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Computation of 2-groups of positive classes of exceptional number fields *

We present an algorithm for computing the 2-group Cℓ pos F of the positive divisor classes in case the number field F has exceptional dyadic places. As an application, we compute the 2-rank of the wild kernel WK2(F ) in K2(F ).

Résumé. Nous développons un algorithme pour déterminer le 2-groupe Cℓ pos F des classes positives dans le cas où le corps de nombres considéré F possède des places paires exceptionelles. Cela donne en particulier le 2-rang du noyau sauvage WK2(F ).

Introduction

The logarithmic ℓ-class group Cℓ F whas introduced in [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF] by J.-F. Jaulent who used it to study the ℓ-part WK 2 (F ) of the wild kernel in number fields: if F contains a primitive 2ℓ t -th root of unity (t > 0), there is a natural isomorphism µ ℓ t ⊗ Z Cℓ F ≃ WK 2 (F )/WK 2 (F ) ℓ t , so the ℓ-rank of WK 2 (F ) coincides with the ℓ-rank of the logarithmic group Cℓ F . An algorithm for computing Cℓ F for Galois extensions F was developed in [START_REF] Diaz Y Diaz | Approche algorithmique du groupe des classes logarithmiques[END_REF] and later generalized and improved for arbitrary number fields in [START_REF] Diaz Y Diaz | A new algorithm for the computation of logarithmic class groups of number fields[END_REF].

In case the prime ℓ is odd, the assumption µ ℓ ⊂ F may be easily passed if one considers the cyclotomic extension F (µ ℓ ) and gets back to F via the so-called transfer (see [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques[END_REF], [START_REF] Pauli | The discrete logarithm in logarithmic ℓ-class groups and its applications in K-Theory[END_REF] and [START_REF] Soriano-Gafiuk | Sur le noyau hilbertien d'un corps de nombres[END_REF]). However for ℓ = 2 the connection between symbols and logarithmic classes is more intricate: in the non-exceptional situation (i.e. when the cyclotomic Z 2 -extension F c contains the fourth root of unity i) the 2-rank of WK 2 (F ) still coincides with the 2-rank of Cℓ F . Even more if the number field F has no exceptional dyadic place (i.e. if one has i ∈ F c q for any q|2), the same result holds if one replace the ordinary logarithmic class group Cℓ F by a narrow version Cℓ res F . The algorithmic aspect of this is treated in [START_REF] Jaulent | Computation of 2-groups of narrow logarithmic divisor classes of number fields[END_REF]. Last in [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF] the authors pass the difficulty in the remaining case by introducing a new 2-class groups Cℓ pos F , the 2-group of positive divisor classes, which satisfies the rank identity: rk 2 Cℓ pos F = rk 2 WK 2 (F ).

In this paper we develop an algorithm for computing both Cℓ pos F and Cℓ pos F in case the number field F does contain exceptional dyadic places.

We conclude with several examples. Combining our algorithm with the work of Belabas and Gangl [START_REF] Belabas | Generators and Relations for K 2 O F[END_REF] on the computation of the tame kernel of K 2 we obtain the complete structure of the wild kernel in some cases.

2 Positive divisor classes of degree zero 2.1 The group of logarithmic divisor classes of degree zero Throughout this paper the prime number ℓ equals 2 and we let i be a primitive fourth root of unity. Let F be a number field of degree n = r + 2c. According to [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres[END_REF], for every place p of F there exists a 2-adic valuation v p which is related to the wild 2-symbol in case the cyclotomic Z 2 -extension of F p contains i. The degree deg p of p is a 2-adic integer such that the image of the map Log | | p is the Z 2 -module deg(p) Z 2 (see [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF]). (By Log we mean the usual 2-adic logarithm.) The construction of the 2-adic logarithmic valuations v p yields

∀α ∈ R F := Z 2 ⊗ Z F × : p∈P l 0 F v p (α) deg(p) = 0, (1) 
where P l 0 F denotes the set of finite places of the number field F . Setting div(α) :=

p∈P l 0 F v p (α)p
we obtain by Z 2 -linearity:

deg( div(α)) = 0. (2) 
We define the 2-group of logarithmic divisors of degree 0 as the kernel of the degree map deg in the direct sum Dℓ F = p∈P l 0 F Z 2 p:

