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Introduction

It is well-known that the theory of Separably Closed Hasse Fields, introduced in [START_REF] Ziegler | Separably closed fields with Hasse derivations[END_REF], is not superstable, as any theory of non perfect fields. However, some interesting types, as the generic type of p ∞ A(K) for some semi-abelian variety A defined over a model K, have finite rank in a strong sense, namely the differential field generated by a realisation of such a type has finite transcendance degree over a set of parameters (see [START_REF] Hrushovski | The Mordell-Lang conjecture for function fields[END_REF]), such types are called "thin". In [START_REF] Pillay | Jet spaces of varieties over differential and difference fields[END_REF], a stronger version of this condition was introduced, involving separability. This condition was called "very thin" by the authors, we call it here "separably thin" in order to be more explicit. It is a particulary relevant condition to obtain applications in algebraic geometry, illustrated by the differential algebraic proof of Mordell-Lang conjecture given in [START_REF] Pillay | Jet spaces of varieties over differential and difference fields[END_REF] under this assumption.

The first natural example given in [START_REF] Pillay | Jet spaces of varieties over differential and difference fields[END_REF] of a thin type which is not very thin is of U-rank and transcendance degree 2. Two questions then arose. First, is it possible to have such an example of smaller rank? And second, can we find an example of such a type in a semi-abelian variety? Let us look for example at the generic type t of p ∞ E(K) for an elliptic curve, it is a type of U-rank and transcendance degree 1. Using the well-known classification of elliptic curves , which are either ordinary or defined over a finite field, up to isomorphism, it is easy to prove that t is separably thin. What is the broader reason for this fact?

It is neither because t is of U-rank 1, nor because t lives in an abelian variety. In [START_REF] Blossier | A special thin type[END_REF], an example was given of a type of U-rank 1 and transcendance degree 2, hence thin, which is not separably thin. In [START_REF] Benoist | Questions de corps de définition pour les variétés abéliennes en caractéristique positive[END_REF], an abelian variety A is exhibited with the property that p ∞ A(K) is not separably thin. In this paper, we generalize the previous fact concerning elliptic curves as follows: any type of transcendance degree 1 is separably thin.

Preliminaries

Definition 1 We denote by HFp,e, for p a prime number and e ≥ 1 an integer, the theory of fields of characteristic p with e pairwise commuting Hasse derivation (or D-fields) in the language L := (0, 1, +, -, ., (Di,j) 1≤i≤e j∈N ).

It means that each Di = (Di,j) j∈N is a Hasse derivation:

• for each j ∈ N, Di,j is a map from K to K with Di,0 = idK • for each j ∈ N, Di,j is additive

• for each j ∈ N, and x, y ∈ K, Di,j(xy) = l+m=j D i,l (x)Di,m(y) (Leibniz rule)

• for each j, k ∈ N, Di,j • D i,k = k+j j D i,k+j (iteration rule)
Furthermore, we require that Di,j • D k,l = D k,l • Di,j for every i, j, k, l.

Fact 1 ([Oku63])

• Di,j(x1 . . . xm) = j 1 +...+jm=j Di,j 1 (x1) . . . Di,j m (xm)

• If j = s l=0 j l p l is the p-adic expansion of j, then

D j 0 i,1 • . . . • D js i,s = j! (p!) j 0 . . . (p s !) js =0 Di,j
The theories that we will work with are the model completions of HFp,e, called SCHp,e in [START_REF] Ziegler | Separably closed fields with Hasse derivations[END_REF].

Definition 2 We denote by SCHp,e the theory of Separably Closed Hasse Fields in the language L. It is axiomatized by:

• the axioms of HFp,e

• the field K has degree of imperfection e, that is the dimension of K as a K p -vector space is e

• the field K is strict, that is ( 1≤i≤e Di,1(x) = 0) ⇔ (∃y, x = y p )

• the field K is separably closed Theorem 1 ([Zie03], Theorem 1.1) For p and e fixed, the theory SCHp,e is complete and admits Quantifier Elimination. It is the model completion of HFp,e.

Because of Quantifier Elimination, the types in SCHp,e are described using "D-polynomials". The following will be useful for our proof.

Definition 3 For k |= HFp,e, we denote by

k{X} := k[X (j 1 ,...,je) ] j 1 ,...,je∈N
the k-algebra of D-polynomials. The Hasse derivation D1, . . . , De are naturally extended from k to k{X} by Di,j(X (j 1 ,...,je) ) = j + ji j X (j 1 ,...,j i +j,...,je) .

If P is a D-polynomial different from 0, we define the order of P as the maximum integer j such that X (j 1 ,...,je) appears in P with non zero coefficient where one of the ji is j. By convention, the order of P is -1 is P is a non zero element of k.

