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Abstract

A number of techniques have been introduced to construct fuzzy models from measured
data. One of the most common is the use of mathematical parametric models. In this paper,
a new approach based on interval analysis is proposed to compute guaranteed estimates of
suitable characteristics of the set of all values of the fuzzy parameter vector such that the
error between experimental data and the model outputs belongs to some predefined feasi-
ble set. Subpavings consisting of boxes with nonzero width are used to encompass all the
acceptable values of the parameter vector. The problem of estimating the parameters of the
model is viewed as one of set inversion, which is solved in an approximate but guaranteed
way with the tools of interval analysis. The estimation task is formulated here as a con-
strained optimization problem. Our approach emphasizes the use of interval mathematics
for fuzzy representation, which is especially suited to nonlinear models, a situation where
most available methods fail to provide any guarantee on the results. An algorithm is pro-
posed, which makes it possible to obtain all fuzzy parameter vectors that are consistent with
the data. Properties of this algorithm are established and illustrated on a simple example.

Key words: Fuzzy function approximation, fuzzy interval, identification, estimation,
constraint satisfaction problem, interval analysis.
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Notations

Throughout the text, the following conventions are used. Lower case letters in ital-
ics such asx or yi denote scalar variables and elements of vectors. Vectors are
printed in bold. A row vector is denoted by the transpose operator,i.e. xT . Upper-
case bold characters denote matrices, for instanceX. Uppercase italic letters such
asA denote crisp and fuzzy sets. The term “crisp” is used as opposite to fuzzy. A
linguistic variable (a variable whose values are fuzzy sets) is denoted byx̃.

1 Introduction

Consider the situation where we have a model, which acts as a functionf mapping
inputsX to outputsY. This modelf might be quite complex, with multiple input pa-
rameters and with different kinds of uncertainty represented on them: information
available on inputs may be rich or sparse, so-called “aleatory” and may be made
known through objective measurements. Mathematically, inputs might be repre-
sented as probability or possibility distributions, by a strong or sparse statistical
collection of data points, by simple intervals, or even by non-quantified linguistic
expressions.
Recent works has focused on the idea of constructing fuzzy systems via a finite set
of input-output training data in order to perform function approximation [1,2]. This
focus is particularly important since many problems in estimation and identifica-
tion can be formulated as function approximation problems.
Several results [3,4] show thatinterval analysismethods can be directly adapted to
fuzzy interval computation where end point of intervals are given by the increas-
ing and decreasing parts of the membership function (MF) of the fuzzy interval.
Calculations with fuzzy intervals extend interval analysis. Generally, it consists in
applying interval analysis to allcutsof the fuzzy intervals. One drawback of this
process lie in the fact that the interval algorithm has to be completely executed for
eachα-cut [5].
So, givenf , how can we propagate the uncertainty on the input space throughf to
the output space? Moreover, how can we do so in a way which respects all the orig-
inal uncertainty quantifications as provided, making no unnecessary assumptions?
How can we do such in a way which usesonly, butall of what we are given?
In this paper, we propose an approach for computing functions of fuzzy intervals,
assuming that experimental points (both inputs and outputs) are modeled as fuzzy
numbers. Our method makes exact computations, resorting toα-cuts.
The contribution of this article is three-fold: first, it is shown that interval analysis
can be directly applied to perform fuzzy interval analysis, yielding closed form ex-
pressions of the results. Second, a C++ library is presented which implements the
presented techniques. The program and the library can be obtained from the authors
on request. Third, an illustrative example of a SISO (Single-Input, Single-Output)
nonlinear dynamic process is given. It is seen that the fuzzy identification approach
leads to a significative improvement in comparison with standard linear identifica-
tion.
The paper is organized as follows. Section 2 describes the solution of the problem,
i.e.how interval analysis can be used in the context of fuzzy identification. Related
works are discussed in section 4. The practical significance of the computational
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results is pointed out through section 3.1 and an algorithm is proposed. Section 5
illustrates it on a case study with the help of some numerical examples.