Dℓ F := p∈P l 0 F a p p ∈ Dℓ F | p∈P l 0 F a p deg(p) = 0 ;
and the subgroup of principal logarithmic divisors as the image of the logarithmical map div:

Pℓ F := { div(α) | α ∈ R F } .
Because of (2) Pℓ F is clearly a subgroup of Dℓ F . More ever by the so-called extended Gross conjecture, the factorgroup

Cℓ F := Dℓ F / Pℓ F
is a finite 2-group, the 2-group of logarithmic divisor classes. So, under this conjecture, Cℓ F is just the torsion subgroup of the group

Cℓ F := Dℓ F / Pℓ F
of logarithmic classes (without any asumption of degree).

Remark 1. Let F + be the set of all totally positive elements of F × (i.e. the subgroup

F + := {x ∈ F × | x p > 0 for all real p}. For Pℓ + F := { div(α) | α ∈ R + F := Z 2 ⊗ Z F + } the factor group Cℓ res F := Dℓ F / Pℓ + F (resp. Cℓ res F := Dℓ F / Pℓ + F )
is the 2-group of narrow logarithmic divisor classes of the number field F (resp. the 2-group of narrow logarithmic divisor classes of degree 0) introduced in [START_REF] Soriano | Classes logarithmiques au sens restreint[END_REF] and computed in [START_REF] Jaulent | Computation of 2-groups of narrow logarithmic divisor classes of number fields[END_REF].

Signs and places

For a field F we denote by F c , (respectively F c [i]) the cyclotomic Z 2 -extension (resp. the maximal cyclotomic pro-2-extension) of F .

We adopt the notations and definitions in this section from [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF].

Definition 1 (signed places). Let F be a number field. We say that a noncomplex place p of F is signed if and only if F p does not contains the fourth root i. These are the places which do not decompose in the extension F [i]/F . We say that p is logarithmically signed if and only if the cyclotomic Z 2 -extension F c p does not contain i. These are the places which do not decompose in F c [i]/F c . Definition 2 (sets of signed places). By PS, respectively PLS, we denote the sets of signed, respectively logarithmically signed, places:

PS := {p | i ∈ F p } , PLS := {p | i ∈ F c p } .
A finite place p ∈ PLS is called exceptional. The set of exceptional places is denoted by PE. Exceptional places are even (i.e. finite places dividing 2).

These sets satisfy the following inclusions:

P ⊂ PLS = PE ∪ PR ⊂ P l(2) ∪ P l(∞)
where P l(2), P l(∞), PR denote the sets of even, infinite and real places of F , respectively. From this the finiteness of PLS is obvious. We recall the canonical decomposition

Q × 2 = 2 Z × (1 + 4Z 2 )
× -1 and we denote by ǫ the projection from Q × 2 onto -1 . Definition 3 (sign function). For all places p we define a sign function via

sg p : F × p → -1 : x →        1 for p complex sign(x) for p real ǫ(N p -νp(x) ) for p | 2∞ ǫ(N Kp/Q2 (x)N p -νp(x) ) for p | 2 .
These sign functions satisfy the product formula:

∀x ∈ F × p∈P lF sg(x) = 1.
In addition we have: Proposition 1. The places p of F satisfy the following properties:

(i) if p ∈ PLS then (sg p , v p ) is surjective; (ii) if p ∈ PS \ PLS then sg p ( ) = (-1) vp( ) and v p is surjective; (iii) if p ∈ PS then sg p (F × p ) = 1 and v p is surjective. Remark 2.
The logarithmic valuation v p is surjective in all three cases. Part 2 of the preceding result is often used for testing p ∈ PLS.

The group of positive divisor classes

For the introduction of that group we modify several notations from [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF] in order to make them suitable for actual computations.

Since PLS is finite we can fix the order of the logarithmically signed places, say For the computation of Cℓ pos F we need to introduce primitive divisors.

