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Summary. This article addresses the issue of building discrete topological spaces from con-
tinuous data measured on a complex system and then the statistical characterization of the
obtained space. As an illustration, the sensitivity of graphs properties to thresholding is ana-
lysed. A possible way to cope with that flaw is the multilevel point of view. We extend this
approach ton-ary relations usingsimplicial complexes; statistical independence is shown to
be an appropriate framework for characterizing the obtained space.
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1 Introduction

In the complex systems litterature, a whole field or researchis dedicated to expressing the
organizational principles that shape large-scale networks [1] and their evolution [?].
Let’s take an example. In biology, three types of macromolecular networks rule the inner orga-
nization of cells: metabolic, protein-protein, and genetic regulation networks. It has been pro-
posed that metabolic networks should be encoded in a graph theoretic way, which allows ran-
dom graph theory to characterize them [3]: the elementary relation that units two metabolites
of the network is the existence of a reaction catalyzed by given enzymes. Similar principles
rule intracellular processes in many organisms, in a scale-free manner that entails for example
a remarkable resistance to errors. However, the great heterogeneity of reaction strengths [2]
questions the rationale of using unweighted graphs to represent the network activity.
In neurophysiology, brain networks can be examined from several points of view; structural
or anatomical studies on one hand and functional and effective ones on the other [?]. The first
area deals with the physical connection at different possible scales, whether at the level of indi-
vidual neurons or of brain areas. The former involves large-scale network while the latter lays
stress on small-scale networks. We don’t pick example in thefield of structural connectivity,
but rather from functional and effective connectivity cases that both examine the activity either
of neurons of brain areas. The functional case favors statistical interdependence irrespective of
causality while the effective connectivity case is preoccupied by causal explanation of activi-
ties of neural areas. The often quoted articles [7] illustrate the first approach. See also [?, ?] in
the artificial networks context.
The two examples above underline one limit of graph-like representations: the topology of the
graph may strongly depend on the definition of the binary relation that conditions the existence
of an edge between two nodes. One solution would be to assign weights to edges [?, 3] that
take the stand to generalize invariants defined for unweighted graphs to weighted ones. In this
article we explore an alternative proposition: first we define a threshold-dependent relation to
ground the existence of edges, and to superpose several graphs for different threshold values,
then we characterize the global structure.
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In the following, section 2 reviews relationship representation in from the experimental con-
text, then we state definitions of relationship between several variables in statistical terms.
Section 3 is devoted to examining a detailed example of a binary relation that involves corre-
lation and thresholding while section 4 gives a multilevel point of view on graph that allows
a characterization that includes threshold shifts. Section 5 puts forward tools from computa-
tional topology by extending works on binary relationship to n-ary relationship.

2 Organizing similarities in time series

The system under study consists of an units (we supposen is big) whose activities are in-
terdependent in an unknown manner. We assume this system canbeobservedby means of a
finite set of scalar variables, whose values are indexed by discrete time instants. We hold those
time-varying activities to be random, and stationary. The outputs are time-dependent station-
ary and continuous signal. The purpose of this article is to discuss theorganization, rather
than the explanation of such data. In particular, we look fora representation of the overall
interaction between theses units. The meaning of the relationship between units will be rooted
in statistical inference, since little is known about the processes, except their stationarity.
A first approach would be to define a function ofn variables, whose behaviour would be
examined and would reveal interdependence. But asn grows this method tends to become
untractable. By limiting the output domain onto{0, 1}, one may state a satisfactory answer if
we lay stress on the organization of a set of relationships (see sections 3–5).
Letui andu j be two units whose activities are measured. To make things clear, “unitsui andu j
are related” is often understood as “correlated enough”. However this term says nothing about
two rv being “sufficiently correlated”. Thecorrelation coefficientis a meaningful measure of
dependence

corr(x, y) = ρ , E[XY] = E[g(X,Y)]
∣

∣

∣g(x,y)=xy (1)

so that0 ≤ ρ2 ≤ 1, the latter upper inequality holding ifX andY are in strict linear functional
relationship. Indeed,ρ is a coefficient of linear dependence, and it does not capturemore
complex forms of interdependence. It remains an open question: which function ofρ should
be used as a measure ofinterdependence?ρ2 is more directly interpretable thanρ itself. On
the other hand, ifρ = 0 does not implyindependence, it is difficult to interpretρ as a measure
of interdependence.