2 A refresher on parameter estimation

Consider some functionf : X⊂Rn→ Y⊂Rs, whereY is a bounded set and suppose
we wish to construct afuzzysystemg : X ⊂ X→ Y ⊂ Y, whereX andY are some
domains of interest, by choosing a parameter vectorp ∈ Rp so that, mathematically
speaking

y = f (x) = g(x,p)+e(p), (1)
for all x ∈ X andy ∈ Y, where the error in approximatione(p) is as small as possi-
ble.
We suppose that all that is available to choose the parametersp in g is some part of
theunknownfunction f in the form of the input-output data pair associations. The
ith input-output pair for the systemf is denoted by(xi ,yi), wherexi ∈X,yi ∈Y and
yi = f (xi). This may correspond for instance ton+ s scalar measurements corre-
sponding to various experimental conditions on a static process or on a dynamical
one. The row vectorzi = (xT

i yT
i ) ∈Rn+s denotes one particular data sample. Stacking

N consecutive samples on top of each other gives the data matrix

Z =


z1

z2
...

zN

 ∈ X×Y. (2)

The purpose of parameter estimation is to findp such thatg(x,p) fits y best in a
sense to be specified, for instance. In [6], the parameters are considered admissible
if the errore(p) belongs to some prior compact set of admissible errorE ⊂ Rs. E
may be for instance the box defined as

E = {e|e− ≤ e≤ e+}, (3)

wheree+ ande− are some prior bounds. Other type of compact sets could be consid-
ered as more general polytopes. One is then interest in finding the setS of all values
of p such that the error is admissible,i.e.S = {p|e(p) ∈ E}. This set has been called
membership set, likelihood setandposterior feasible set. If the data have been gen-
erated by a fuzzy modelg(x,p∗), wherep∗ is some true value of the parameters and
if e(p∗) ∈ E, thenS containsp∗. Thus,S provides us an accurate description of the
uncertainty with whichp∗ is estimated [6].
If the reciprocal ofg exists and is denotedg−1, S is defined asS = g−1(y−E) =
g−1(Y), whereY = y−E is themeasurement set. In other words, for anyp ∈ S,
there existse∈ E such thaty = g(x,p)+e.
System identification(i.e. function approximation) amounts to adjustingp using in-
formation fromZ so thatg(x,p) ≈ f (x),∀x ∈X. Measured and model outputs never
match perfectly in practice, but differ ase(p). An obvious modeling goal must be
that this discrepancy is “small” in some sense that is archieved by the value of the
approximation errorwe wish to bound. Such a bound is, for example

sup
x∈X
{ f (x)−g(x,p)}, (4)
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which requires thatf be known everywhere. The problem is that we only know the
part of f given byZ, and it is the only evaluation we can make based on known
information.
Wheng is not affine inp, one may linearizing it around some value of the parame-
ters estimated beforehand and then using any method for linear models. Scanning
the parametric space using random search offers no guarantee as to the global na-
ture of the results obtained [7].
A thorough examination of the errore(p) that are commonly used reveals that both
imprecisionanduncertaintyplay a key role in the parameter value formulation.
Our approach departs from a different position by considering fuzziness in the ex-
perimental points while using a crisp model: indeed, it is reasonnable to assume
that a large part of estimation deviations ofp may come from imperfection in input
assesment, together with the fuzziness of the parameters of the model [8].

3 Identification method

3.1 Core of the modeling

The structure of the model,i.e. the form of g and the matrixZ, are determined
by the user on the basis of prior knowledge and/or by comparing several candidate
structures in terms of the prediction error. Once the structure is fixed, the parameters
of the model can be estimated. Modeling possible values of variables by means
of real intervals (as in interval computation) accounts for some uncertainty, but
we can be more precise by modeling uncertainty on a variablexi by means of
a fuzzy intervalXi . Then, one way to compute the possible fuzzy rangeP of p
is to decompose the problem in terms ofα−cuts, and then to apply an interval
analysis method. The main drawback of this approach is that we compute only
an approximation ofP, and that, for eachα−cut, the interval algorithm has to be
completely executed [9].
Theα−cut of A denoted byAα, for any scalarα ∈ [0,1], is acrisp set{X | µA(X) ≥
α}, whereµA(X) is the MF for the fuzzy setA, which can formally be written as
µαA = αµA(X), X ∈ X. µαA is defined as follow:

µαA(X) =

α, ∀X ∈ Aα

0, otherwise,
∀α ∈ [0,1]. (5)

Note that theα−cut of a fuzzy interval is a “classical” interval. This decomposition
by α-cut of A can be used to compute the function on fuzzy intervals: for an−tuple
of variablesx = {x1, . . . , xn}, we have

[g(x1, . . . , xn;p)]α = g([x1]α, . . . , [xn]α; [p]α). (6)