PLS = {p 1 , • • • , p m }, with PE = {p 1 , • • • , p e }
Dℓ pos F := (a, e) ∈ Dℓ PE F × {±1} m sg(a, e) = 1 (4) For α ∈ R F := Z 2 ⊗ Z F × , let div ′ (α) denotes the image of div(α) in Dℓ PE F and sg(α) the vector of signs (sg p1 (α), . . . , sg pm (α)) in {±1} m . Then Pℓ pos F := ( div ′ (α), sg(α)) ∈ Dℓ PE F × {±1} m α ∈ R F (5) 
Definition 5. A divisor b of F is called a primitive divisor if deg(b) generates the Z 2 -module deg(Dℓ F ) = 4[F ∩ Q c : Q]Z 2 .
We close this section by presenting a method for exhibiting such a divisor: Let q 1 , • • • , q s be all dyadic primes; and p 1 , • • • , p s be a finite set of nondyadic primes which generates the 2-group of 2-ideal-classes Cℓ ′ F (i.e. the quotient of the usual 2-class group by the subgroup generated by ideals above 2).

Then every

p ∈ {q 1 , • • • , q s , p 1 , • • • , p t } with minimal 2-valuation ν 2 (deg p) is primitive.

Galois interpretations and applications to K-theory

Let F lc be the locally cyclototomic 2-extension of F (i.e. the maximal abelian pro-2-extension of F which is completely split at every place over the cyclotomic Z 2 -extension F c . Then by ℓ-adic class field theory (cf. [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres[END_REF]), one has the following interpretations of the logarithmic class groups: of narrow logarithmic classes of degree 0 introduced in [START_REF] Soriano | Classes logarithmiques au sens restreint[END_REF] and computed in [START_REF] Jaulent | Computation of 2-groups of narrow logarithmic divisor classes of number fields[END_REF]. Definition 6. We adopt the following conventions from [START_REF] Hutchinson | The 2-Sylow Subgroup of the Wild Kernel of Exceptional Number Fields[END_REF][START_REF] Hutchinson | On Tame and wild kernels of special number fields[END_REF][START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF][START_REF] Jaulent | Sur le sous-groupe des éléments de hauteur infinie du K 2 d'un corps de nombres[END_REF]:

Gal(F lc /F ) ≃ Cℓ F and Gal(F lc /F c ) ≃ Cℓ F .
(i) F is exceptional whenever one has i / ∈ F c (i.e. [F c [i] : F c ] = 2);
(ii) F is logarithmically signed whenever one has i / ∈ F lc (i.e. PLS = ∅);

(iii) F is primitive whenever one at least between the exceptional places does not split in (the first step of the cyclotomic Z 2 -extension) F c /F .

The following theorem is a consequence of the results in [6, 7, 9, 10, 13, 14]:

Theorem 1. Let WK 2 (F ) (resp. K ∞ 2 (F ) := ∩ n≥1 K 2 n 2 (F )
) be be the 2-part of the wild kernel (resp. the 2-subgroup of infinite height elements) in K 2 (F ).

(i) In case i ∈ F lc (i.e. in case PLS = ∅), we have both:

rk 2 WK 2 (F ) = rk 2 Cℓ F = rk 2 Cℓ res F .
(ii) In case i / ∈ F lc but F has no exceptional places (i.e. PE = ∅), we have:

rk 2 WK 2 (F ) = rk 2 Cℓ res F .
(iii) In case PE = ∅, then we have

rk 2 WK 2 (F ) = rk 2 Cℓ pos F .
And in this last situation there are two subcases: (a) If F is primitive, i.e. if the set PE of exceptional dyadic places contains a primitive place, we have:

K ∞ 2 (F ) = WK 2 (F ) . (b) If F is imprimitive and K ∞ 2 (F ) = ⊕ n i=1 Z/2 ni Z, we get: i. WK 2 (F ) = Z/2 n1+1 Z⊕(⊕ n i=2 Z/2 ni Z) if rk 2 ( Cℓ pos F ) = rk 2 (Cℓ pos F ); ii. WK 2 (F ) = Z/2Z ⊕ (⊕ n i=1 Z/2 ni Z) if rk 2 ( Cℓ pos F ) < rk 2 (Cℓ pos F ).

Computation of positive divisor classes

We assume in the following that the set PE of exceptional places is not empty.