Example 1 (Naive correlations). Consider the random variables (rv)X ∼ N(0, 1) andY = X2.
The covariance of the two rvX andY

cXY = E[XY] − x̄ȳ =
∫ ∞

−∞
=

x3
√
2π
e−x

2/2dx = 0. (2)

where the integral vanishes because the integrand is odd-symetrical aboutx = 0. E[.] andx
respectively stand for the expectation and the mean ofX. �

In the following we defineR(·, ·) as an indicator function for grounding statistically the state-
ment “Ui andU j are correlated enough”

Rǫ(Ui,U j) ⇐⇒ 1corr(Ui,U j) > ǫ. (3)

But, this general statement says nothing abouthowUi andU j are related. A wide variety
of other measures of correlation, with respect to tests for independence, is available –e.g.
intraclasscorrelation,tetrachoriccorrelation,biserial correlation, etc. Daniels [6] defined a
class of correlation coefficients based on the expression

rD =

∑

i, j ai jbi j
√

∑

i, j a
2
i j

∑

i, j b
2
i j

, (4)
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whereai j andbi j depend on then-uple (xi, x j) and (yi, y j), respectively. Though correlation
constitutes a fundamental tool it has important limitations: (i) the linearity of the functional
link between rv,(ii) it deals only with two variables. Since our goal, expressed at the beginning
of this section, is to account for the interdependences between the outputs of a great number
of functions ofm arguments (m ≤ n), we need to generalize this definition tom-ary relations.
We often met difficulties when a variable is correlated with aset of variables. If we find that
holding another variable fixed reduces the correlation between two other variables, we infer
that their interdependence arises in part –i.e.conditionnally – through this other variable. This
function is known aspartial correlation. Conversely, if the partial correlation is larger than the
original one, we infer that the other variable was masking the correlation. Remember that we
cannot assume acausalconnection. We shall revert to Scharf [11, pp. 292] for demonstrations
of the basic results.

Example 2 (Partial correlations).:Suppose we haven observations on 3 (< n) variates

x11, x12, x13, x21, x22, x23, . . . , xn1, xn2, xn3

that are multinormally distributed (such an approach is notnecessary but simplifies the devel-
opment) and standardized. The conditional distribution ofx1 = (x1, x2)T givenx3 is multinor-
mal so that

corr(x1, x2|x3) = ρ12|3 =
ρ12 − ρ13ρ23

√

(1 − ρ2
13
)(1 − ρ223)

. (5)

The extension of (5) for the conditional distribution of(x1, x2, x3) givenxK, wherexK denotes
any subset of(x4, . . . , xp) gives

corr(x1, x2 |x3, xK) =
ρ12|K − ρ13|Kρ23|K

√

(1 − ρ2
13|K)(1 − ρ223|K)

. (6)

�

But most certainly, (6) says nothing simple about corr(X,Y) when corr(X,Y,Z) is greater than
ǫ, and this hampers the rest of our approach, for reasons that will appear in the following.
As an alternative in then-ary case, independence between variables may provide a solution
since independence between two continuous rv holds whenP(X < x,Y < y) = P(X <
x)P(Y < y), which can be generalized ton-variables.
Stating that two units are related is half the job: given an intricate set of (measured) relations
that hold between units, what do we learn from the overall activity ? Knowledge Representa-
tion Theory usually builds a graph, once a relation is definedamongn units, as examplified by
Fig.1. Then, this graph can be characterized in many ways andthe mutual interactional struc-
ture can be analyzed and explained. Furthermore graphs are limited to binary relations, and as
we mentionned earlier the possibility of groundingn-ary relations in statistical inference, one
can build hypergraphs out of continuous signals as will be shown in section 4.

3 Organization of binary relations

In this section we limit the discussion to the case of binary relations between different units.
As mentionned before, stating relation (3) is equivalent toassociating a graph to the set of
measured activities of the units.
Now displaying an invariant of the interaction supposes giving a characterization of the set of
relations as a whole; to do so we look for inspiration in classical tools from computer science,
namely graph (spectral) theory and random matrix theory. The first step is naming the graphs
we work with conveniently: we notice that the binary relation between two units is symmetric
sinceRǫ(X,Y) = Rǫ(Y,X). Consequently vertices that represent the units in the graph can
be either disconnected, or connected in an unoriented way. Though many extensions can be
imagined (see 6), we will focus only on undirected graph.
Among many standard tools available from random graph theory (see [?]), we choose to depict
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Fig. 1. From stationary time dependent signals to graph via correlation.

graphs in term of degree, that quantifies the typical number of connections of a given vertex.
This quantity can be seen in a probabilistic context: for instance the estimated probability
density function (pdf) of the degree.
The process of characterization of a graph using selected elements of random graph and ran-
dom matrix theory is depicted by Fig.2; the following section now applies this scheme to real
signals.

u1

u2

u3

ui un

d

k

λ













1 0 1
0 1 0
1 0 1













Fig. 2. Two characteristics computed from the graph: (up) the spectrum of the adjacency
matrix of the graph, (down) the probability density function of the degreek→ P(K = k).

