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Abstract. Hybrid system identification aims at both estimating the dis-
crete state or mode for each data point, and the submodel governing the
dynamics of the continuous state for each mode. The paper proposes
a new method based on kernel regression and Support Vector Machines
(SVM) to tackle this problem. The resulting algorithm is able to compute
both the discrete state and the submodels in a single step, independently
of the discrete state sequence that generated the data. In addition to
previous works, nonlinear submodels are also considered, thus extending
the class of systems on which the method can be applied from Piece-
Wise Affine (PWA) and switched linear to PieceWise Smooth (PWS)
and switched nonlinear systems with unknown nonlinearities. Piecewise
systems with nonlinear boundaries between the modes are also consid-
ered with some preliminary results on this issue.

1 Introduction

Context. Hybrid systems are usually described by both a continuous state and
a discrete state, where the vector field defining the evolution of the continuous
state depends on the discrete state. In this framework, a system can be seen as
switching between n different subsystems, which are usually modeled by AutoRe-
gressive with eXogenuous inputs (ARX) models in the discrete-time case. Two
types of identification problems may arise in this setting depending on whether
the discrete state sequence that generated the data is known or not. If it is, then
the problem can be simply recast as n common identification problems, each
one using only the data for a given discrete state. However, in most cases this
sequence is unknown and the problem becomes nontrivial.

Models of hybrid systems. The predicted output yt of a hybrid model
in ARX form is given as a function of the continuous state xt =
[ut−nc

. . . ut−1, yt−na
. . . yt−1]

T , containing the lagged inputs ut−j and outputs
yt−j , and the discrete state λt. Considering n submodels fj, the hybrid model
is written as

yt = fλt
(xt) + et, (1)

where et is a noise term. Hybrid models can be classified with respect to the na-
ture of the submodels fj and of the evolution of the discrete state λt ∈ {1, . . . , n}.
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Table 1. Nomenclature of the hybrid models in ARX form

ARX model abbr. models fj discrete state λt domains Sj

PieceWise PWARX affine function of x polyhedral
PieceWise Nonlinear PWNARX nonlinear function of x polyhedral
Nonlinearly PieceWise NPWARX affine function of x arbitrary
Nonlinearly PieceWise Nonlinear NPWNARX nonlinear function of x arbitrary
Switched SARX affine arbitrary
Switched Nonlinear SNARX nonlinear arbitrary

Table 1 defines the nomenclature that will be used in the paper. SARX and
SNARX models assume that the system is arbitrarily switched. On the other
hand, PWARX models consider a dependency between the discrete state and
the continuous state. They can thus be defined by PieceWise Affine (PWA)
maps of the type f(x) = fj(x), if x ∈ Sj = {x : Hj [x

T 1]T ≤ 0}, j = 1, . . . , n,
where the matrices Hj represent a set of hyperplanes that define the polyhe-
dral domains Sj partitioning the continuous state space. Similarly, PWNARX
models can be defined by PieceWise Smooth (PWS) maps, where fj are smooth
nonlinear functions instead of affine functions. Extensions of the PWARX and
PWNARX models to ”nonlinearly piecewise” models, where the domains Sj are
no more constrained to be polyhedral, will be denoted NPWARX and NPW-
NARX.

Related work. Five main approaches have been devised for hybrid system identi-
fication: the clustering-based approach [1], the mixed integer programming based
approach [2], the Bayesian approach [3], the bounded error approach [4] and the
algebraic approach [5, 6]. The first four focus on the problem of PieceWise Affine
(PWA) system identification, where the discrete state depends on the continuous
state. However, both the bounded error and Bayesian approaches can also be
used to identify a broader class of systems, known as switched linear systems,
where the discrete state evolves independently of the continuous state. The al-
gebraic approach [5] focuses on this latter problem, but without taking the noise
into account in its development. This leads to an algorithm very sensitive to
noise, compared to the clustering-based or bounded error methods, as shown by
[7]. Besides, the bounded error method [4] provides a convenient way of dealing
with noisy data by looking for a model with a predefined accuracy. However, the
hyperparameters of the method, such as the model accuracy that determines the
number of modes, may be difficult to tune to get a prescribed structure, e.g. if
prior knowledge on the number of modes is available [7].