A box or vectorof intervals[x] is the cartesian product ofn intervals and is noted
[x1]× . . .× [xn], with [xi ] = [xi , xi ], i = 1, . . . ,n. Theith interval component[xi ] is the
projection of[x] onto theith axis.
Consider a fuzzily described system with fuzzy input and outputX andY resp.,
which are readings from unreliable sensor (“noisy data”). Let{x1, . . . , xn} be a tuple
of n−independent variables restricted to their fuzzy intervalsX1, . . . ,Xn, defined by
their MF µX1, . . . ,µXn, andY the fuzzy set of the possible values of the variable
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y= g(x;p). To simplify exposition, we shall only consider output errors :

ei(p) = yi −g(xi ;p), i = 1, . . . , s (7)

but other types of errors could be considered as well. We assume that these errors
should satisfyei ≤ ei(p) ≤ ei , i = 1, . . . , s to be acceptable, whereei andei are known
lower and upper prior bounds of the approximation error, that results from technical
specifications or indicate how far we can go in accepting discrepancies between
our data and model outputs. Note thatei(p) is a fuzzy real number bounded by two
profiles obtained by the increasing and decreasing parts of the error MF.
Let y be the vector of all datayi , i = 1, . . . , scollected on a given system, andg(x;p)
be the vector of all corresponding model outputsg(xi ;p), i = 1, . . . , s. The vector
of all output errors between the actual outputg(x;p) and the targety can then be
written as

e(p) = y−g(x;p), (8)
wherep,y andx are vectors of fuzzy real numbers. Picked in eachα−cut, equation
(8) gives:

[e(p)]α = [y]α−g([x]α; [p]α), (9)
The model (9) is acceptable ifp is such thate∈ E, i.e. the set of all error vectorse
satisfiese≤ e≤ ewhereeandeare known. Estimating fuzzy interval[p]α amounts
to look at the levelα for the set of all admissible values ofPα that are consistent
with (9), i.e.errors should satisfy

[y]α− [g]([x]α; [p]α) ∈ [e]([p]α), α ∈ [0,1], (10)

Equation (10) relies on the assumption that there exists aninclusion function[g] of
g that returns anenveloping boxguaranteed to contain the image byg of any given
box [x] included in the domain ofg. [g]([x]) is a box such that

g([x]) ⊂ [g]([x]), (11)

It is easy to compute for usual elementary functions that can be obtained by compo-
sition of elementary operations such as+,−,×, /,exp, tan,sin, . . . by replacing each
of these elementary operations by their inclusion function in the formal expression
of g.
When no efficient algorithm exists for the computation of[g], it can be approxi-
mated by an inclusion functionG : Rn→ Rp satisfying equation (11), such that:

w([x])→ 0⇒ w([G]([x]))→ 0. (12)

where the widthw([x]) of the box[x] is the length of its largest side(s). It must be
noted that the algorithm presented in this paper is guaranteed to converge only if
(12) is valid.

Figure 1 illustrates conditions (11) and (12).
Thefeasiblefuzzy set forp is therefore simply given by

S =
⋃
α∈[0,1]

Sα =
⋃
α∈[0,1]

g−1([y−E]α). (13)

with evident notations. Let̂S = {p|g([x]; [p]) ∈ Y}. Then

g([x]; [p]) ∈ Y↔ p ∈ g−1(Y) and p ∈ [p](0) (14)

↔ p ∈ [p](0)∩g−1(Y) (15)
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Figure 1. Minimal inclusion function[g] and inclusion functionG of a functiong.

where[p](0) is the search domain. Thus

Ŝ = [p](0)∩g−1(Y), (16)

and characterizinĝS is aset inversion problem.
From (13), we shall say that[p] is feasibleif [p] ⊂ S, unfeasibleif [p]∩S = ∅, else
[p] is ambiguous.
To perform fuzzy approximation in an approximate but guaranteed way, the prob-
lem is decomposed in terms ofα-cuts and an interval analysis method is applied to
compute the possible fuzzy range[p]α of p at each levelα. The interval computa-
tion stage is clarified in the following.