In that perspective, we aim at comparing graphs associated to the activity of different sets of
units. Rather than specifying complex interdependence patterns between time-dependent ac-
tivities of several units, we found it convenient to consider a stochastic process defined as a
family (Xt)t∈I of rv indexed byt taken from a continuous intervalI, from which we extract
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a finite set of rv{Xt1 , . . . ,Xti , . . .Xtn }, as shown by Fig.3. Thus, to each type of stochastic
process is associated a set of vertices, whose relations canbe computed from a finite number
of realizations of the stochastic process over a finite time interval. For the sake of diversiy,
we generate graphs from different sorts of stochastic processes (random walk, long-range de-
pendent process) as well as deterministic time series generated by a Lorenz system in chaotic
regime.

100 200 300 400 500 600 700 800 900 1000

−0.06

−0.04

−0.02

0.00

0.02

X0 Xi Xn

Fig. 3. Realizations of rv taken from one realization of a brownian stochastic process.

Questions are the following: is there a type of process corresponding to a given type of random
graph such as Erdös-Rényi random graphs, small-world or scale-free graphs [?, ?, ?]. At first
sight, graphs built from signals usingRǫ look quite similar, as evidenced by Fig. 4.

(a) Brownian
motion

(b) Long-range
dependent

(c) Lorenz (d) Erdös-Rényi
graph

(e) Small World
graph

Fig. 4. Graph topologies.(a,b,c)are built from signals usingRǫ, for values ofǫ ensuring that
the number of edges (e = 60) and the number of nodes (n = 30) are uniform. On the contrary
(d,e) are classical random graphs, with a probability of rewiringof 1/4 in the Small World
case.

Hence we turn to a more quantitative comparison, as evoked earlier, with the degree distri-
bution. Two possibilities were explored: the first one3 is to choose a signal and to generate a
set of graphs for that type of signal, then to compute the degree distribution for each graph
realization, and lastly to build a global histogram for eachsignal in order to approximate the
underlying distribution. For Erdös-Rényi and Small World graphs, the theoretical distribution

3 The second method was to compare pairwise each realization of the degree distribution,
with the help of a statistical test (e.g. Kolmogorov-Smirnov or Wilcoxon), and to count
the number of positive tests, for all possible combinations(e.g. Lorenz generated graph
compared to Small-World graph), but this method didn’t prove usefull
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is known (see [?], [?]), and following the law of large numbers, the histogram converges in
probability to the theoretical distributions. Accordingly, Fig.5 displays empirical degree dis-
tributions generated from five types of graphs, three of which were built thanks toRǫ, the last
two being Erdös-Rényi random and Small World graphs, as inFig.4.

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

degree

a
b
c
d
e

Fig. 5. Degree histograms (a) Brownian motion, (b) Lorenz, (c) Long-range dependent noise
(d) Erdös-Rényi (e) Small World. In all cases, graphs are composed of50 nodes, however the
number of edges varies: on the left part,250 edges are present, against1200 on the right side.

Before commenting on these results, we must remark that in random graph theory if one needs
to compare two graphs from their properties, it may be necessary to ensure that their number
of nodes (and edges) is of the same order of magnitude4.
Now, we noticed that depending on the thresholdǫ used to make a graph out of a process,
the number of edges depends of the type of signal (this fact iseasily explained thanks to the
difference of autocorrelation functions). The degree distribution are made comparable so that
disparity doesn’t fit with the constraint just stated, that edges and number of nodes should be
approximately equal. Consequently,Rǫ-induced graphs can be compared from random graph
theory, we must choose different values ofǫ depending on the type of signal before proceeding
so that the number of edges is kept constant.
This limit being clearly exposed, we can now compare the degree distribution of different
graphs. Fig. 5 shows two sets of curves, obtained for two distinct edge numbers, and we shall
focus on the left part first. Three clusters can grossly be isolated: line(a), line (e), and lines
(b, c, d). On the right part of the figure, we remark that two clusters can now be identified:
curves(a, b, c) on one hand, and(d, e) on the other. This counterexample shows first that clas-
sical graphs such as Erdös-Rényi random graph or small-world graphs hardly approximate the

4 “Consequently in random-graph theory the occupation probability is defined as a function
of the system size:p represents the fraction of the edges that are present from the possible
N(N2 − 1)/2. Larger graphs with the samep will contain more edges, and consequently
properties like the appearance of cycles could occur for smaller p in large graphs than in
smaller ones. This means that for many propertiesQ in random graphs there is no unique,
N-independent threshold, but we have to define a threshold function that depends on the
system size”, [?] p.55
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properties ofRǫ-induced graphs, and second that depending on the thresholdused to build
graphs, their properties -the degree distribution in that case- are not constant.