Tools and proposed method. The paper proposes a new method for hybrid system
identification based on kernel regression and Support Vector Machines (SVMs).
Stemming from statistical learning theory, Support Vector Machines (SVMs) [8]
quickly became a state-of-the-art tool for classification and are already com-
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monly used, either in their original form or through closely related methods
[9], in hybrid system identification to estimate the switching boundary between
modes [1, 4]. Based on the same theoretical concepts, Support Vector Regression
(SVR) retains properties of SVMs, such as a good generalization ability from
few samples, and offers an interesting alternative both for regression and system
identification [10–12]. SVR uses an ε-insensitive loss function which does not take
into account errors that are less than ε [13]. This loss function ignoring errors
below a predefined threshold is close in spirit to the bounded error approach.
However, the origin is different. In learning theory, this effect is justified in order
to minimize the generalization error of the model, whereas the bounded error
approach was developed to allow the automatic determination of the number
of linear submodels required to approximate a non-linear function with a given
accuracy.

In the past decade, kernel methods have attracted much attention in a large
variety of fields and applications: classification and pattern recognition, regres-
sion, density estimation, etc. Indeed, using kernel functions, many linear meth-
ods can be extended to the nonlinear case in an almost straightforward manner,
while avoiding the curse of dimensionality by transposing the focus from the
data dimension to the number of data.

The proposed method uses the SVR framework to estimate hybrid models
with submodels in kernel expansion form. The resulting algorithm is able to com-
pute both the discrete state and the submodels in a single step, independently of
the discrete state sequence that generated the data. Nonlinear submodels with
unknown types of nonlinearities can be easily treated, thus extending the class
of systems on which the method can be applied from switched linear to switched
nonlinear systems and from piecewise affine to piecewise smooth systems by
considering models in SARX, SNARX, PWARX or PWNARX form. Nonlin-
early PWA and PWS maps with nonlinear mode boundaries are also considered
in the paper with some preliminary results using nonlinear SVM classifiers. The
idea is that since the method estimates the discrete state without any assump-
tion on the switching sequence, labeling data points generated from nonlinearly
separable modes is possible.

Contribution. The paper proposes solutions for two problems that have not yet
been extensively studied and solved in the literature: identification of hybrid
systems switching between unknown nonlinear dynamics and identification of
nonlinearly piecewise systems with nonlinear boundaries between the modes in
the continuous state space.

Paper organization. The paper starts by some preliminaries on kernel functions
and Support Vector Regression (Sect. 2.1) before using these to develop a hybrid
system identification algorithm in Sect. 2.2. The problem of estimating nonlinear
boundaries between modes is then discussed in Sect. 2.3 and Section 3 provides
an interpretation of the method based on previous approaches from the litera-
ture. Finally, Section 4 gives some numerical examples of application.
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Notations. All vectors are column vectors written in boldface and lowercase
letters whereas matrices are boldface and uppercase. The vectors 0 and 1 are
vectors of appropriate dimensions with all their components respectively equal
to 0 and 1. For A ∈ IRd×m and B ∈ IRd×n containing d-dimensional sample
vectors and the kernel function k : IRd × IRd → IR, the “kernel” K(A, B) maps
IRd×m × IRd×n in IRm×n with K(A, B)i,j = k(Ai, Bj), where Ai and Bj are

the ith and jth columns of A and B. In particular, if x ∈ IRd is a column vector
then K(x, B) is a row vector in IR1×n. The matrix X ∈ IRN×d contains all
the training samples xi, i = 1, . . . , N , as rows. The vector y ∈ IRN gathers all
the target values yi for these samples. The kernel matrix K(XT , XT ) will be
written K for short.

2 Nonlinear Hybrid System Identification

This section presents a new method based on kernel regression and support
vector machines (SVMs) for hybrid system identification. The basics of nonlinear
function approximation by kernel methods are first recalled, before describing
the proposed method itself. The section ends with a discussion on piecewise
systems with nonlinear boundaries between modes.

2.1 Kernels and Support Vector Regression

A simple method to approximate a nonlinear function is to first map the data
to a higher dimensional feature space and then perform linear regression in that
space. This approach usually suffers from the so-called curse of dimensionality,
which can however be avoided thanks to the ”kernel trick” depicted below.