Computation of exceptional units

Classically the group of logarithmic units is the kernel in R F of the logarithmic valuations (see [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres[END_REF]):

E F = {x ∈ R F | ∀p : v p (x) = 0}
In order to compute positive divisor classes in case PE is not empty, we ought to introduce a new group of units:

Definition 7.
We define the group of logarithmic exceptional units as the kernel of the non-exceptional logarihtmic valuations:

E exc F = {x ∈ R F | ∀p / ∈ PE : v p (x) = 0} (6) 
We just know that is a subgroup of the 2-group of 2-units

E ′ F = Z 2 ⊗ E ′ F .
If we assume that there are exactly s places in F containing 2 we have, say:

E ′ F = µ F × ε 1 , • • • , ε r+c-1+s
For the calculation of E exc F we use the same precision η as for our 2-adic approximations used in the course of the calculation of Cℓ F . Then we obtain a system of generators of E exc F by computing the nullspace of the matrix

B =   | 2 η • • • 0 v pi (ε j ) | • • • • • | 0 • • • 2 η  
with r + c -1 + s + e columns and e rows, where e is the cardinality of PE and the precision η is determined as explained in [START_REF] Diaz Y Diaz | A new algorithm for the computation of logarithmic class groups of number fields[END_REF]. We assume that the nullspace is generated by the columns of the matrix

B ′ =           C --- D          
where C has r + c -1 + s and D exactly e rows. It suffices to consider

C. Each column (n 1 , • • • , n r+c-1+s ) tr of C corresponds to a unit r+c-1+s i=1 ε ni i ∈ E exc F R 2 η
F so that we can choose

ε := r+c-1+s i=1 ε ni i
as an approximation for an exceptional unit. This procedure yields k ≥ r + c + e exceptional units, say:

ε 1 , • • • , ε k .
By the so-called generalized conjecture of Gross we would have exactly r + c + e such units. So we assume in the following that the procedure does give k = r + c + e (otherwise we would refute the conjecture). Hence, from now on we may assume that we have determined exactly r + c + e generators ε 1 , • • • , ε r+c+1 of E exc F , and we write:

E exc F = -1 × ε 1 , • • • , ε r+c-1+e
Definition 8. The kernel of the canonical map R F → Dℓ pos F is the subgroup of positive logarithmic units:

E pos F = { ε ∈ E exc F | ∀p ∈ PLS sg p ( ε) = +1}
The subgroup E pos F has finite index in the group E exc F of exceptional units.

The algorithm for computing Cℓ pos F

We assume PE = ∅ and that the logarithmic 2-class group Cℓ F is isomorphic to the direct sum The multiplications are carried out coordinatewise. The vector e ′ is therefore contained in the Z 2 -module generated by

Cℓ F ∼ = ⊕ ν i=1 Z/2 ni Z subject to 1 ≤ n 1 ≤ • • • ≤ n ν . Let a i (1 ≤ i ≤ ν)
g i ∈ Z m (1 ≤ i ≤ m) with g 1 = (1, • • • , 1)
, whereas g i has first and i-th coordinate -1, all other coordinates 1 for i > 1.

As a consequence, the set

{(a j , e j ) | 1 ≤ j ≤ ν} ∪ {(0, g i ) | 2 ≤ i ≤ m} ∪ {(b, e}
contains a system of generators of Cℓ pos F ( note that (0, g 1 ) is trivial in Cℓ pos F ). We still need to expose the relations among those. But the latter are easy to characterize. We must have 

α i ) + p i - deg p i deg b b = ν j=1 c ij a j .
The calculation of the α i , c ij is described in [START_REF] Pauli | The discrete logarithm in logarithmic ℓ-class groups and its applications in K-Theory[END_REF]. Consequently, the coefficient vectors (a 1 , • • • , a ν , λ) can be chosen as Z 2linear combinations of the rows of the following matrix A ∈ Z (ν+e)×(ν+1) 2

: A =                   2 n1 0 • • • 0 0 | 0 0 2 n2 • • • 0 0 | 0 • • • • • • • | • • • • • • • • | • 0 0 • • • 2 nν-1 0 | 0 0 0 • • • 0 2 nν | 0 ----------- --- | deg(p1) deg(b) c ij | . . . | deg(pe) deg(b)                   Each row (a 1 , • • • , a ν , λ) of A corresponds to a linear combination satisfying ν j=1 a j a j + λb ≡ div(α) mod Dℓ F (PE) . (9) 
Condition ( 8) gives m i=2

g bi i = sg(α) × ν j=1 e aj j × e λ b . (10) 
Obviously, the family (g i ) 2≤i≤m is free over F 2 implying that the exponents b i are uniquely defined. Consequently, if the k-th coordinate of the product sg(α)× Unfortunately, the elements α are only given up to exceptional units. Hence, we must additionally consider the signs of the exceptional units of F . For