4 Multilevel organization

Comparing graph with the same threshold is inappropriate because both the number of edges
and nodes matter. Considerable differences will appear fora same graph at distinct levels of
normalization if these conditions were standardized. A natural idea developped in that section,
is therefore to take into account the history of the graph when the normalization level moves.
We admit that for Erdös-Rényi random graphs the degree distribution obeys a binomial5 law
B(n, p), that can be approximated by a normal law. Now, a normal law iscompletely described
by its mean and standard deviation(µ, σ). Though approximating the distributions of various
graphs encountered so far by a normal law would diserve more careful justification, we admit
this hypothesis just to illustrate the idea of characterizing the graph simultaneously at different
normalization levels.
It is easy to distinguish graphs by simply focusing on the degree distribution. Figure 6 illustrate
this by plotting the parametrized curvesC : e → (µ(e), σ2(e)) when the number of nodesN
is kept constant, but the number of edgese grows linearly: curves corresponding to different
graphs are easily distinguished, even if they rely on a simple characteristic such as the degree
distribution.

5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18
a
b
c
d
e

µ

σ

Fig. 6. Mean and standard deviation parametrized by the number of edgese→ (µ(e), σ(e)) of
the degree distributions.e varies from500 to2000, while the number of nodesN remains equal
to 100. (a) Brownian motion, (b) Lorenz, (c) Long-range dependentnoise (d) Erdös-Rényi (e)
Small World.

This confirm the dependence to thresholding evidenced by section 3, and then prove the exis-
tence of an alternative position, based on embracing in a single representation several levels
of detail. It appears clearly that not only the number of edges should be taken into account to
build this multilevel representation, but the number of nodes as well, which raise the issue of
hierarchical agglomeration of variables.
Here we do not deal with several phenomenologically distinct levels of description, and the
objects we’re concerned with remain the same even when the normalization conditions evolve.
One can take advantage of the combinatorial nature of relations defined on a finite set of ver-
tices to elaborate hierarchical multilevel approaches [?, 5].

5 In the case of a Erdös-Rényi random graph,n = N − 1 whereN is the number of nodes,
while p is the probability for two nodes to be connected, cf [?] p.56
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5 n-ary relations

In this section, we extends the framework presented so far ton-ary relations. The underly-
ing idea is to identify a structure of relationships and a topological space. But this cannot be
achieved directly: correlation is inappropriate to grounda n-ary relationship. Then, to meet
computational requirements we need to take advantage of algebraic topology that allows algo-
rithmic processing. To take into account the multilevel stand put forward in previous section,
we introducefiltrations. Lastly we give experimental results.

5.1 Causality in n-ary relations

Let us enumerate some possibilities offered by statistics to expressn-ary relation. (??) is
limited by the arity of the correlation function: the predominance of second-order moments
is a consequence of the prevalence of the Gaussian distribution in models if not in nature.
Indeed:

A. the Gaussian distribution iscompletelydescribed by its first two moments.
B. instead of describing an unknown distribution, it may seem more natural to first compare

it to the normal law and to provide some distance from it.

One possibility would be to define an-ary relation based on binary relations,e.g.(X1, . . . ,Xn)
are related if each couple(Xi,X j) is related6, but in many cases pairwise relations say nothing
about relations between, say3 variables.

Example 3 (Pairewise independent variables). LetX1 andX2 two independent rv with values
in {0, 1}, with a probability 12 , and the rvX3 = X1X2 + (1 − X1)(1 − X3). X3 has also values
in {0, 1} with a probability 1

2
becauseP(X3 = 0) = P(X1 = 0)P(X2 = 1) + P(X1 = 1)P(X2 =

0) = 1
2

andP(X3 = 1) = 1 − P(X3 = 0) = 1
2
. X1,X2,X3 are pairewise independent since:

P(X1 = 0,X3 = 0) = P(X1 = 0)P(X2 = 1) =
1
4 = P(X1 = 0)P(X3 = 0)

P(X1 = 0,X3 = 1) = P(X1 = 0)P(X2 = 0) =
1
4
= P(X1 = 0)P(X3 = 1)