First, consider the nonlinear mapping Φ that maps the data x from the
input space X ⊂ IRp to a vector Φ(x) in a feature space F . Assume now that
the function f is given by an expansion based on the N training samples xi ∈ IRp

in that feature space, i.e. f(x) =
∑N

i=1 αiΦ(x)T Φ(xi)+ b. Clearly, though being
a nonlinear function in the input space, f is a linear function in F . Note that
in order to compute f(x), it is not necessary to explicitly compute the images
Φ(xi) of the points but only the result of their inner product. This is the ”kernel
trick” which replaces the inner products between images of points by a kernel

function k(x, xi) = Φ(x)T Φ(xi). In kernel regression, the training data (xi, yi),
i = 1, . . . , N , stacked in the matrix X and the vector y, are thus approximated
by a kernel expansion

f(x) =
N

∑

i=1

αik(x, xi) + b = K(x, XT )α + b , (2)

where α = [α1 . . . αi . . . αN ]T and b are the parameters of the model and k(., .)
is the kernel function. Typical kernel functions are the linear (k(x, xi) = xT xi),
Gaussian RBF (k(x, xi) = exp(−‖x − xi‖

2
2/2σ2) and polynomial (k(x, xi) =

(xT xi + 1)d) kernels. The kernel function defines the feature space F in which
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the data are implicitly mapped. The higher the dimension of F is, the higher the
approximation capacity of the function f is, up to the universal approximation
capacity obtained for an infinite feature space, as with Gaussian RBF kernels.
It is also possible to build kernel functions from prior knowledge on the task at
hand, see for instance [14] for the properties of kernel functions and the construc-
tion of new kernels or [15] for examples of application in pattern recognition. In
the hybrid system identification framework, this can be useful for instance when
the type of nonlinearity of a particular mode is known beforehand.

In kernel regression via linear programming (LP), the ℓ1-norm of the param-
eters α of the kernel expansion is minimized together with the ℓ1-norm of the
errors yi − f(xi) by

min
(α,b)

‖α‖1 + C

N
∑

i=1

|f(xi) − yi| , (3)

where a hyperparameter C is introduced to tune the trade-off between the min-
imization of the model complexity (measured by ‖α‖1) and the error on the

data (measured by
∑N

i=1 |f(xi) − yi|). Minimizing the complexity of the model
allows to control its generalization capacity. In practice, this amounts to penalize
non-smooth functions and implements the general smoothness assumption that
two samples close in input space tend to give the same output.

Instead of the ℓ1-norm of the errors, the ε-insensitive loss function, defined
by [8] as

l(e) = |e|ε =

{

0 if |e| ≤ ε ,

|e| − ε otherwise ,
(4)

can also be used to yield Linear Programming Support Vector Regression (LP-
SVR). This loss function builds a tube of insensitivity in which the errors are
meaningless. Errors larger than the tube width 1 ε are penalized linearly.

A possible formulation of the LP-SVR problem involves 4N + 1 design vari-
ables [16]. In the remaining of the paper, we will follow the approach of [17] that
involves only 3N + 1 variables. Introducing two sets of optimization variables,
in two positive slack vectors a and ξ, this problem can be implemented as a lin-
ear program solvable by standard optimization softwares such as the MATLAB
linprog function. In this scheme, the LP-SVR problem may be written as

min
(α,b,ξ≥0,a≥0)

1T a + C1T ξ

s.t. −ξ − ε1 ≤ Kα + b1− y ≤ ε1 + ξ

−a ≤ α ≤ a .

(5)

The last set of constraints ensures that 1T a, which is minimized, bounds ‖α‖1.
In practice, sparsity is obtained as a certain number of parameters αi will tend
to zero. The input vectors xi for which the corresponding αi are non-zero are
called support vectors.

1 Actually, ε does not stand for the tube width but for half of the tube section with
respect to y.
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2.2 Hybrid System Identification with Kernels

The bounded error approach, developed by [4] for the identification PWARX
models, aims at finding a model with a predefined accuracy, i.e. that allows the
error on all the training points (xi, yi) to be bounded by

|yi − fλi
(xi)| = |ei| ≤ δ, i = 1, . . . , N . (6)

The following presents a new method based on kernel regression to achieve this
goal. As a direct benefit, nonlinear submodels fj are easily handled by the choice
of the kernel functions, thus providing a method for the estimation of both
piecewise and switched nonlinear ARX models.