E exc F = -1 × ε 1 , • • • , ε r+c-1+e (11) 
we put:

sg( ε j ) = m i=1 g bi,j+v+e i . ( 12 
)
Using the notations of ( 11) and ( 12) the rows of the following matrix A ′ ∈ Z (ν+e+r+c)×(ν+m) 2 generate all relations for the (a j , e j ), (b, e b ), (0, g i ). Obviously, we obtain

A ′ =                   | b2,1 • • • bm,1 | • • • • • A | • • • • • | • • • • • | b2,ν+e • • • bm,ν+e -----| - --- - | b2,ν+e+1 • • • bm,ν+e+1 | • • • • • O | • • • • • | • • • • • | b2,ν+e+r+c • • • bm,ν+e+r+c                   .

The algorithm for computing

0 ≡ deg(b) ≡ w i=1 b i deg(b i ) mod deg(Dℓ F (PE)) .
We reorder the b i if necessary so that

v 2 (deg(b 1 )) ≤ v 2 (deg(b i )) (2 ≤ i ≤ w) is fulfilled. We put t : = max(min({v 2 (deg(p)) | p ∈ Dℓ F (PE)}) -v 2 (deg(b 1 )), 0) = max(v 2 (deg(p 1 )) -v 2 (deg(b 1 ), 0)
and

δ := b 1 + w i=2 deg(b i ) deg(b 1 ) b i .
Then we get:

b ≡ w i=2 b i b i - deg(b i ) deg(b 1 ) b 1 + δb 1 mod (Dℓ F (PE) + Pℓ F ) and so deg b ≡ 0 ≡ b i × 0 + δ deg b 1 mod deg Dℓ F (PE).
From this it is immediate that a full set of representatives of the elements of

Cℓ pos F is given by b i - deg(b i ) deg(b 1 ) b 1 , f i × f -deg(bi)/ deg(b1) 1 for 2 ≤ i ≤ w and (b ′ 1 := 2 t b 1 -2 t deg b 1 deg p 1 p 1 , f 2 t 1 ) . Let us denote the class of (c, f ) in Cℓ pos F by [c, f ].
Now we establish a matrix of relations for the generating classes. For this we consider relations:

w i=2 a i b i - deg(b i ) deg(b 1 ) b 1 , f i × f - deg(b i ) deg(b 1 ) 1 + a 1 2 t b ′ 1 , f 2 t 1 = 0 , hence w i=2 a i [b i , f i ] + 2 t a 1 - w i=2 deg(b i ) deg(b 1 ) a i [b 1 , f 1 ] = 0 .
A system of generators for all relations can then be computed analogously to the previous section. We calculate a basis of the nullspace of the matrix

A ′′ = (a ′′ ij ) ∈ Z w×2w with first row 2 t , - deg(b 2 ) deg(b 1 ) , • • • , - deg(b w ) deg(b 1 ) , 2 m1 , 0, • • • , 0
and in rows i = 2, • • • , w all entries are zero except for a ′′ ii = 1 and a ′′ i,w+i = 2 mi . We note that we are only interested in the first w coordinates of the obtained vectors of that nullspace.

Examples

The methods described here are implemented in the computer algebra system Magma [START_REF] Canon | The computer algebra system Magma[END_REF]. Many of the fields used in the examples were results of queries to the QaoS number field database [5, section 6]. More extensive tables of examples can be found at: http://www.math.tu-berlin.de/~pauli/K In the tables abelian groups are given as a list of the orders of their cyclic factors.

[:] denotes the index (K 2 (O F ) : WK 2 (F )) (see [1, equation (6) K. Belabas and H. Gangl have developed an algorithm for the computation of the tame kernel K 2 O F [START_REF] Belabas | Generators and Relations for K 2 O F[END_REF]. The following table contains the structure of K 2 O F as computed by Belabas and Gangl and the 2-rank of the wild kernel WK 2 calculated with our methods for some imaginary quadratic fields. We also give the structure of the wild kernel if it can be deduced from the structure of K 2 O F and of the rank of the wild kernel computed here or in [START_REF] Pauli | The discrete logarithm in logarithmic ℓ-class groups and its applications in K-Theory[END_REF]. 