P(X1 = 1,X3 = 0) = P(X1 = 1)P(X2 = 0) =
1
4
= P(X1 = 1)P(X3 = 0)

P(X1 = 0,X3 = 1) = P(X1 = 1)P(X2 = 1) =
1
4 = P(X1 = 1)P(X3 = 1)

Analog equalities can be found forX2,X3. However we have the relation

P(X1 = 0,X2 = 0,X3 = 0) = 0 , P(X1 = 0)P(X2 = 0)P(X3 = 0)

HenceX1,X2,X3 are not independent. �

Example 4 (Case of three pairewise independent rv). Consider a random vectorX = (X1,X2,X3)
uniformly distributed onto the tetraedron whose vertices are the points{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}
with the pdf

f (x) =
1

2
111[0,1](x1)111[0,1](x2)111[0,1](x3)[δ(x1+x2−x3)+δ(x2+x3−x1)+δ(x1+x2+x3−2)], (7)

where111[0,1] is the indicator function of the interval[0, 1]. Any coordonnate of this vector is
uniformly distributed in the interval[0, 1] and its projection onto the planx1 + x2 + x3 = 0 is
uniformly distributed inside[0, 1]2. Hence, variablesX1,X2 etX3 are pairewise independent.
However they are dependent because otehrwise the distribution ofX would be uniform inside
the cube[0, 1]3. �

6 this is similar to the use of Rips complex instead ofČech complex in computational topol-
ogy, see [?] for definitions
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A fundamental result of Information Theory is that a Gaussian variable has the largest entropy
among all random variables of equal variance [9], in other word the Gaussian distribution is
the “most random” or the least structured of all distributions. This means that entropy could
be used as a measure ofnongaussiannity.
A statistical relationship, however strong and suggestive, canneverestablish acausalconnec-
tion: ideas on causation must come from outside statistics.For instance, we may be interested
in whether there is a relationship between an alarm and an earthquake: put this way it is a
problem of interdependence. But if we are interested in detecting the alarm to convey infor-
mation about the earthquake, we are considering the dependence of the latter upon the former.
This is clearly an asymmetrical relation: earthquake ’causes’ alarm to activate, but we are cer-
tain that alarm do not affect the earthquake, so we measure the dependence of alarm upon
earthquake. Even if they were in perfect functional correspondence, we cannot reverse the
“obvious” causal connection.
At this stage, we ought to define what we mean bycause. We shall content of the following
definition:x is a cause ofy if and only if the value ofy can be changed by manipulating only
x. The issue of causality cannot be overlooked and the result of a statistical investigation is in
support of acausalrelationship. In regresson analysis, it is reasonnable to admit that changes
in thedependent(or response) variables are caused by the changes in the inputs. The notion of
conditionalindependence has an important role to play in disentanglingrelationships between
variables. Rubin [10] provides a framework for causal inference. Granger [8] describes a form
of causality based on time ordering of the variables.

5.2 Organization of measured relationships

In this section, we devise tools capable to organize the interdependence relationships between
a number of variables or in the dependence of one or more variables upon others. Suppose that
we have agreed to select an type of operatorRǫ(. . . ) that acceptsk arguments (2 < k ≤ n) – the
vertices{v1, . . . , vn} –. We look for order and regularity in subset of vertices thatare related
according toRǫ, for instance the following sets

Rǫ(v1, v2)
Rǫ(v2, v4, v5)

Rǫ(v2, vi, vn−1, vn)
...

In the same way that a set of pairs of vertices{(vi, v j)|i ∈ I, j ∈ J} defines a graph, the previ-
ous set of subsets defines a hypergraph, that extends graphs to larger dimensions. By analogy
with ideas put forward in Knowledge Representation where topologial properties of relation-
induced graphs are studied –i.e. number of connected components, graph connectivity7 – we
consider that set of subsets as a topological space and borrow relevant tools to examine it.
By “examining” we mean the search of aninvariant that maps the same element to spaces that
share the same topology. Invariants are often used via contrapositives: when two topological
spaces have different invariants, their types differ. Nevertheless if the invariant is the same, it
might have an insufficient discriminating power, and it is not guaranteed that the two spaces
really are of the same topological type.