Following the SVR approach, submodels in kernel expansion form

fj(x) =
N

∑

i=1

αijkj(x, xi) + bj = Kj(x, XT )αj − bj, (7)

are trained by minimizing the ℓ1-norm of the parameters αj . As indicated by the
subscript j, various kernel functions kj can be associated to the different models

fj . This leads to vectors Kj(x, XT ) and kernel matrices Kj = Kj(X
T , XT ),

as defined in the notations at end of the introduction. It is thus possible to take
prior information into account such as the number of modes governed by linear
dynamics or knowledge on the type of a particular nonlinearity. In this setting,
the problem of training n models under the bounded error constraint may be
written as

min
αj ,bj ,aj≥0

n
∑

j=1

1T aj (8)

−δ1 ≤ y − Kjαj − bj1 ≤ δ1, ∀xi ∈ Sj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n .

where y = [y1 y2 . . . yN ]T and the absolute error |eij | = |fj(xi) − yi| is con-
strained to be less than δ only for the model j corresponding to the discrete
state λi of the point xi. However, without further information on the classifi-
cation of the data into modes, Sj are unknown and the problem is intractable.
To circumvent this issue, consider the equivalent problem using the ε-insensitive
loss function (4) for ε = δ implemented with slack variables ξij , i = 1, . . . , N ,

j = 1, . . . , n, stacked in the n vectors ξj ∈ IRN as in (5):

min
αj ,bj ,aj≥0,ξj≥0

n
∑

j=1

1T aj (9)

−ξj − δ1 ≤ y − Kjαj − bj1 ≤ δ1 + ξj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n,
n

∏

j=1

ξij = 0, i = 1, . . . , N .
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The last equalities stand for the fact that all points must be estimated with
accuracy δ by at least one submodel fj. In other words, for a given sample
(xi, yi), there is at least one j for which ξij = 0. As nonlinear equalities are not
easy to deal with from an optimization point of view, these are approximated
by

min
αj ,bj ,aj≥0,ξj≥0

n
∑

j=1

1T aj + C

N
∑

i=1

n
∏

j=1

ξij (10)

−ξj − δ1 ≤ y − Kjαj − bj1 ≤ δ1 + ξj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n .

Solving this problem with a sufficiently large constant C leads to functions fj

solutions of the former problem (8). Moreover, the discrete state λi, in which
the system was for each data point xi is readily available from the variables
ξij vanishing to zero as λ̂i = j, for ξij = 0. The cases where the bounded
error constraint is not satisfied, i.e. no ξij is zero, can be further discriminated

by letting λ̂i = arg minj(ξij). On the other hand, for cases where more than

one ξij is zero, the absolute error is considered and λ̂i = arg minj |eij |, with
eij = yi − fj(xi).

In the case of PWARX or PWNARX models where the modes are linearly
separable in the continuous state space, undetermined points can be reclassified
after the training of separating hyperplanes (the boundaries between the sets Sj)
based on the determined cases only. The linear classification issue is not discussed
here due to size constraints and the reader is referred to [8] and [9] for an
introduction to state-of-the-art methods, whereas multi-class pattern recognition
is considered for instance by [18]. In the next Section, extensions of the PWARX
and PWNARX models to nonlinearly piecewise models, where the domains Sj

are no more constrained to be polyhedral, will be discussed.
An advantage of the proposed approach is the possibility to deal easily with

a noise level that also switches with the model. In order to do so, multiple loss
functions with different parameters δj for each mode can be used and imple-
mented in the following final problem

min
αj ,bj ,aj≥0,ξj≥0

n
∑

j=1

1T aj + C

N
∑

i=1

n
∏

j=1

ξij (11)

−ξj − δj1 ≤ y − Kjαj − bj1 ≤ δj1 + ξj , j = 1, . . . , n,

−aj ≤ αj ≤ aj , j = 1, . . . , n .

Another possible formulation with n × N less variables and constraints in-
volves the minimization of the squares of the parameters αij as

min
αj ,bj ,ξj≥0

n
∑

j=1

αT
j αj + C

N
∑

i=1

n
∏

j=1

ξij (12)

−ξj − δj1 ≤ y − Kjαj − bj1 ≤ δj1 + ξj , j = 1, . . . , n .
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The solution of this problem is not sparse as the one of (11) but can usually be
computed in less time.

