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Abstract. Analysis of respiratory muscle activity by means of oesophageal electrodes is a
promising technique to detect and diagnose neuromuscular pathology. The diaphragm elec-
tromyogram (dEMG) is a mixture of signals generated by different active muscles due to the
phenomena related to repiratory volume. Wavelet transform can be used as a preprocessing tool
to denoise dEMG signals from artefact and ECG. In the present study, we have established the
effectiveness of this tool to extract dEMG from a set of experimental recording.
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1. Introduction

At the heart of signal processing lies the task of extracting specific information from a set of
recorded signals, for instance the occurrence of certain patterns, periodic ranges, discontinuities,
irregularities, etc. The wavelet transform (WT) can contribute to the answer to these questions
whenever the expected phenomena has a multiscale structure. Typical examples of such patterns
are jumps, puff, artefacts, edges or locally varying orders of differentiability. On the contrary, the
localization of discontinuities with the help of the classic Fourier transform (FT) is seldom possible.
The standard method for the investigation of irregularities in the diaphragm is the analysis of the
esophageal EMG recording. A typical dEMG signal consists of inspiratory and expiratory segments
with an alternation at about 10 cycles/min as illustrated in Fig. 1. Hence, dEMG signals can be
assigned to the class of weakly stationary signals.

Figure 1. a) Diaphragmatic EMG signal. b) corresponding respiratory volume (respiratory
cycle consists of an inspiration and an expiration).

The EMG signals are usually corrupted by cardiac activity reflected in electrocardiographic (ECG)
and cardiac pulse (CP) signals. Also, artefacts like variation of electrode contact impedance
produced by electrode movement during effort test contaminate EMG recording.The reduction
of these interferences is necessary in order to calculate parameters related directly to the
respiratory muscle activity so that reliable results and conclusions are obtained. Acquisition and
processing of dEMG signals are well established techniques (Roeleveld, Stegeman, Vingerhoets
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& Van Oosterrom 1997, Khalil, Duchêne, Marque & Leman 1997). Nevertheless, dEMG signal
is generated by different respiratory muscles signals that overlap in time and frequency domain
that result in a complex interference pattern of difficult interpretation. Thus classical filtering
approaches cannot guarantee an effective extraction of dEMG signals. Graphic demonstration
shows that ECG artifact is apparent throughout (Fig.1); however, methods for eliminating
ECG artifact are available with appropriate integrators and waveform gating, if desired, see
e.g.(Mananas, Romero, Topor, Bruce, Houtz & Caminal 2001, Deng, Wolf, Schnell & Appel 2000).
Since their introduction, it has been noticed that wavelet transform can be used for removing noise
from signals (Donoho 1995). The principle consist to decompose noisy mixture into an orthogonal
wavelet basis, to suppress the wavelet coefficients smaller than some threshold, and reconstruct
denoised signal by inverse transform.
We propose here to use wavelet decomposition as a preprocessing tool to extract dEMG activity
from esophageal signals. We will show how this decomposition can eliminate artefact and ECG
from experimental recording.
This paper is organized as follows: section 2 describes how the wavelet transform can be used in
dEMG processing, section 3 presents a method for inspiratory puff start and endpoints detection
based on use some statistical tools. Section 4 presents the details of our data acquisition and
experimental protocol and theirs corresponding results. Finally, section 5 presents some future
work of this study.

2. Wavelet decomposition

The proposed approach is based on the use of wavelets transform (WT) and theirs properties. We
briefly recall here some important points related to our utilization. More details about wavelets
transform can be found in (Daubechies 1992, Mallat 1989).
One of the major disadvantage of the Fourier transform lies in its lack of localization: the Fourier
transform considers phenomena in an infinite interval, and this is far from our everyday point of
view. It decomposes a signal in trigonometric functions which oscillate infinitely with teh same
period, and these have no local character. The wavelet transform (WT) allows more flexibility:
the wavelet, which can be any chosen function, can be shifted and dilated to analyse signal s. If
the so-called wavelet ψ is dilated by a factor a and translated to a point b, then the wavelet family
is defined by

ψa,b(t) =
1√
a
ψ(
t− b

a
). (1)

The signal s is examined by the wavelet transform by forming the scalar product of s with translated
and dilated versions of ψ. The continuous wavelet transform (CWT) of signal s(t) is a time-scale
representation defined as

Ws(a, b) =

∫ +∞

−∞

ψa,b(t)s
∗(t)dt, (2)

where a ∈ R+, b ∈ R and ∗ denotes the conjugaison operator. For discrete values a = 2i, b = i2j

and when Ψi,j(t) form an orthogonal basis of wavelets, signal s(t) can be write as :

s(t) =
∑

i,j

Di,j
s Ψi,j(t). (3)

where Di,j
s = Ws(2

i, i2j) is called the discret wavelet transform (DWT).
Wavelet transform has numerous applications in signal processing like noise cancelation. One of the
major contribution of wavelets denoising (Donoho 1995) was called “soft thresholding” introduce
the following operator for selection of coefficients Di,j

s :

xsth =

{

x− sgn(x)λ if |x| ≥ |λ|
0 else

Then, denoised signal sd(t) using this thresholding procedure is

sd(t) =
∑

i,j

(Di,j
s )sthΨi,j(t)
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The choice of threshold value can be determined in many ways. For example, when noise pertur-
bation is supposed white Gaussien process, the value of threshold is λ = σ