Imaginary Quadratic Fields

d F Cℓ F K 2 O F [:] |P | |PE| Cℓ ′ F Cℓ F Cℓ pos F Cℓ pos F rk 2 WK 2 -184 [ 4 ] [ 2 ] 1 1 1 [ 2 ] [ 1 ] [ 2 ] [ ] 1 [ 2 ] -248 [ 8 ] [ 2 ] 1 1 1 [ 4 ] [ 2 ] [ 4 ] [2,2] 1 [ 2 ] -399 [2,8] [2,12] 2 2 2 [ 2 ] [ 4 ] [ 2 ] [ 2 ] 1 [ 4 ] -632 [ 8 ] [ 2 ] 1 1 1 [ 4 ] [ 2 ] [ 4 ] [2,2] 1 [ 2 ] -759 [2,12] [2,18] 6 2 2 [ 2 ] [ 2 ] [ 2 ] [ 2 ] 1 [ 6 ] -799 [ 16 ] [2,4] 2 2 2 [ 2 ] [2,4] [ 2 ] [ 2 ] 2 [2,

Examples of Degree 3

The studied fields are given by a generating polynomial f and have Galois group of their normal closure isomorphic to C 3 (cyclic) or S 3 (dihedral); r denotes the number of real places. 

f d F r Gal C F [:] |P | |PE| Cℓ ′ F Cℓ F Cℓ pos Cℓ pos F rk 2 x 3 + x 2 -18x + 12 3957 3 S 3 [ ] 48 2 2 [ ] [ ] [ 2 ] [ 2 ] 1 x 3 -21x + 28 3969 3 C 3 [ 3 ] 32 3 3 [ ] [ ] [2,2] [2,2] 2 x 3 -10x + 1 3973 3 S 3 [ ] 16 2 2 [ ] [ ] [ 2 ] [ 2 ] 1 x 3 + x 2 -11x -12 3981 3 S 3 [ 2 ] 16 2 2 [ ] [ ] [ 2 ] [ 2 ] 1 x 3 -16x + 4 3988 3 S 3 [ ] 8 1 1 [ ] [ ] [ 2 ] [ 2 ] 1 x 3 -40x + 1349 -997523 S 3 [ 16 ] 4 2 2 [ ] [ ] [ 2 ] [ 2 ] 1 x 3 -25x + 198 -996008 1 S 3 [2,8] 4 2 2 [ 4 ] [ 4 ] [ 2,4 ] [ 2,4 ] 2 x 3 + x 2 -47x -1365 -994476 1 S 3 [ 16 ] 6 1 1 [ 16 ] [ 16 ] [ 16 ] [ 16 ] 1 x 3 + x 2 + 126x + 234 -992696 1 S 3 [2,8] 4 2 2 [ 2 ] [ 2 ] [ 2,2 ] [ 2,2 ] 2 x 3 + x 2 + 39x -155 -992620 1 S 3 [2,8] 2 

Let

  and PR = {p e+1 , • • • , p m }. Accordingly we define vectors e = (e 1 , • • • , e m ) ∈ {±1} m . For each divisor a = p∈P l 0 F a p p, we form pairs (a, e) and put sg(a, e) Dℓ F (PE) := a ∈ Dℓ F a = p∈PE a p p be the Z 2 -submodule of Dℓ F generated by the exceptional dyadic places. And let Dℓ PE F be the factor group Dℓ F /Dℓ F (PE). Thus the group of positive divisors is the Z 2 -module:

is obviously a submodule of Dℓ pos FF=Remark 3 .

 pos3 which is called the principal submodule. Definition 4 (positive divisor classes). With the notations above: (i) The group of positive logarithmic divisor classes is the factor group Cℓ pos Dℓ pos F / Pℓ pos F . (ii) The subgroup of positive logarithmic divisor classes of degree zero is the kernel Cℓ pos F of the degree map deg in Cℓ pos F : Cℓ pos F := {(a, e) + Pℓ pos F | deg(a) ∈ deg(Dℓ F (PE))}. The group Cℓ pos F is infinite whenever the number field F has no exceptional places, since in this case deg(Cℓ pos F ) is isomorphic to Z 2 . The finiteness of Cℓ pos F in case PE = ∅ follows from the so-called generalized Gross conjecture.