Remark 1. In the case of a linear kernel kj(x, xi) = xT xi, the parameters of the

linear model fj(x) = wT
j x + bj can be explicitly recovered by wj = XT αj .

Remark 2. The hyperparameters of the method are the kernel types, the number
n of modes, the bounds δj , the regularization parameter C and the number of
lagged inputs and outputs (dynamic order). They can be tuned on a subset of the
data put aside for validation. When too few data are available, cross-validation
techniques can be used. Moreover, the algorithms (11) and (12) can be extended
to automatically tune the bounds δj to the noise level by using a trick similar to
the one introduced in ν-SVR [16, 17]. This is studied in [19] for linear submodels
and directly applicable to the problems above. Besides, the proposed method
is well adapted when some basic prior knowledge on the system is available
such as the number n of modes. However, due to the universal approximation
capability of kernel models, the tuning of n is less crucial than when using linear
or affine submodels. For piecewise maps, a good fit can be obtained with an
underestimated n.

Remark 3. Problems (11) and (12) are linearly constrained nonlinear programs.
They involve the minimization of a criterion composed of a linear (11) or
quadratic (12) term and a product of nonnegative variables subject to linear
constraints. These problems are not convex and have multiple minima. This
can be seen from their symmetric structure, leading to multiple solutions for
simple permutations of models. All these solutions are acceptable and yield the
same objective function value corresponding to a global optimum. However, care
must be taken when using different kernels for different models, in which case
permuting models is no more without effect and may lead to local minima.

A possible initialization of the optimization can be obtained by solving the
feasibility problems corresponding to the constraints of (11) and (12), which are
simple linear programs.

2.3 Nonlinear Boundaries Between Modes

A direct extension of the PWARX and PWNARX models, in which the discrete
state is determined by a set of separating hyperplanes in the continuous state
space, is obtained by introducing nonlinear boundaries or arbitrary regions (also
pointed out in the conclusion of [4]). In these ”nonlinearly piecewise” models
(denoted by NPWARX and NPWNARX, see Table 1 in the introduction), the
discrete state is still a function of the continuous state, but the separating sur-
faces are no more restricted to hyperplanes. This can lead to a decrease of the
number of submodels if the true system corresponds to this description. Indeed,
in this case, the linear separability assumption may require to build multiple
identical submodels for different regions of the continuous state space that are
however governed by the same dynamics. Moreover, regrouping the data avail-
able in several regions of the continuous state space into one submodel may help
to get better estimates for regions with few samples.
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Nonlinear classification methods have to be used in this case and are readily
available in number (KPCA, KFD, SVM...) [14] thanks to the kernel trick used
above. In particular, SVMs are similarly very easily extended to nonlinear classi-
fication by an appropriate choice of kernel function. Moreover, the final classifier
is given as a sparse kernel expansion allowing for relatively fast estimation of
the mode for a new sample. For the binary case (only 2 modes), the nonlinear
separating surface S is given by

h(x) =
N

∑

i=1

βikc(x, xi) + bc = 0 , (13)

where kc(., .) is a kernel function and the βi, bc are the trainable parameters
of the classifier. Simply taking the sign of the function h yields the class of a
pattern x, i.e. +1 if h(x) ≥ 0 and −1 otherwise.

The method proposed in Sect. 2 can deal with nonlinearly piecewise maps
(themselves either affine or nonlinear) without any modification and provide the

labeling of the data, required to train a classifier, through λ̂i. Indeed, any method
(including the bounded-error, Bayesian or algebraic approaches) that estimates
the discrete state without dependency on the continuous state, and thus without
any assumption regarding the linear separability of the data in the continuous
state space, can deal with nonlinearly piecewise maps. In practice, the procedure
is as follows.

1. Train a hybrid model on the input-output data (xi, yi), i = 1, . . . , N , by
solving (11) or (12),

2. Estimate the discrete states, e.g. by λ̂i = argminj |eij |, i = 1, . . . , N ,

3. Train a classifier on the labeled data (xi, λ̂i), i = 1, . . . , N .

Additionally, in a refinement step, the training points could be re-assigned to
the different modes by the classifier and the submodels fj retrained one by one
on the relevant data only.

