.

One possibility would be to defineraary relation based on binary relatiorsg.(X;, ..., X,,)
are related if each coupl;, X;) is related, but in many cases pairwise relations say nothing
about relations between, sayariables.

Example 3 (Pairewise independent variables). Xetand X, two independent rv with values
in {0,1}, with a probability%, and the rvX; = X3 X3 + (1 — X3)(1 — X3). X5 has also values
in {0, 1} with a probability% because’(X; = 0) = P(X; = 0)P(X; = 1) + P(X; = 1)P(X; =
0)=1andP(X; =1)=1-P(X; = 0) = 1. Xy, X, X5 are pairewise independent since:
PX;=0,X3=0)=P(X; =0)P(X, =1) =
P(X;=0,X3=1) =P(X; =0)P(X; =0) =
P(X;=1,X3=0)=P(X; =1)P(X; =0) =
PX;=0,X3=1)=PX; =1)P(X;=1) =

1 =P(X; = 0)P(X5 = 0)
1=P(X; =0)P(X3 =1)
1 =P =1)P(X; =0)
1=P(X; =1)P(X5=1)

Analog equalities can be found féf, X5. However we have the relation
P(X1=0,X2=0,X;3 =0) =0 # P(X; = 0)P(X2 = 0)P(X;5 = 0)
HenceX;, X;, X3 are not independent. O

Example 4 (Case of three pairewise independent rv). Conaidsdom vectoX = (X, X5, X3)
uniformly distributed onto the tetraedron whose verticesthe pointg(0, 0, 0), (0, 1,1),(1,0,1), (1,1, 0)}
with the pdf

1 ) ) )
flx)= E1[0,1](xl)1[0,1](xz)l[O,I](XS)[é(xl +Xp —x3) +0(x2 + X3 —x1) + 6(x1 + X2+ x3 = 2)], (7)

whereljy; is the indicator function of the intervadD, 1]. Any coordonnate of this vector is
uniformly distributed in the intervdl, 1] and its projection onto the plam, + x, + x3 = 0 is
uniformly distributed insid¢0, 1]2. Hence, variables(;, X, et X; are pairewise independent.
However they are dependent because otehrwise the distnibot X would be uniform inside
the cubg0, 1]°. u]

6 this is similar to the use of Rips complex insteaddefch complex in computational topol-
ogy, see 7] for definitions
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A fundamental result of Information Theory is that a Gaussiariable has the largest entropy
among all random variables of equal variance [9], in otherdatbe Gaussian distribution is
the “most random” or the least structured of all distribn8oThis means that entropy could
be used as a measureraingaussiannity

A statistical relationship, however strong and suggestimeneverestablish aausalconnec-
tion: ideas on causation must come from outside statigtimsinstance, we may be interested
in whether there is a relationship between an alarm and ghqeake: put this way it is a
problem of interdependence. But if we are interested indfigtg the alarm to convey infor-
mation about the earthquake, we are considering the depead# the latter upon the former.
This is clearly an asymmetrical relation: earthquake 'eatialarm to activate, but we are cer-
tain that alarm do not affect the earthquake, so we measeredpendence of alarm upon
earthquake. Even if they were in perfect functional coroesfence, we cannot reverse the
“obvious” causal connection

At this stage, we ought to define what we meanchyse We shall content of the following
definition: x is a cause ofy if and only if the value off can be changed by manipulating only
x. The issue of causality cannot be overlooked and the refalstatistical investigation is in
support of acausalrelationship. In regresson analysis, it is reasonnabl@maitthat changes
in thedependenfor responsgvariables are caused by the changes in the inputs. Thewaitio
conditionalindependence has an important role to play in disentangdifagionships between
variables. Rubin [10] provides a framework for causal iefere. Granger [8] describes a form
of causality based on time ordering of the variables.

5.2 Organization of measured relationships

In this section, we devise tools capable to organize thedapendence relationships between
a number of variables or in the dependence of one or moreblasaipon others. Suppose that
we have agreed to select an type of oper&idr. . ) that accepts argumentsi < k < n) —the
vertices{vs, ..., v,} — We look for order and regularity in subset of vertices tua related
according taRk., for instance the following sets

Re(vll UZ)
Re(02,v4,05)
Re(UZ/ Vi, Un-1, vn)

In the same way that a set of pairs of verti¢@s, v;)li € I, j € J} defines a graph, the previ-
ous set of subsets defines a hypergraph, that extends gralainger dimensions. By analogy
with ideas put forward in Knowledge Representation whepelgial properties of relation-
induced graphs are studied.e. number of connected components, graph connectivitywe
consider that set of subsets as a topological space andibtevant tools to examine it.