√

2 log2N where N is
the length of noisy signal.
In practice, the coefficients Di,j

s are calculated using fast wavelet decomposition and reconstruc-
tion algorithm proposed in (Mallat 1989). It is, in fact, a classical scheme in the signal processing
community, known as the 2-band wavelet system described by the finite response response (FIR)
filter w and which is called the scaling filter.

We will discuss here about how the wavelet transform can be used in EMG processing. In fact,
because non-stationarity of EMG signals, Fourier analysis seems to be poor for describing tran-
sient event like brief muscle contraction, due to their limitation in temporal resolution. Some
advantages of using wavelet transform for EMG analysis are showed in (Laterza & Olmo 1997)
and several approaches based on WT were proposed for EMG signals processing. In (Kumar, Pah
& Bradeley 2003) for instance, EMG has been decomposed using different families of wavelets for
determining muscle fatigue and in (Hu & Wang 2004) is proposed method based on WT to extract
MUAP’s from surface EMG signals.
Regarding the mother wavelets, several ones were proposed for EMG analysis and their choice
is conditioned by the nature of the information to extract from raw signal. Morlet wavelets for
example is one of the most used for analysis of the surface EMG signals. In order to understand
the influence of the choice of mother wavelets, let us consider first the example of dEMG signal in
figure 1 and consider three mother wavelets for analysis: Mexican hat, Gaussian, Daubechies. Fig-
ure 2 shows the absolute value of CWT for different wavelets. For the same signal and scale level,

a. b.

c.

Figure 2. Absolute value of CWT of dEMG for three mother wavelets a. Gaussian (second
derivative), b. Mexican hat, c. Daubechies.

the three images exhibit some different details. The first and second ones shows the peaks who
corresponds to ECG signal who is not desired for our processing. The third image exhibits more
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energy corresponding to dEMG component than the one corresponding to ECG. Consequently,
we can choose this wavelet for extracting dEMG. In (Flanders 2002) is showed some details of
some resemblance between Daubechies family of wavelet and MUAPs. Notice that we can use
other wavelets like symlets, coiflets,... who belong all to family of the orthogonal and compactly
supported wavelets(Daubechies 1993).
In Figure 3.a is plotted the denoised signal by soft thresholding procedure described previously
using Daubechies wavelets and in Figure 3.b it’s corresponding CWT.

a. b.

Figure 3. a. Denoised dEMG using Daubechies wavelets. b. corresponding CWT

3. Inspiratory puff start and endpoints detection

The accurate detection of the inspiratory or expiratory puff start and endpoints (PSED) means
that subsequent processing of the data can be kept to a minimum. This problem can be referred
to as the endpoint location problem (Lavielle & Teyssière 2006).
The method proposed in (Lavielle & Teyssière 2006) and used in this article is a global approach:
all the change-points are simultaneously detected. These change points are estimated by optimizing
some penalised contrast (Lavielle 2005) J(τ, x) + βpen(τ) where J(τ, x) measures how the model
obtained with the change-point sequence τ fits the signal x and its role is to locate the change-
points as accurately as possible. The authors propose to define J(τ, x) from the logarithm of
Gaussian likelihood (even if x is not Gaussien) to detect changes in the mean and/or the variance
of x. The term pen(τ) depend only on the dimension of the model and the parameter β ajust de
the trade-off between the minimisation of J(τ, x) and pen(τ).
We will describe here briefly the principle of the proposed algorithm. Let us consider a sequence
x(t) of one dimensional process and consider change in the varinace an mean of x. More
precisely, we assume that there exists an integer K, a sequence τ = {τ0, τ1, . . . , τK} with
τ0 = 0 < τ1 < . . . < τK = n and :

E(x(t)) = µk, E((x(t) − E(x(t))2) = σ2
k, ∀τk−1 + 1 ≤ t ≤ τk (4)

with (µk, σk) 6= (µk+1, σk+1).
The proposed contrast function for the detection of changes in the mean and/or variance of x is :

J(τ, x) =
1

n

K
∑

k=1

nklog(σ
2
k) (5)

About the choice of β, the authors suggest to use β = 4 log n

n1−v , where v ∈ (0, 1) is some scaling
parameter of the process x and can be estimated from observed data.
For penalty function, in (Birge, Lucien, Massart & Pascal 2007) is proposed an example of optimal
function. Finally, the change-points τ are detected by

τ = arg min(J(τ, x) + βpen(τ)) (6)



CONTENTS 6

using some recursive method. Notice that the authers propose also an automatic procedure for
estimating the number of segment K. More details can be found on (Lavielle & Teyssière 2006).
Let as now apply this procedure to the example of dEMG signals of figure 4.a. The result of
change-points detection procedure applied to denoised dEMG is showed in figure 4.b, where the
inspiratory puff start and endpoints are clearly distinguished. More results and discussion will be
presented in the following sections.

a. b.