Remark 4 .

 4 Let us assume i / ∈ F c . Thus we may list the following special cases: (i) In case PLS = ∅, the group Cℓ pos F ≃ Z 2 ⊕ Cℓ pos F of positive divisor classes has index 2 in the group Cℓ F ≃ Z 2 ⊕ Cℓ F of logarithmic classes of arbitrary degree; as a consequence its torsion subgroup Cℓ pos F has index 2 in the finite group Cℓ F of logarithmic classes of degree 0 yet computed in [3]. (ii) In case PE = ∅, the group Cℓ pos F ≃ Z 2 ⊕ Cℓ pos F has index 2 in the group Cℓ res F ≃ Z 2 ⊕ Cℓ res F of narrow logarithmic classes of arbitrary degree; and its torsion subgroup Cℓ pos F has index 2 in the finite group Cℓ res F

  be fixed representatives of the ν generating divisor classes. Then any divisor a of Dℓ F can be written asa = ν i=1 a i a i + λb + div(α)with suitable integers a i ∈ Z 2 , a primitive divisor b, λ = deg(a) deg(b) and an appropriate element α of R F . With each divisor a i we associate a vectore i := (sg(a i , 1), 1, • • • , 1) ∈ {±1} m ,where m again denotes the number of divisors in PLS. Clearly, that representation then satisfies sg(a i , e i ) = 1, hence the element (a i , e i ) belongs to Dℓ pos F . Setting e b = (sg(b, 1), 1, • • • , 1) as above and writing e ′ := sg(α) × ν i=1 e ai i × e × e λ b for abbreviation any element (a, e) of Dℓ pos F can then be written in the form (a, e) = ν i=1 a i a i + λb + div(α), e ′ × ν i=1 e ai i × sg(α) × e λ b = ν i=1 a i (a i , e i ) + λ(b, e b ) + (0, e ′ ) + ( div(α), sg(α)) .

a

  j (a j , e j ) + m i=2 b i (0, g i ) + λ(b, e b ) ≡ 0 mod Pℓ pos F , ν j=1 a j (a j , e j ) + m i=2 b i (0, g i ) + λ(b, e b ) = ( div(α), sg(α)) + p∈PE (d p p, 1) with indeterminates a j , b i , d p from Z 2 . Considering the two components separately, we obtain the conditions ν j=1 a j a j + λb ≡ p∈PE d p p mod Pℓ F that we have already ordered PLS so that exactly the first e elements p 1 , • • • , p e belong to PE. Then the first one of the conditions above is tantamount to ν j=1 a j a j ≡ e i=1 d pi p i -deg p i deg b b mod Pℓ F . The divisors p i -deg p i deg b b on the right-hand side can again be expressed by the a j . For 1 ≤ i ≤ e we let div(

ν j=1 e aj j ×e λ b is - 1

 1 we must have b k = 1, otherwise b k = 0 for 2 ≤ k ≤ m. (We note that the product over all coordinates is always 1.) Therefore, we denote by b 2,j , • • • , b m,j the exponents of the relation belonging to the j-th column of A for j = 1, • • • , ν + e.

Cℓ posF

  We assume that PE = {p 1 , • • • , p e } = ∅ is ordered by increasing 2-valuations v 2 (deg p i ); that the group Cℓ pos F of positive divisor classes is isomorphic to the direct sum Cℓ pos F ∼ = ⊕ w i=1 Z/2 mi Z ; and that we know a full set of representatives (b i , f i ) (1 ≤ i ≤ w) for all classes. Then each (b, f ) ∈ Dℓ pos F satisfies deg(b) ∈ deg(Dℓ F (PE)) and b ≡ w i=1 b i b i mod (Dℓ F (PE) + Pℓ F ) .

  ]); d F denotes the discriminant for a number field F ; Cℓ F denotes the class group, P the set of dyadic places; Cℓ ′ F denotes the 2-part of Cℓ/ P ; Cℓ F denotes the logarithmic classgroup; Cℓ pos F denotes the group of positive divisor classes; Cℓ pos F denotes the group of positive divisor classes of degree 0; rk 2 denotes the 2-rank of the wild kernel WK 2 .
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