3.2 Set characterization for eachα-cut

Methods making it possible to implement interval analysis are relatively few and
date from the Nineties, among which, one can quote the algorithm of Moore [10]
and SIVIA proposed by Jaulin [11]. Most methods for estimating parameters are
based on computations performed at point values of the parameter vector. The main
interest in the notion of paving is to make it possible to replace point values by sub-
sets of the parameter space. For simplicity, we will use pavings based upon boxes.
By convention, apavingof a compact subset{P} ⊂ Rn is a set of non overlapping
boxes with nonzero width such that the union of these boxes corresponds to{P}. A
subpavingK of P is a subset ofP. The characteristic ofSα defined in (13) that we
shall consider more specifically is its enveloping box[Sα] so that the MF ofS can
be exactly recoved from the extremes of theSα. Upon completion, the algorithm
enclosesSα between two compact sets corresponding to 2 subpavings. Our algo-
rithm can be applied to any model structure for which an inclusion function can
be computed. LetE be the feasible error set. Initialisation is performed by setting
Yα = yα−E. The principle is as follows:

a). Define an initial box of interest[p]α(0) within which the search will be per-
formed

b). Compute a paving{P} of [p]α(0)
c). Compute the imageg([x]; [p]α) for each box of this paving. Three situations

must then be considered (see fig. 2).
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[g]([x]α; [p]α) ⊂ [Y]α⇒ [p]α ⊂ Sα so that[Y]α is feasible

[g]([x]α; [p]α)∩ [Y]α = ∅⇒ [p]α∩Sα = ∅ so that[p]α is unfeasible.

otherwise,[p]α is indetermined.

The exploration algorithm performs a recursive implementation of the principle that
has just been described: abisection algorithmsplits each box of the subpaving into
smaller boxes whenever needed until the width of the box becomes smaller than
some tolerance parameterε to be specified by the user. Cutting is carried out again
as long as the boxes contain solutions or stops if the boxes do not contain any.

a. b. c.

Figure 2. Feasibility of boxes: a test function makes it possible to distinguish the cases
(a-c) represented in this figure. Let[z] and[y] be two boxes. Suppose that[n] = [z]∩ [y]. a)
[n] =∅means that[z] has an empty intersection with[y]. b) [n] = [z], so that[z] is included
inside[y]. c) [n] ⊂ [z] and[n] , [z]. [z] intersects[y], so that we cannot conclude. The box
[z] can be split again.

We shall partitionP iteratively into three subpavingsSα,Soutα andSα corresponding
respectively to the sets of all feasible, unfeasible and indetermined boxes (see fig.
3). These subpavings satisfy the following relations :

1. {Sα} ⊂ Sα ⊂ {Sα}∪ {Sα}
2. vol({Sα})≤ vol(Sα)≤ vol({Sα}) + vol({Sα})
3. [{Sα}] ⊂ [Sα] ⊂ [{Sα}]∪ [{Sα}]

Provided thatSα is full, this means that the pair{Sα;Sα} defines a neighbourhood
∂Sα , Sα\Sα of Sα with a diameter that can be chosen arbitrarily small.
The previous algorithm makes an extensive use of astackL of boxes,i.e.a dynam-
ical structure on which only 3 operations are possible: at any time, one may put an
element on top of the list, removed the top element or test the stack for emptiness.
We define the required accuracyε for the pavingP as the maximum widh that an
indetermined box can have. In the following, the principal plane of a box is the
symmetry plane of this box that is orthogonal to the axisi ∈ { j|w([p]α) =w([p j ]α)},
where the operator “width”w([·]) of a box is the length of its largest side.
Let [p]α(0) be the box considered at iterationk. Initialisation is performed by set-
ting k= 0,L = ∅,S = S = ∅. The recursive algorithm can be described as follows:

The union of all the boxes in the listL returned by the program containsS; the
partitionP consisting in feasible, unfeasible and indetermined boxes can be plotted
in the parameter space in the case the space dimension is less than 4 (see fig. 3).
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a.

b.

Figure 3. a. Regular paving of a box: accepted, rejected and indetermined subpavings are
respectively coloured in red, blue and yellow. b.{Sα andSα} brackets the portion ofS
contained in[p](0).

3.3 Discussion

The method ofset characterizationintroduced in section 3.2 appeal some com-
ments.
Upon completion, this approach encompassesall the acceptable values of the pa-
rameter vector in a set that is fully characterized when the solver BISECT extends
to eachα-cut, forα ∈ [0,1]: S andS will tend to S from within and without when
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Algorithm BISECT

INPUTS

data:y

inclusion function:[g]([ ·])

feasible error set:E

prior feasible box:[p]α(0)

accuracy for the paving:ε

INITIALIZATION

Y = y−E;

stack:L = ∅

iteration:k= 0

[p] = [p](0);

ITERATION k

step 1: if[g]([x]α; [p]α(k)) ⊂ [Y]α thenSα := Sα∪ [p]α andSα := Sα∪ [p];

step 2: else if[g]([x]α; [p]α(k))∩ [Y]α = ∅, thenSout := Sout∪ [p]α; then unstack[p]α(k) as un-
feasible;

step 3: else ifw([p]α(k)) ≤ ε, thenSα := Sα∪ [p]α(k);

else cut[p]α(k) along the principal plane and stack the resulting boxes inL.

step 4: if the stack is not empty, then unstack and store the resulting box in[p]α(k+1);

k= k+1; go to step 1;

End
Table 1
Recursive implementation of the bisection algorithm.