Simplicial homology

Simplicial homology theory provides us with such invariants, as will be examplified by section
5.3. First, let us set some landmarks about simplicial homology and related fields [?]. The
main idea here is to compare different spaces, to decide whether or not they are equivalent
from the point of view of topology, and finally to constituteequivalence classes. Of course the
acceptions of “equivalence” are manifold:

7 the problem of graph connectivity is determining the smallest subset of vertices (or edges)
whose deletion would disconnect the graph.
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a. homeomorphy: let X andY be two topological spaces. If there exist a continuous and
bijective mapf : X→ Y such thatf −1 is continuous thenX andY are said to be homeo-
morphic, and have the same topological type.

b. homotopy: the formal statement being counter intuitive, we settle for the following:X
andY are homotopy-equivalent if they can be transformed into oneanother by bending,
shrinking and expansion.

c. homology: instead of working directly on spaces thanks to a map definedbetween them,
homology introduces intermediate algebraic structures that correspond to the topological
spaces (e.g. group structures in that case), so that from those algebraic structures, invari-
ants can be built and compared as mentioned earlier.

d. simplicial homology: this form of homology is defined in a combinatorial setting (i.e. when
the set of points that form the space is countable), more precisely for a particular type of
topological space -namely simplicial complexes- that add constraints to the hypergraph
structure.

Zomorodian [?] compares these different notions borrowed from topology and algebraic topol-
ogy, on the basis of their computational tractability and focusses on simplicial homology.

Simplicial complexes

Now the price to pay for casting topological features of spaces in computational terms is to
restrict the scope of possible topological spaces to simplicial complexes, that may be defined
grossly as a countable set of verticesV = {vi}i∈I, and a set of simplices that intersect along
their faces. There are important additional requirements,but instead of giving an axiomatic
presentation (see [?]), we state definitions in a more intuitive way:

• every simplex is constituted of faces. For example, the2-simplexS = {v1, v2, v3} has the
following simplices the following faces, as illustrated byFig. 7(a) in the case of a triangle:

{{v1}, {v2}, {v3}, {v1, v2}, {v2, v3}, {v1, v3}, {v1, v2, v3}}

• C1: if a simplexs belongs to a simplicial complexK then all its faces belong toK.
• C2: intersections in a simplicial complex must occur along shared faces, as shown by Fig.

7(b).

So far we’ve first justified the choice of simplicial homology, before stating the condition
to be met by the topological space under study. In section 5.3we give a characterization
method derived from the homological framework just depicted, then in section 5.4 we draw
the consequences, in statistical terms, of constraintC1 discussed above.

v1

v2

v3

s1

s2

s3

s

(a) Faces (b) Intersections

Fig. 7. (a) 2-simplex s = {v1, v2, v3}, and faces{{v1}, {v2}, {v3}, {v1, v2}, {v2, v3}, {v1, v3},
{v1, v2, v3}}. (b) simplicial complex with (left) allowed (right) forbidden intersections.
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Filtrations

A filtration is a growing sequence of simplicial subcomplexes of a complexK, as shown by
Fig. 8. One way to describe it is to imagine a map from a continuous scalar space such as[0, 1]
toK: for each parameter valuetwe get a subcomplex ofK, and ast increases contiuously from
0 to 1 we first obtain an empty subcomplex to finally get the full complex K.

(a) t = 0 (b) t = 0.5 (c) t = 1

Fig. 8. Filtration at different parameter levels.

This structure is made necessary to take into account the multilevel structure that supposes
to organizes the relations computed simultaneously at several threshold levels.
We review in section 5.3 some computational characteristics of simplicial complexes taken
from the field of computational topology that first allow to compute invariants for simplicial
complexes, then for filtrations.

5.3 Characterization of simplicial complexes

Section 5.2 precises the way to identify a set ofn-ary relations with a topological space. Here,
we aim at deriving computable characteristics of those spaces.
In experiments not reported in this article we first intendedto characterize simplicial com-
plexes in a quite naive way, computing the relative proportion of k-simplexes in the complex,
for several threshold values; however this approach displayed little discriminative power. The
second idea which turned out not to be pertinent was generalizing the idea of degree distribu-
tion for each simplex order: what is the probability for a vertex to be simultaneously part of
exactlyk0 0-simplex,k1 1-simplex, etc but that would involved ann-dimensional probability
distributions (depending on the maximum order allowed by then-ary relation); parametrized
by the threshold level, so we take advantage of the framework, where the set of relations is as-
similated to a particular type of topological space before being characterized using simplicial
homology theory.
In section 5.2, the framework relies on associating a group structure to each simplicial com-
plex. Ggiving the details of that structures is far beyond the scope of this article. Suppose we
deal with a simplicial complex in dimension3; a way to characterize it is to count the number
of voids enclosed inside the complex, and the number of tunnels that go through the space.
Fig. 9 illustrates this with two examples: an empty sphere and a torus. Intuitively, finding that
these spaces are of different topological types seems obvious since one cannot be deformed
continuously one into the other; the homological way to state this is to note that the sphere
encloses a void space, as does the torus, however there is a “tunnel” going through the torus,
not through the sphere.
In the topological litterature, the Betti numbers of orderk βk encode those invariant properties
of spaces:

• β0 can be interpreted8 as the number ofconnected componentsin the simplicial complex.