Figure 4. a. Denoised dEMG using Daubechies wavelet. b. point-change detected from
denoised signal compared to the respiratory volume.

4. Assessment on real dEMG data

4.1. Materials

Subjects Six healthy volunteers participated in this study. During the experiment, subjects were
sitting on a chair equipped with headrests, abdomen unbound or lying, and breathed through a
nose mask connected to a low resistance respiratory nonrebreathing valve. The inspiratory port of
the nonrebreathing valve was connected to the external source of a negative pressure.

Data acquisition dEMG recordings were obtained by using three esophageal electrodes (see Fig.
5). All signals were fed to a Nihon Kohden electromyograph. The myographic signals were amplified
and bandpass filtrered using a multichannel analog amplifier. Bandpass filtering is employed, with
a high-pass filter to remove the signal’s direct current component and a low-pass filter set below the
data acquisition frequency to avoid distortion (by aliasing) of the signal caused by undersampling
(Supinski, Fitting & Bellemare 2002). Filter settings could vary, depending on the type of electrodes
and the posture. The selected bandwidth and the sampling frequency were respectively 5-600 and
2000 Hz, and the gain was set to 5 000 or 10 000 for these signals. EMG and one flow signals were
simultaneously recorded.

4.2. Experimental protocole

The experimental protocole consisted of breathing with an inspiratory threshold load (ITL) and/or
with an expiratory resistive load (ERL). Various postures were used, as detailled in Tab. 1. The
muscle groups were recorded also under forced sniffs or abdominal pushed conditions. Cardiac
activity with a periodicity of approximately 0.9 seconds, is observed in these signals. Myographic
signals, corresponding to a several respiratory cycles recorded, are visualized in Fig. 6.a.

4.3. Result

Using Daubechies’ scaling filters w of size N = 56 for DWT decomposition with level L=15, the
denoised dEMG signals in posture P4 of one selected patient are plotted in figure 6.b for three
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Figure 5. Oesophageal site of the three electrodes pairs A, B, C.

n
o posture

P1 calm breathing, sitting
P2 hyper-ventilated breathing without load, sit-

ting
P3 sniffs, no control of muscle groups, sitting
P4 ITL† and ERL†, sitting, polypnea
P5 sniffs with diaphragme predominance
P5bis calm breathing, lying

Table 1. Characteristics of the various postures
we studied.

† ITL=inspiratory threshold load.
† ERL=expiratory resistive load.

recordings, where the inspiratory puffs are clearly extracted. In order to show the effectiveness
of detecting start and end of inspiratory cycle, we have plotting in figure 7 the result of the
comparison with ventilatory volume. Some light shift can be verified in start of inspiratory puff
due to the beginning of inspiratory effort (MUAP’s recruitment) before air flow starting. For
end-point inspiratory puff, the existence of post-inspiratory activities can explain the shift with
air flow end point. In Table 2 are presented the quality of proposed denoising method using signal

to noise ratio in dB : SNR = 20 log (
σ2

ispi

σ2
exp

), where σ2
exp and σ2

exp are respectively the variances of

denoised dEMG in inspiratory and expiratory cycles. We can verify that their are some postures
more interesting for denoising quality, P5 for example.
Finalty, in figure 8 are plotted the power spectral densities of patient 1 in posture P4 for three
channels before and after denoising. The difference in spectral domain between the two signals is
due to the noise cancellation (hight frequency) and attenuation of electrocardiogram component.

5. Conclusion & future work

In this study, we showed the performance of a discret wavelet transform in the extraction and
analysis of esophageal dEMG recordings. The method presented here is effective in artefact
denoising and ECG attenuation. The obtained results shows that start and end point of inspiratory
puffs can be determined with hight precision using some statistical approach based on contrast
optimisation.
Our future interest is to use wavelet transform for extraction of dEMG from surface electrodes.
The recorded signals from surface electrodes seems to be more affected by noise and artefact
than esophageal ones. We can also use others signal processing sophisticated techniques like blind
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a. b.

Figure 6. a. Three raw dEMG recordings and respiratory volume (bottom) in posture 4. b.
denoised signals and air flow zeros.

Figure 7. Comparaison of detected puffs start and end points to respiratory volume for three
channels C1, C2, C3.

sources separation which emerged recently in biomedical signal processing as strength tool to isolate
different complements from multi-channel recordings.
For application of dEMG extraction, we can be interested to inspiratory puff form in order to
characterize the so calling respiratory profile that can help the clinician logically approach a
respiratory pathology.
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Figure 8. PSD of dEMG signals before and after wavelets denoising for 3 channels .