By “examining” we mean the search of mvariantthat maps the same element to spaces that
share the same topology. Invariants are often used viaayogitives: when two topological
spaces have different invariants, their types differ. Nénadess if the invariant is the same, it
might have an insufficient discriminating power, and it is goaranteed that the two spaces
really are of the same topological type.

Simplicial homology

Simplicial homology theory provides us with such invargras will be examplified by section
5.3. First, let us set some landmarks about simplicial hogland related fields?]. The
main idea here is to compare different spaces, to decideh&her not they are equivalent
from the point of view of topology, and finally to constitigquivalence classe®f course the
acceptions of “equivalence” are manifold:

7 the problem of graph connectivity is determining the snstlteibset of vertices (or edges)
whose deletion would disconnect the graph.
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a. homeomorphylet X andY be two topological spaces. If there exist a continuous and

bijective mapf : X — Y such thatf~! is continuous theiX andY are said to be homeo-
morphic, and have the same topological type.

b. homotopy the formal statement being counter intuitive, we settletfe following: X
andY are homotopy-equivalent if they can be transformed into amather by bending,
shrinking and expansion.

c. homology instead of working directly on spaces thanks to a map defirdaleen them,
homology introduces intermediate algebraic structuras ¢brrespond to the topological
spaces (e.g. group structures in that case), so that frose talgebraic structures, invari-
ants can be built and compared as mentioned earlier.

d. simplicial homologythis form of homology is defined in a combinatorial setting.(when
the set of points that form the space is countable), moregaiycfor a particular type of
topological space -namely simplicial complexes- that adidistraints to the hypergraph
structure.

Zomorodian P] compares these different notions borrowed from topolagy @gebraic topol-
ogy, on the basis of their computational tractability ancufgses on simplicial homology.

Simplicial complexes

Now the price to pay for casting topological features of ggaic computational terms is to
restrict the scope of possible topological spaces to saighlcomplexes, that may be defined
grossly as a countable set of vertidés= {v,},;, and a set of simplices that intersect along
their faces. There are important additional requirememnis,instead of giving an axiomatic
presentation (se€]), we state definitions in a more intuitive way:

» every simplex is constituted of faces. For example, 2fs#émplexS = {v;, v,, v} has the
following simplices the following faces, as illustrated Big. 7(a) in the case of a triangle:

({1}, {v2}, {3}, {v1, va}, {2, 03}, {1, U3}, {1, 02, 03}}

e (C;:ifasimplexs belongs to a simplicial compleX then all its faces belong tK.
¢ (Cy:intersections in a simplicial complex must occur alongretldaces, as shown by Fig.
7(b).

So far we've first justified the choice of simplicial homolodyefore stating the condition
to be met by the topological space under study. In sectiorn®3jive a characterization
method derived from the homological framework just depi¢cthen in section 5.4 we draw
the consequences, in statistical terms, of const@jrtiscussed above.

(%))
[
S3
51
s
[ [
D1 Sy U3
(a) Faces (b) Intersections
Fig. 7. (a) 2-simplexs = {vy,v,,03}, and faces{{v}, {vs}, {vs}, {v1, 0o}, {02, v3}, {01, w3},

{v1, v, v3}}. (b) simplicial complex with (left) allowed (right) forb@kn intersections.
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Filtrations

A filtration is a growing sequence of simplicial subcompkex# a complexk, as shown by
Fig. 8. One way to describe it is to imagine a map from a cowtirstscalar space such[asl]
to K: for each parameter valueve get a subcomplex @€, and ag increases contiuously from
0 to 1 we first obtain an empty subcomplex to finally get the full céemX.

@t=0 () t =05 ©t=1

Fig. 8. Filtration at different parameter levels.

This structure is made necessary to take into account thidewel structure that supposes
to organizes the relations computed simultaneously araktfeeshold levels.
We review in section 5.3 some computational charactesisifcsimplicial complexes taken
from the field of computational topology that first allow tonepute invariants for simplicial
complexes, then for filtrations.

5.3 Characterization of simplicial complexes

Section 5.2 precises the way to identify a setedry relations with a topological space. Here,
we aim at deriving computable characteristics of thoseespac

In experiments not reported in this article we first intendedharacterize simplicial com-
plexes in a quite naive way, computing the relative propartf k-simplexes in the complex,
for several threshold values; however this approach dygpldittle discriminative power. The
second idea which turned out not to be pertinent was gemarglthe idea of degree distribu-
tion for each simplex order: what is the probability for atesrto be simultaneously part of
exactlyk, 0-simplex,k; 1-simplex, etc but that would involved arrdimensional probability
distributions (depending on the maximum order allowed kstfary relation); parametrized
by the threshold level, so we take advantage of the framewdrkre the set of relations is as-
similated to a particular type of topological space befamb characterized using simplicial
homology theory.