8 in dimension3 for torsion-free spaces



12 Aurélien Hazan and Vincent Vigneron

Fig. 9. Empty sphere and torus.

• β1 is thenumber of tunnelsenclosed by the space.
• β2 is thenumber of voidsenclosed by the space.

Now recall from section 4 that we’we adopted a multilevel stand, to cope with the parametriza-
tion of relations. Thus instead of organizing a set of relations at a given threshold level, we
take into account simultaneously several levels and build afiltration, as mentioned in section
5.2. The last step is thus to adapt the characterization of a simplicial complex in the case of a
filtration. This was achieved by Edelsbrunneret al. in [?], and lead to the notion ofpersistent
homology, that captures long living Betti number when the continuousvalue that parametrizes
the simplicial complex in the filtration is varied.
As this will be examplified in section 5.5, we now turn to ensuring compatibility between con-
straintC1 imposed by the structure of simplicial complexes in 5.2, andthe statistical grounding
of relations as in 2.

5.4 From correlatedness to independence

As already suggested, independence is a much stronger property than uncorrelatedness. This
can be stated by saying independence impliesnonlinear uncorrelatedness. If x1 andx2 are in-
dependent rv, then any nonlinear transformationsg(x1) andh(x2) are uncorrelated. Mathemat-
ically, statistical independence is defined in terms of probability densities [9]. For simplicity,
X is independent ofY if knowing the value ofY does not give any information on the values
of X. In words, the joint densitypX,Y(X,Y) must factorize into the product of their marginal
densitiespX(X) andpY(Y). Uncorrelated Gaussian rv are also independent, a propertywhich
is not shared by other distributions in general.
Mutual informationis a measure of the information that a set of rv have on the other rv in the
set. Using entropy, we can define the mutual informationI betweenn rv X1, . . .Xn, as follows

I(x1, . . . , xn) =

n
∑

i=1

H(xi) −H(x), (8)

wherex is the vector containing all thexi. Mutual information can be interpreted by using the
interpretation of entropy as code length. The termsH(xi) give the lengths of code for thexi
when these are coded separatedly, andH(x) gives the code length whenx is coded as a ran-
dom vector,i.e.all the components are coded in the same code. Mutual information thus shows
what code length reduction is obtained by coding the whole vector instead of the separate com-
ponents. In general, better codes can be obtained by coding the whole vector. However if the
xi are independent, they give no information on each other.
Alternatively, mutual information can be interpreted as a distance between two probability
densities, because, as the Kullback-Leibler divergence, it is always non negative and zero iif
the two distributions are equal. Thus one might measure the independence of theXi as the mu-
tual information between the real densitypX(x) and the factorized densitypX1 (x1) . . . pXn (xn).
Moreover, any extracted subsequence of variables forms an independent set of variables.
If the space of multidimensional densities comes equipped with a metric structure then from
(3), then-ary relation based on ’approximate’ independence can be stated as follows:

Rǫ(X1, . . . ,Xn) ⇐⇒ I(x1, . . . , xn) < ǫ. (9)
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since (9) respects the following conditions:

(i) the variable arity:Rǫ(X1, . . . ,Xk) is well-defined fork ≤ n.
(ii) for all subsequence(Xi, . . . ,X j) ⊆ (X1, . . . ,Xk), thenRǫ(X1, . . . ,Xk)⇒ Rǫ(Xi, . . . ,X j).
(iii) computational tractability.

5.5 Experimental results

The mutual information is a function of densities. This makes the problem much more compli-
cated because the estimation of densities is, in general, a nonparametric problem. Nonparame-
tric means that it cannot be reduced to the estimation of a finite parameter set. Nonparametric
estimation of densities is known to be a difficult problem. One way to solve the problem of
density estimation is to approximate the densities of the components by a family of densities
that are specified by a finite number of parameters9. For instance, we consider the following
log-densities:

log p+(x) = α1 − 2 log cosh(x) (10)

log p−(x) = α2 − [
x2

2
− log cosh(x)] (11)

whereα1, α2 are positive parameters that are fixed to makep− andp+ probability densities.p−

is subgaussianwhereasp+ is supergaussian.
Densities could be estimated using basic density estimation methods such as kernel estimators:
such a simple approach would be very error prone, however, because the estimator would
depend on the correct choice of the kernel parameters, greedy of samples, computationally
rather complicated for a large number of dimensions [?].
The validity of the approach can be found in the detail of the experiments discussed below,
which were carried on using this method10. At this stage, it is therefore licit to add to the
simplex whose vertices correspond to the rvX1, . . . ,Xi the simplicial complexC. It would then
be a simple matter of iteration to achieve the incremental building of the simplicial complex.
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(a) ǫ = 0.3
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(b) ǫ = 0.5 (c) ǫ = 0.9