An illustrative example of this procedure is given in Sect. 4.2, where the
method is applied to estimate a Nonlinearly PieceWise Affine (NPWA) map.

3 Interpretation and Links with other Approaches

The proposed method can be interpreted as a bridge between the bounded error
approach [4], that can deal easily with noise, and the algebraic procedure [5], that
can deal with arbitrarily switched systems, while providing nonlinear extensions
to these. More precisely, it amounts to a bounded error relaxation of the hybrid
decoupling constraint used in the algebraic procedure as follows.

The hybrid decoupling constraint of the algebraic procedure can be expressed
as a function of the submodel errors, eij = yi − fj(xi), by

n
∏

j=1

eij = 0, i = 1, . . . , N. (14)
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These constraints account for the fact that there must be at least one of the
submodels fj that can estimate the ith point with zero error. In the case of noisy
data, these constraints cannot be satisfied for all the N points. Considering the
bounded error approach, ”decoupling” can be however enforced. The bounded
error constraints (6) act similarly to (14), though being less restrictive on the
estimation error (with a threshold δ). Combining these two approaches results
in constraints of the form

n
∏

j=1

[|eij | ≥ δ] = 0, i = 1, . . . , N , (15)

where [·] = 1, if the bracketed expression is true, and 0 otherwise. Using these

constraints, the absolute value of the error |ei| = minj |eij | (assuming that λ̂i =
arg minj |eij |) of the hybrid model is bounded by the threshold δ. Approximating
[|eij | ≥ δ] for all j by an ε-insensitive loss function and minimizing their product
leads to the algorithm (11).

4 Numerical Examples

The following presents three examples of application. The first one shows the
simultaneous estimation of two functions, one linear and one nonlinear, from
datasets overlapping in the input space, while the second one is concerned with
the estimation of a nonlinearly piecewise affine (NPWA) map. The last exam-
ple shows the identification of a SNARX model of a hybrid system arbitrarily
switching between linear and nonlinear dynamics. For examples 1 and 3, the
discrete state is arbitrarily switched and the type of nonlinearity is unknown. In
all the examples, the problems are formulated as the optimization program (11)
and solved by the MATLAB function fmincon.

4.1 Switching Function with Unknown Nonlinearity

In this one-dimensional example, the data are generated by two models: a linear
submodel y1(x) = ax + b + e = 2x − 1 + e and a polynomial submodel y2(x) =
0.5x2 + e, where e is a zero-mean Gaussian noise of standard deviation 0.5. The
discrete state λ, determining which submodel is active, is independent of the
variable x. Two data points, (x, y1(x)) and (x, y2(x)), are generated for 30 values
of x in the interval ]−5, 1[. Beside these 60 data, the only prior knowledge is that
one submodel is linear and the other is nonlinear. The aim of this example is
to show that the proposed method can discriminate between the two submodels
and correctly approximate each one without further knowledge on the type of
nonlinearity. Figure 1 shows the results obtained for δ1 = δ2 = 0.5, C = 100,
a linear kernel k1 and a Gaussian RBF kernel k2 with σ = 2. The estimated
parameters for the linear submodel are â = 1.999 and b̂ = −0.863. The overall
Mean Square Error (MSE) is MSE = 1

N

∑N

i=1(yi − f
λ̂i

(xi))
2 = 0.205, which is

rather good compared to the noise variance σ2
b = 0.25.
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Fig. 1. One-dimensional example of the simultaneous estimation of two functions on
noisy data. Points associated to the linear and RBF models are respectively represented
by crosses (+) and diamonds (⋄).

4.2 Nonlinearly Piecewise Affine Map Estimation

In this illustrative example, the problem is to estimate a Nonlinearly PieceWise
Affine (NPWA) map defined as y = x + 0.5 + e, for x ∈ ] − ∞,−1]