We will denote by k({X}) the quotient field of k{X}. Similarly, the Hasse field generated by an element a over k will be denoted by k({a}).

Lemma 1 Let f be in k(X) ⊆ k({X}). Then Di,j(f ) = df dX Di,j(X) + g,
for some g ∈ k({X}) of order less than j (that is g can be written as a quotient of two D-polynomials of order less than j).

Proof If f is a monomial, the result is an easy consequence of Fact 1. We obtain the result for any polynomial f by linearity.

If f = P/Q for two polynomials P and Q, the Leibniz rule gives that

Di,j P Q = Di,j(P ) -h<j D i,h (P/Q)D i,j-h (Q) Q ,
and it comes, using the previous case and an induction over j, that

Di,j P Q = dP dX Di,j(X) -P Q dQ dX Di,j(X) + g Q = df dX Di,j(X) + g Q ,
for some rational fraction g of order less than j.

Definition 4 For t a type over k |= HFp,e, and a a realisation of t, we define the transcendance degree of t as the transcendance degree of k({a}) over k.

If it is finite, t is said to be thin. We say that t is separably thin (or very thin in [START_REF] Pillay | Jet spaces of varieties over differential and difference fields[END_REF]) if k({a}) is a separable algebraic extension of a field finitely generated over k.

Lemma 2 Let k |= HFp,e and a be an element in a Hasse field extending k which is algebraic separable over k. Then k({a}) ⊆ k(a).

Proof Let P be the minimal polynomial of a over k. For each i, we prove by induction over j that Di,j(a) ∈ k(a): using Lemma 1, we know that Di,j(P ) = dP dX Di,j(X) + Q for some D-polynomial Q of order less than j. As P is separable, dP dX (a) = 0, and Q(a) ∈ k(a) by the induction hypothesis, hence Di,j(a) ∈ k(a).

The result

Proposition 1 Let K be a strict model of HFp,e, and t ∈ S(K) be a type of transcendance degree 1 over K. Then t is separably thin.

Proof We begin with some reductions: Let a ∈ L m be a realisation of t in some extension L of K. Since K is strict, K({a}) is a separable extension of K (see Corollary 2.2 of [START_REF] Ziegler | Separably closed fields with Hasse derivations[END_REF]). Hence, if a is algebraic over K, it is separable algebraic over K, and then K({a}) = K(a) (by Lemma 2) is algebraic over K, which is impossible since the transcendance degree of t is 1. Then K(a) is a separable extension of K of transcendance degree 1, over which K({a}) is algebraic. We can extract from a an element a which is a separating transcendance basis over K. By Lemma 2, for every other element b from a, K({b}) ⊆ K({a}, b), hence it suffices to show that the 1-type tp(a/K) is separably thin. More precisely, we will prove that K({a}) ⊆ K(a) sep . Note that this is equivalent to prove that K(a) sep is stable under every Di,j, 1 ≤ i ≤ e, j ∈ N. The latter condition is obviously sufficient; and it is necessary using Lemma 2. Let us fix 1 ≤ i ≤ e. We want to prove by induction over j that K(a) sep is stable under Di,j. It is sufficient to consider j of the form p r : by Fact 1, if K(a) sep is stable under Di,1, Di,p, . . . , D i,p r-1 , it is stable under every Di,j for every j < p r .

We have then to show that Di,pr (a) ∈ K(a) sep , assuming that K(a) sep is stable under Di,j, 1 ≤ i ≤ e, j < p r . Let us assume the opposite. As Di,pr (a) is algebraic over K(a), we can choose n minimal such that Di,pr (a)

p n ∈ K(a) sep , with n ≥ 1. Let us denote by f (X) := X d + f d-1 (a)X d-1 + . . . + f0(a)
the unitary minimal separable polynomial of Di,pr (a) p n over K(a), where the fi's are rational functions over K (and f d := 1). Let us apply Di,pr to the equality f (Di,pr (a) p n ) = 0:

d h=0
Di,pr f h (a)Di,pr (a) hp n = 0, and use that Di,j( If r < n, the only term which appears above is for j = 0. We have to consider the terms of the form Di,j(Di,pr (a) h ), with j ≤ p r-n < p r because we have assumed n ≥ 1. Using our induction hypothesis that K(a) sep is stable under D i,l , l < p r , we show that Di,j(Di,pr (a) h ) can be written as q(Di,pr (a)), for some polynomial q with coefficients in K(a) sep : First note that it suffices to prove this claim for h = 1, because of the equality

x hp n ) = D i,j/p n (x h ) p n if p n divides j,
Di,j(x h ) = j l=0 D l (x)D j-l (x h-1 ).
As j < p r , we know that Di,j(a) ∈ K(a) sep ; let us denote by u the minimal (separable) polynomial of Di,j(a) over K(a). We view u as a polynomial in L[X] ⊆ L{X} for L := K({a}). Note that, for a monomial bX h , Di,pr