ε → 0. SinceS is a finite union of boxes guaranteed to contain the portion ofS of
interest, it is very convenient for implementing set-theoretic manipulations [12,6].
The advantages of this approach are threefold:

(i) no assumption is made on the image fonctiong,
(ii) no statistical assumption on the error modeling is required,

(iii) any bounded error can be treated independently from its origin (modeling
and/or measurement error).

An other advantage of the proposed approach is that the input-output roles of the
fuzzy setsX andY can be reverse since the linking functiong : X→ Y can be run
forwardlyas well asbackwardlythanks to interval analysis. Subpavings form a use-
ful class of objects for manipulating fuzzy approximations.
The algorithm requires a possibly very large search box[p](0) to whichS is gua-
ranteed to belong. Solvers partition the search box into an union of boxes (the
paving), with guaranteed error bounds (i.e. mathematically valid) [7] (see section
3.2). The paving is generally built by the solver itself. The results returned by the
solver depend only on the results obtained for each box of the paving. A computer
program can represent a set of (eventually disjoint) intervals as alist L. The preci-
sion of the solver is controlled by coefficients specifying, for example, the widthε
of the smallest boxes of the paving, or the accuracy in the localization of a global
optimum. The computing time of the solver can increase quickly with the dimen-
sion and size of the listL.
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Special care must be taken to avoid memorizing unnecessary information, other-
wise the quantity of memory required to store the paving ofSwill increase linearily
at each iteration, which may result into a memory overflow even for problems of
modest dimension.
One can observed that the parameter space is not isotropic because the sensitivi-
ties ofg with respect to the various components ofp are not of the same order of
magnitude. The basic bisection technique suggested in Tab. 1 may not be efficient
enough. The problem is then to choose the fastest bisection policy that results in a
convergence as rapid as possible. Jaulinet al. [6] suggests the bisections of[p] into
boxes[p1] and[p2] that minimizes vol(g([x]; [p1]))+vol(g([x]; [p2])). If [p] is not
ambiguous, this policy will tend to avoid classifying as indetermined. Experiments
tend to indicate that this can improve the efficiency of the solver spectacularily
when the anisotropy is severe.

4 Fuzzy systems as universal approximators

A fuzzy system is a set ofif-then fuzzy rules that maps inputs to outputs [13].
Numerous approaches have been suggested to provide the best approximation that
maps the fuzzy system inputs to its outputs. From the early 90s, several authors have
established that different types of fuzzy systems possessed the “universal approx-
imation” property [14,13,2]. These results claim that different fuzzy reasonning
methods are capable to approximate arbitrary continuous function on a compact
domain with any specified accuracy (see for further details [15,16]): most of these
methods extract fuzzy rules from numerical data assuming the divisions of input
variables into fixed regions [17].
Universal approximation results arecontradictory. On one hand, approximating
models exhibit exponential complexity in terms of number of components,i.e. the
number of components grows exponentially as the approximation error tends to
zero. On the other hand, if the number of components is bounded, the resulting
set of models isnowhere densein the space of approximated functions. As a con-
sequence, we cannot approximate in general any continuous function arbitrarily
well, if the number of components are restricted. Thus, only functions satisfying
certain conditions can be approximated by such models, or, alternatively, we need
unbounded number of components.
The following example illustrates these mutually contradicting results.

EXAMPLE 1 (Kosko’s fuzzy “universal” approximator) Kosko showed in [18] that
any real continuous function can be approximated by an additive fuzzy systems.
The basic idea is to cover the graph of the function by rectangular fuzzy patches
(see [13]). These fuzzy patches are equivalent to fuzzyif-then rules: less certain
rules are large patches, more precise are small patches. The approximation can be
achieved at any degree of accuracy by using a finite number of fuzzy patches [19].
Major disadvantages of such local approximators lie in:

(i) partitioning the data: partitioning methods definitely assigned each sample
to one cluster. This method has the same disadvantages ask-meansof being
restricted to continuous data and of being a random algorithm subject to local
minima [20].