⋃

[1,∞[,
and y = −0.5x − 1 + e, for x ∈ ] − 1, 1[, where e is a zero-mean Gaussian noise
of standard deviation 0.1. This problem could be solved by considering a PWA
map with 3 modes linearly separable in the x variable, or, as proposed in this
example, by considering only 2 modes with a nonlinear boundary between mode
1 and mode 2. Thus, two models with linear kernels are trained on N = 60 data
points for δ1 = δ2 = 0.1 and C = 100. The resulting models, shown on Fig.
2, are y = 1.01x + 0.53 and y = −0.48x − 1.02. All the points are associated
to the correct model except for one point, (xi, yi) = (−0.9,−0.31), close to the
mode boundary. The training of a SVM classifier, with a polynomial kernel kc =
(xxi + 1)3, on the data labeled by λ̂i, i = 1, . . . , N, yields a nonlinear boundary
S between the modes given by 2 support vectors x1 = −3 and x60 = 2.9. As
the data xi are in IR, this nonlinear separating surface is a set of points defined
as S = {x : h(x) = −0.24(−3x + 1)3 − 0.22(2.9x + 1)3 + 10.3 = 0}, as shown
on the right hand side of Fig. 2. This classifier yields no classification error with
respect to the target labels λ̂i.

4.3 Simulated Hybrid System Identification

Consider the hybrid system switching between mode 1: yt = −0.905yt−1 +
0.9ut−1 + et, and mode 2: yt = −0.4y2

t−1 + 0.5ut−1 + et, where et is a zero-
mean Gaussian noise of standard deviation σb = 0.1. An output trajectory of
N = 100 points of this system is generated with a random initial condition
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Fig. 2. Nonlinear boundary between 2 modes. Left: Hybrid model (—) with its insen-
sitivity tube (- -) approximating the data points represented by ’×’ for λ̂i = 1 and ”◦’
for λ̂i = 2. The estimated mode λ̂i also appears on the x-axis as ’×’ for mode 1 and
’◦’ for mode 2 to highlight the partition of the input space X . Right: Class labels λ̂i

(.) for each data point xi used to learn the nonlinear boundary S (◦), defined as the
zeros of h(x) (—).

y0, a random input sequence ut uniformly distributed in the interval [0, 1] and
a mode switch from mode 1 to mode 2 at time t = 41. The signal-to-noise
ratio of this trajectory is 12 dB corresponding to a variance of the noise free
trajectory of 0.20 and a noise variance of 0.012. These data are then used to
train a SNARX model with C = 1000, δ1 = δ2 = 0.1, a linear kernel k1 and
a RBF kernel k2 with σ = 1. Thus, the only prior knowledge is that one sub-
model is linear and the other is nonlinear. The trajectory of the resulting model
ŷt = f

λ̂t
(ŷt−1, ut−1) is shown on Figure 3. The estimated parameters of the linear

mode 1 are −0.929 and 0.960, to be compared to −0.905 and 0.9. The discrete
state is estimated by λ̂t = argminj(ξtj). As shown at the bottom of Fig. 3, 22
classification errors occur on the whole trajectory. The effect of these errors is
limited and their origin can be explained. Most of them occur on ambiguous
points for which f1(yt−1, ut−1) = f2(yt−1, ut−1) ± (δ1 + δ2). Here, a switched
system is identified, but note that in case of a piecewise system, these ambi-
guities could be removed by classifying the points with respect to a separating
boundary in the continuous state space. The overall simulation error is RMSEsim

=

√

1/N
∑N

t=1(yt − ŷt)2 = 0.154, which is slightly more than the noise standard

deviation σb = 0.1. Only 8 support vectors with nonzero αij are selected from
the 100 training samples to build the kernel expansion f2.

5 Conclusion

In this paper, a new system identification method has been proposed to deal
with nonlinear hybrid systems. In particular, this method is applicable to sys-
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Fig. 3. Simulated hybrid system identification. Top: Trajectory of the system (blue
plain line) and of the model (red dash line) in simulation mode (only the initial condi-
tion and the input is given to the model). Bottom: Estimated discrete state λ̂t.

tems switching between unknown nonlinear dynamics and nonlinearly piecewise
systems with arbitrary nonlinear boundaries between the modes. It also bridges
the gap between the bounded error approach and the algebraic procedure by
making use of the ε-insensitive loss function proposed in the machine learning
community for Support Vector Regression. Since no assumption on the discrete
sequence that generates the data is required, arbitrarily switched systems can
be treated as well as piecewise systems.

Future work will focus on the tuning of the hyperparameters and optimization
issues as well as experiments with real life applications. Among other perspec-
tives, the simultaneous estimation of the submodels and the boundaries between
the modes for piecewise systems could be investigated.
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