Fig. 10. Simplicial complexes extracted from the filtration for different threshold values, lim-
ited to2-simplices.

Instead of iterating the building process depicted above for each distance threshold, we store
directly the distances for each possible combination of(X1, . . . ,Xi) ⊆ (X1, . . . ,Xn). These dis-
tances play the role of birth dates necessary to specify the filtration structure. Consequently,
we get the simplicial complex corresponding to a given threshold value by just extracting it
from the filtration, as illustrated by Figure 10 for a series of arbitrary threshold values, at a

9 Classical approximations by cumulants, –e.g.Edgeworth expansion when Gaussian distri-
bution is assumed – is computationally very difficult.

10 Source code made available by [?].
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limited order.
Finally we compute the persistent homology of a filtration ofsimplicial complexes for com-
plexes corresponding to different signals. Firstly we consider just one complex per type of
signal, built fromn-realizations of a process as shown by Fig.11, composed of three plots,
each corresponding to the Betti number ofk-simplices wherek varies from0 to 2. From one
signal to the other, the general shape of the curves are similar – at the same orderk –, even
though the range of abscissa differ: at level0, two steady states are separated by a quick de-
crease. Conversely at level2, two steady states are separated by a quick increase. In between,
at level1 for both signal types, we observe an increase followed by a decrease when the dis-
tance linearly increases. Are theses signatures enough to distinguish two types of signals ?
Even if in the selected particular cases the persistent Betti numbers of order0 and2 are quite
similar from one signal to the other , Betti numbers of order1 seem to exhibit a specific shape.
However the exposed result hold only for one realization of the complex, and say little about
the statistical properties of persistent Betti numbers.
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(b) Long-Range Dependent

Fig. 11. Persistent homology upo to order2.

To assess the statistical significance of these results, we compute the empirical mean of per-
sistent Betti numbers at orderk = 1, which seems the most discriminant from previous results.
Fig.12 compares the averages overN = 50 realizations of filtrations, for three signal types.
Clearly shape differences are blurred by averaging, however the positions of the curves on the
absissa permits alone an easy discrimination.

6 Conclusions

The aim pursued in this article was to take into account weighted relations to characterize a
graph in a way that redefine classical invariants. We have defined a comparison method that
relies on statistical independence forn-ary relations. In the first case experimental assessment
involves stochastic processes of different types where distinct instants on time are selected to
mimick dependent units. We show that the network characterization depends strongly on the
parametrization. Then-ary case where the suggested representation, inspired from computa-
tional topology is encoded as a filtration. Statistical independence can groundn-ary relations,
and provide an associated characterization in the case ofn-ary relations thanks to simplicial
homology. Lastly we assess experimentally the relevance ofthis framework.
One technical improvement resides in the type of statistical relation that roots the definition of
edges. Depending for instance ontime dependenceof measured activity, one could consider
looking for various models such as time-regressive methods, be they linear or not. Another
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Fig. 12. Averaged persistent homology at orderk = 1 overN = 50 realizations. Abscissa
scales where kept distinct to allow shape comparison.

work direction could be the use of causal inference methods that first associates a discrete
alphabet to continuous values before identifying causal states that allow to identify the phe-
nomenon with a Markov chain [?].
One topic of interest in complex systems studies is to represent phenomena that occur at
distinct scales, each level interfering with the others. Incell biology, intracellular biological
networks of distinct types are often studied separately. Yet some studies tend to link several
levels through hierarchical network building (see [?] for biological networks, [?] in a more
abstract setting). We plan next to examine the effect of uncertainty at a microscopic level on
higher scales when hierarchical structures are assembled.To do so we will first compare sev-
eral methods to take into account the weights of edges when changing levels, then we will
borrow tools from computational physics to evaluate uncertainty propagation and compare
hierarchy building strategies when weights are ignored or taken into account. Lastly we pro-
pose to confront such approaches and methods from multiscale Physics such as mean-field or
renormalization theory.

References
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