In section 5.2, the framework relies on associating a gramyzire to each simplicial com-
plex. Ggiving the details of that structures is far beyonel $hope of this article. Suppose we
deal with a simplicial complex in dimensi@y a way to characterize it is to count the number
of voids enclosed inside the complex, and the number of fsrthat go through the space.
Fig. 9 illustrates this with two examples: an empty spheatorus. Intuitively, finding that
these spaces are of different topological types seems wbgimce one cannot be deformed
continuously one into the other; the homological way toestats is to note that the sphere
encloses a void space, as does the torus, however thereusreel't going through the torus,
not through the sphere.

Inf the topological litterature, the Betti numbers of oréles, encode those invariant properties
of spaces:

+ fo can be interpretédas the number afonnected componeritsthe simplicial complex.

8 in dimensior3 for torsion-free spaces
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Fig. 9. Empty sphere and torus.

* f; is thenumber of tunnelenclosed by the space.
* B, is thenumber of voidenclosed by the space.

Now recall from section 4 that we'we adopted a multilevehstao cope with the parametriza-
tion of relations. Thus instead of organizing a set of reladiat a given threshold level, we
take into account simultaneously several levels and buiiliration, as mentioned in section
5.2. The last step is thus to adapt the characterization iohlisial complex in the case of a
filtration. This was achieved by Edelsbrunmgral.in [?], and lead to the notion giersistent
homology that captures long living Betti number when the continuealse that parametrizes
the simplicial complex in the filtration is varied.

As this will be examplified in section 5.5, we now turn to emsgrcompatibility between con-
straintC; imposed by the structure of simplicial complexes in 5.2, gnedstatistical grounding
of relations as in 2.

5.4 From correlatednessto independence

As already suggested, independence is a much strongenfydpan uncorrelatedness. This
can be stated by saying independence impi@sdinear uncorrelatednes# x; andx, are in-
dependent rv, then any nonlinear transformatigfs) andh(x,) are uncorrelated. Mathemat-
ically, statistical independence is defined in terms of phility densities [9]. For simplicity,
X is independent of if knowing the value ofY’ does not give any information on the values
of X. In words, the joint densityx y(X, Y) must factorize into the product of their marginal
densitiepx(X) andpy(Y). Uncorrelated Gaussian rv are also independent, a propiith

is not shared by other distributions in general.

Mutual informationis a measure of the information that a set of rv have on ther ottia the
set. Using entropy, we can define the mutual informatibetweem rv X, ... X,,, as follows

I, p%) = ) H) = HO), ®
i=1

wherex is the vector containing all the. Mutual information can be interpreted by using the
interpretation of entropy as code length. The tef(s;) give the lengths of code for the
when these are coded separatedly, Bifs)) gives the code length whenis coded as a ran-
dom vectorj.e.all the components are coded in the same code. Mutual infaméaus shows
what code length reduction is obtained by coding the whobéorénstead of the separate com-
ponents. In general, better codes can be obtained by cduéngtiole vector. However if the
x; are independent, they give no information on each other.

Alternatively, mutual information can be interpreted asistahce between two probability
densities, because, as the Kullback-Leibler divergende always non negative and zero iif
the two distributions are equal. Thus one might measuraiiependence of th¥; as the mu-
tual information between the real density(x) and the factorized densipk, (x1) . . . px, (x,).
Moreover, any extracted subsequence of variables formsdependent set of variables.

If the space of multidimensional densities comes equippigal ametric structure then from
(3), then-ary relation based on 'approximate’ independence candiedas follows:

Re(Xy,...,Xy) & I(x1,...,x,) <E€. 9)
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since (9) respects the following conditions:

(i) the variable arityR (X, ..., Xx) is well-defined fork < n.
(i7) for all subsequencgX;, ..., X)) € (Xy, ..., Xx), thenR (X4, ..., Xy) = Re(X;, ..., X)).
(iii) computational tractability.