(bX h ) = Di,pr (b)X h + bDi,pr (X h ) + p r -1 l=1 D i,l (b)D i,p r -l (X h ),
where Di,pr (X h ) is the sum of hDi,pr (X)X h-1 and a D-polynomial over Z of order less than p r . Hence, by linearity,

Di,pr (u(X)) = u D i,p r (X) + du dX Di,pr (X) + v(X),
where u D i,p r is the polynomial obtained by applying Di,pr to the coefficients of u, and v is a D-polynomial of order at most p r -1, with coefficients in K(a) sep (because this field is stable under D i,l , l < p r ); in particular, v(Di,j(a)) ∈ K(a) sep . We have to look at what we obtain when we apply Di,pr to the coefficients of u. as a root. By minimality of d, the degree of f , it implies that this polynomial is zero, that is df h dX (a) = 0 for each h. Because a is transcendental over K, df h dX = 0, hence f h = g h (X p ) for some rational function g h over K.

We want to prove that f h is the p-th power of some element in K(X). Let us apply D i ,1 to the equality f (Di,pr (a) p n ) = 0 for every 1 ≤ i ≤ e. We get

d-1 h=0 D i ,1 g h (a p ) Di,pr (a) hp n = 0.
As D i ,1 (g h (a p )) ∈ K(a), and f is the minimal polynomial of Di,pr (a) p n over K(a), we must have D i ,1 (g h (a p )) = 0 for each h. Write g h = P h Q h for P h and Q h two relatively prime polynomials in K[X], P h being unitary. We have 0 = D i ,1 P h (a p ) Q h (a p ) = P D i ,1 h (a p )Q h (a p ) -P h (a p )Q

D i ,1 h (a p ) Q h (a p ) 2 .
Since a is transcedental over K, it means that

P D i ,1 h Q h -P h Q D i ,1 h = 0.
But the degree of P D i ,1 h is smaller than the degree of P h (because P h is unitary), then, by the irreducibility of P h Q h , we must have

Q D i ,1 h = P D i ,1 h
= 0. Since it is true for each i and since K is strict, it means that P h and Q h have coefficients in K p . Hence there is l h in K(X) such that f h = g h (X p ) = l h (X) p . But then, extracting the p-th root of the equality f (Di,pr (a) p n ) = 0, we find It means that Di,pr (a) p n-1 is algebraic separable over K(a), which contradicts the minimality of n.

  0 otherwise, to obtain: Di,pr f h (a)Di,pr (a) hp n = p r-n j=0 Di,pr-pnj f h (a) Di,j Di,pr (a) h p n . ( * ) h

  For a rational function t over K, we know by Lemma 1 that Di,pr (t(a)) ∈ K(a)Di,pr (a) + K(a) sep . Hence we find α, β ∈ K(a) sep such that 0 = Di,pr Di,j(a) = du dX Di,j(a) (Di,pr • Di,j)(a) + αDi,pr (a) + β. Since du dX (Di,j(a)) is a non zero element of K(a) sep , we obtain that Di,j(Di,pr (a)) ∈ K(a) sep Di,pr (a) + K(a) sep . We look at the terms of the sum ( * ) h . For 0 < j ≤ p r-n , we have just proved that Di,pr-pnj(a)Dj Di,pr (a) h p n ∈ K(a) sep [Di,pr (a) p n ]. For j = 0, we have by Lemma 1 that Di,pr (f h (a)) ∈ df h dX (a)Di,pr (a) + K(a) sep . Hence, by summing over all h, we find a polynomial g with coefficients in K(a) sep such that 0 = Di,pr f (Di,pr (a)) = g Di,pr (a) p n + X hp n +1 ∈ K(a) sep . We have P (Di,pr (a)) = 0 and dP dX Di,pr (a) = d-1 h=0 df h dX (a)Di,pr (a) hp n = 0 since Di,pr (a) is not algebraic separable over K(a) sep . It means that we have obtained a polynomial d-1 h=0 df h dX (a)X h over K(a) which has Di,pr (a) p n

  d h=0 l h (a)Di,pr (a) hp n-1 = 0. But the polynomial f := d h=0 l h (a)X h is over K(a), and Di,pr (a) p n-1 is a simple root of f since d f dX Di,pr (a) p n-1 = df dX Di,pr (a) p n 1/p = 0.