(ii ) the shape of fuzzy sets: what is the best shape for the MF? Fuzzy sets can
have any shape, each shape affects how well a fuzzy system ofif-then rules
approximate a function.

(iii ) selecting explanatory variables, which constitutes a means of choosing sets of
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optimally discriminating variables but decreases the quantity of information
gathered by the fuzzy system. �

Kosko’s approximation task, as described above, is then atrade-offbetween the
specified accuracy and the number of components. This naturally raise the question
to what extent the approximation should beaccurate.
From the practical point of view, it may seem enough to have an “acceptably” good
approximation, where the given problem determines the factor of acceptability in
terms of accuracy.
Due to ambiguity and complexity of the identifying system, a range of techniques
[21,22] attempt to take advantage of a thorough understanding of the system’s be-
haviour and black-box approach, such that the known parts of the system are mod-
eled using physical knowledge, and the less certain parts are approximated using
process data with suitable approximation properties. For instance, Wang’s fuzzy
system [23] have a feedforward architecture that ressembles the feedforward mul-
tilayer neural systems used to approximate functions, by minimizing the difference
between the fuzzy target vector and the actual fuzzy output vector. See also [13,24].
Such local optimization has several drawbacks:

1. No guarantee of convergence to the global optimum of the criterion can be pro-
vided,

2. If several values of the estimated parameters correspond to the same value of the
criterion (such a situation may result from the fact that the parameters are not
globally identifiable), the algorithm picks one of them without indicating that
there are others,

3. The choice of a initial value for the parameters relies largely on guesswork,
4. In fuzzy problems, one is not actually interested in the optimal value of the

parameters in the sense of a criterion but would rather like to characterize the
set of all values that are acceptable in a sense to be specified.

A possible way out of problems 1 to 3 is to use deterministic global optimization
methods such as those described in Belforteet al.[25], but this still leaves difficulty
4.
This is why we suggest an alternative approach - based oninterval analysis- which
can also be used to obtain guaranteed estimates of suitable characteristics ofS in
the nonlinear case.

5 Numerical experiments

We suppose in the following, without loss of generality, that MF aretriangle-
shaped. To illustrate the behaviour of our algorithm BISECT, we consider a two pa-
rameter estimation problem, which makes it posible to draw pictures of the paving
obtained.

EXAMPLE 2 (Fuzzy filter) In this example, a simplified version of the problem ex-
plored by Jaulin and Walter1 [6] is given. The vector comprising all available data
y is:

y = (1.59,1.44,1.30,1.18,1.07,0.96,0.87,0.79, ,0.71,0.64)T .
The numerical values of the corresponding interval data are given in Tab. 1.

1 The extension of the method to multiple-output problems is straightforward.
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ti yi y−i y+i
1 1.59 1.18 2.00

2 1.44 0.62 2.26

3 1.30 0.40 2.21

4 1.18 1.09 1.27

5 1.07 0.32 1.81

6 0.96 0.12 1.81

7 0.87 0.71 1.03

8 0.79 -0.17 1.76

9 0.71 0.31 1.12

10 0.64 0.46 0.83
Table 2
Interval data.

The fuzzy set̂P to be characterized consists of the fuzzy variables vector([p1], [p2])T

such that the graph of the function :

f (p, t) = p2exp(−p1t), (17)

crosses all the data bars of Figure 4. In this simulated example, the[yi ] have been
computed by adding a random error interval with radiusρi = 0.5|yi |+1 to theyi .
The intervals[yi ] may be seen as the zero-cut interval of theith MF µYi , centered
onyi and supposedly triangle-shaped.
The initial box domains for the parametersp1 and p2 may be arbitrarily large, by
example

[p1] = [−10000,10000] and [p2] = [−10000,10000], (18)
i.e. no priorinformation is available on the parameters. The feasible fuzzy set for
the parameters is given by (16), where the search domain[p](0) is taken as[−1,5]×
[−5,5]. The coordinate functions off are given, for eachα−cut, by:

yαi = pα2 exp(−pα1t), i = 1, . . . ,10. (19)

Figure 4. Measurement times and corresponding interval data.

In less than 3s, on aPENTIUM IV, BISECT generates the pavings of Tab. 3, thus
bracketing the posterior feasible set forpα between inner and outer approxima-
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tions. Figures 3.a-f gives top-view representation of the MF ofp for some values of
α, i.e. the joint MF at the levelα of p1 and p2 that is consistent with the equation
(19) and the domains (18). A 3-dimensional plot would show the fuzzy domain as a
barn like structure rising up from its base.