5.5 Experimental results

The mutual information is a function of densities. This mea#tee problem much more compli-

cated because the estimation of densities is, in generahanametric problem. Nonparame-
tric means that it cannot be reduced to the estimation of eefparameter set. Nonparametric
estimation of densities is known to be a difficult problem.eQway to solve the problem of

density estimation is to approximate the densities of tregmments by a family of densities
that are specified by a finite number of paramétefer instance, we consider the following
log-densities:

logp*(x) = a; — 21og cosh(x) (10)
logp™(x) = ay — [%2 — log cosh(x)] (12)

wherea;, a, are positive parameters that are fixed to makendp* probability densitiesp™

is subgaussianvhereag* is supergaussian

Densities could be estimated using basic density estimati&thods such as kernel estimators:
such a simple approach would be very error prone, howeveause the estimator would
depend on the correct choice of the kernel parameters, gralesamples, computationally
rather complicated for a large number of dimensid#s [

The validity of the approach can be found in the detail of theegiments discussed below,
which were carried on using this metH8dAt this stage, it is therefore licit to add to the
simplex whose vertices correspond to thety. . ., X; the simplicial complexX. It would then

be a simple matter of iteration to achieve the incrementidiimg of the simplicial complex.

(@e=0.3 (b) e =0.5 (c)e=09

Fig. 10. Simplicial complexes extracted from the filtration for @ifént threshold values, lim-
ited to2-simplices.

Instead of iterating the building process depicted above#&zh distance threshold, we store
directly the distances for each possible combinatiofXef. .., X;) C (X3, ..., X,). These dis-
tances play the role of birth dates necessary to specify ftihatifon structure. Consequently,
we get the simplicial complex corresponding to a given thoéd value by just extracting it
from the filtration, as illustrated by Figure 10 for a seridsatbitrary threshold values, at a

? Classical approximations by cumulante.g-Edgeworth expansion when Gaussian distri-
bution is assumed — is computationally very difficult.
10 Source code made available ][
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limited order.

Finally we compute the persistent homology of a filtratiorswhplicial complexes for com-
plexes corresponding to different signals. Firstly we édaisjust one complex per type of
signal, built fromn-realizations of a process as shown by Fig.11, composedreé tplots,
each corresponding to the Betti numberkegimplices wheré: varies from0Q to 2. From one
signal to the other, the general shape of the curves areasimift the same ordér—, even
though the range of abscissa differ: at leQetwo steady states are separated by a quick de-
crease. Conversely at levaltwo steady states are separated by a quick increase. leb&etw
at level1 for both signal types, we observe an increase followed byceedse when the dis-
tance linearly increases. Are theses signatures enougtstiogiiish two types of signals ?
Even if in the selected particular cases the persistent Batbers of ordet and2 are quite
similar from one signal to the other , Betti numbers of ortleeem to exhibit a specific shape.
However the exposed result hold only for one realizatiorhef¢omplex, and say little about
the statistical properties of persistent Betti numbers.
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Fig. 11. Persistent homology upo to ordzr

To assess the statistical significance of these resultspmwgute the empirical mean of per-
sistent Betti numbers at order= 1, which seems the most discriminant from previous results.
Fig.12 compares the averages odér= 50 realizations of filtrations, for three signal types.
Clearly shape differences are blurred by averaging, homtieéepositions of the curves on the
absissa permits alone an easy discrimination.

6 Conclusions

The aim pursued in this article was to take into account weigjinelations to characterize a
graph in a way that redefine classical invariants. We haveei@fa comparison method that
relies on statistical independence foary relations. In the first case experimental assessment
involves stochastic processes of different types whetindisnstants on time are selected to
mimick dependent units. We show that the network charaton depends strongly on the
parametrization. Tha-ary case where the suggested representation, inspireddomputa-
tional topology is encoded as a filtration. Statistical ipgledence can groundary relations,
and provide an associated characterization in the caseaof relations thanks to simplicial
homology. Lastly we assess experimentally the relevante®framework.

One technical improvement resides in the type of statigtitation that roots the definition of
edges. Depending for instance thime dependencef measured activity, one could consider
looking for various models such as time-regressive methbeghey linear or not. Another
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Fig. 12. Averaged persistent homology at ordee= 1 over N = 50 realizations. Abscissa
scales where kept distinct to allow shape comparison.

work direction could be the use of causal inference methbdsfirst associates a discrete
alphabet to continuous values before identifying causdbstthat allow to identify the phe-
nomenon with a Markov chair?].

One topic of interest in complex systems studies is to remtephenomena that occur at
distinct scales, each level interfering with the otherscéfi biology, intracellular biological
networks of distinct types are often studied separately.s¥ene studies tend to link several
levels through hierarchical network building (se® for biological networks, P] in a more
abstract setting). We plan next to examine the effect of acgy at a microscopic level on
higher scales when hierarchical structures are assemfdedb so we will first compare sev-
eral methods to take into account the weights of edges whangiig levels, then we will
borrow tools from computational physics to evaluate uraety propagation and compare
hierarchy building strategies when weights are ignorecakemn into account. Lastly we pro-
pose to confront such approaches and methods from mudigtalsics such as mean-field or
renormalization theory.
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