Table 3
Top-view of the paving generated by BISECT to bracket the solution set (in red) for each
α-value in the parameter space. The outer frame corresponds to the box[−1,5]× [−5,5].

(a) α = 0 (b) α = 0.1 (c) α = 0.2

(d) α = 0.4 (e) α = 0.7 (f) α = 1

EXAMPLE 3 (Fuzzy function approximation of a MISO 2 model) The curvatureκ(t)
of an arbitrary twisted curveC measures the rate of change of the tangent when
moving along the curve. It measures, so to speak, the deviation of the curve from
a straight line in the neighbourhood of any of its points. It is quite easy to derive
an analytic expression of the curvature which is valid whenC is represented by an
allowable parametric representationx(t):

κ(t) =
x′×x′′

|x′|3
, (20)

where× denotes the vector product. Derivatives with respect to time are denoted
by primes,e.g.x′ = dx

dt andx′′ = d2x
dt2

. (20) is equivalent to (see [26] and references
therein):

κ(t) =

√
(x′ ·x′)(x′′ ·x′′)− (x′ ·x′′)2

(x′ ·x′)
3
2

, (21)

WhenC is a curve of radiusR(see figure 3.a) has the following cartesian represen-
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tation3 :
x(t) = (Rcosntcost,Rcosntsint,Rsinnt) (22)

with t as parameter, it is easy to obtain from (21) a simpler representation of the
curvature:

κ(t) =

√
−n4cos2(nt)+n6+4n2cos2(nt)+4n4+cos4(nt)−n2cos4(nt)

R 3
√

n2+cos2(nt)
. (23)

Figure 3.b plots the domain ofκ(t).
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Figure 5. a. 3-dimensional representation of the Clelia curve. b. Graph of the functionκ(t)
given by equation (23).

A first approach may consider the values of the independent variables as uncertain
and modelizes the uncertainty with fuzzy variables. Assume that a set ofN input-
output data pairs(xi , κi)N

i=1 is available. Recall thatxi ∈ R
3 are vectors andκi is

scalar. The data set is split into a training and a checking data sets. The fuzzy
inference system (FIS) used is a Sugeno-type, implemented in the C programs of
ANFIS architecture proposed in [27,28].ANFIS uses a hybrid learning algorithm to
identify the parameters of Sugeno-type FIS. It applies a combination of the least-
squares method and the backpropagation gradient descent method for training FIS
memebership function parameters to emulate a given data set.
A graphical representation of the corresponding MFs is given Fig. 3. Notice that
the MFs associated to each regressor form a fuzzy partition of the 3d-space.

The simulation detailled in Fig. 3 tests the system identification accuracy by com-
paring the curvature valueκ with the output of the fuzzy system. Fig. 3.a depicts the
training error performed on the training data set. With increased number of MFs,

3 Clelia curve was studied by Guido Grandi in 1728.
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Figure 6. Membership functions of independent variables inx.

the resulting fuzzy system contains narrower input MFs and accuracy of the result-
ing fuzzy system with respect to the training data set is improved, but the ability of
the fuzzy system to generalize for inputs (test set) may be degraded as illustrated
in our results (Fig. 3.b). In a similar way, descreasing the output error improves
the accouracy with respect to the training data set, but accuracy in the presence of
inputs different than the training data set is degraded. These tests illustrate some
effects in parameter choice on the resulting fuzzy system.

A second approach consists to use interval analysis tools. In this simulated exam-
ple, we assume that the values taken byκ are uncertain and sampled at the rate
n π11: the prior intervals[κi ] are computed by adding a centered error interval to the

associated measurementκi . The set̂S to be characterized consists to all the values
of p = (R,n)T . such that the graph of the functionκ(t) crosses all the data bars of
figure 3. The dataset is made of 22 data.

For ε = 0.03, BISECTgenerates the subpaving represented on Figures 4.a-f. in 7s on
a PENTIUM IV , consistent with the equation (23).. The prior box for the parameters
is taken as[p] = [−10,10]× [−10,10].

More interesting, one can know generate the posterior feasible set for theκi (pos-
terior estimates) from the “simulator” (23).

5.1 Discussion

The success of any identification method relies on the descriptive power of the
model structure as well as on the quality of the estimation data. Compared to a pure
data driven identification approach, it is easier to avoid data caused pitfalls by using
an expert determined model structure.
Concerning estimation algorithms, it is worth stressing that the scheme of section
3.2 is robust in the sense that the fit of the tuned model is at least as good as what
is obtained with classical approach. A distinct advantage with interval analysis is
that redundancy in terms of similar MFS can be avoided since the parameter in
explored exhaustively. Apart from reducing the model complexity with respect to
FIS, this also leads to less ill-conditioned problems. Realistic advantages can be
found compared to the statistical approach:

15



a.

1.15

1.2

1.25

1.3

1.35

1.4

0 2 4 6 8 10 12 14 16 18 20

E
rr

o
r

Epochs

b.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 10 20 30 40 50 60 70

E
x
p
ec

te
d
/
P

re
d
ic

te
d

cu
rv

a
tu

re

Samples

Figure 7. a. Measured outputs (–) and simulated outputs (. . . ) computed by the Sugeno-type
FIS programANFIS.
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Table 4
Top-view of the paving generated by the algorithm to bracket the solution set (in red) for
eachα-value. The outer frame corresponds to the box[−10,10]× [−5,5].

α-cut value

[a] α = 0 [b] α = 0.2 [c] α = 0.4

[d] α = 0.6 [e] α = 0.8 [f] α = 1
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Figure 9. Posterior feasible intervals for theκi superposed on the graph of the functionκ(t).
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(1) The error structure is quite simple and similar information usually available in
most practical cases, not assumingany a priori statistical information about
the error.

(2) The computation of the parameter domain is conceptually simple and is prac-
tically feasible even if the number of data is not large.

(3) The algorithm isdeterministic.

Least-Square estimation suffers from the fact that the cost function to be mini-
mized is a sum of terms involving the same parameters, so multioccurence of these
parameters is unavoidable and tends to make inclusion functions for the cost func-
tion very pessimistic, which complicates the elimination of interesting parts of the
search domain. A distinct advantage is that redundant parameters can be avoided
by decomposing a fonction in several primitives involving a single operator. For
instance, the constraintx1exp(x2)+ sinx1 can be decomposed into the following
set of primitive contraints 

a1 = exp(x2)
a2 = x1a1
a3 = sinx1
a4+a3 = 0

(24)

The domains associated with all intermediate variables (herea1,a2 anda3) are] −
∞,+∞[. A method for estimatingx1 and x2 with respect tox1exp(x2)+ sinx1 is
to contract each of the primitive contraints in (24) until the contractors become
inefficient.

6 Conclusion

In this paper, we proposed an approach to the fuzzy approximation problem based
on interval analysis.
The problem of estimating the parameter fuzzy sets of a (non)linear model from
prior knowledge, experimental data and collateral requirements is viewed as one
of set inversion, which is solved in an approximate but guaranteed way with the
tools of interval analysis. It is possible to charaterize the fuzzy set of all parameter
vectors that areconsistentwith the data in the sense that the errors between the data
and corresponding model outputs fall within known prior bounds. This has been
illustrated on simple simulated examples for time-invariant models whose outputs
are linear in their inputs, even if nonlinear in their parameters.
No monotonicity or convexity assumptions needs to be made on the concerned
membership functions. Upon completion of the algorithm, a paving bracketing the
contours of the solution membership functions is found (or not) with a precision
controlled by the solver.
We don’t formulate the available knowledge in terms of fuzzy if-then rules. No test
set nor validation step (as in classical machine learning theory) is needed: the model
does meet the expected performance when the model is suited to the problem, even
in the case of a small data set.
The computation process has drawbacks:(i) its complexity is exponential in the
number of parameters which restricts its use to low-dimensional problems,(ii ) the
algorithm presented here is far from optimal from the viewpoint of computational
time and significant improvements can be expected in the near future,(iii ) efficient
functions are needed which are available only when an explicit solution for the
equations defining the model can be found.
The advantages are numerous: first, the solver characteristics are different from,
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for instance, the Kosko statistical approach that requires a (large) set of data points
through which the constructed patches pass. Here, prior knowledge such as prior
ranges is sufficient and collateral requirements such as the shape of the membership
function have to be provided to the fuzzy system. Second, It is now possible to
obtain guaranteed estimates of fuzzy parameters even when these parameters are
not identifiable. Nonlinear constraints are easily handled. This approach could be
extended to the case whereX andY consists of infinitely many variables, whatever
could be the type of membership function to be used.
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