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Optimal Transport, Convection, Magnetic

Relaxation and Generalized Boussinesq

equations

Yann Brenier∗

Abstract

We establish a connection between Optimal Transport Theory (see [Vi]
for instance) and classical Convection Theory for geophysical flows [Pe]. Our
starting point is the model designed few years ago by Angenent, Haker and
Tannenbaum [AHT] to solve some Optimal Transport problems. This model
can be seen as a generalization of the Darcy-Boussinesq equations, which is
a degenerate version of the Navier-Stokes-Boussinesq (NSB) equations.
In a unified framework, we relate different variants of the NSB equations (in
particular what we call the generalized Hydrostatic-Boussinesq equations)
to various models involving Optimal Transport (and the related Monge-
Ampère equation [Br, Ca]). This includes the 2D semi-geostrophic equations
[Ho, CNP, BB, CGP, Lo] and some fully non-linear versions of the so-called
high-field limit of the Vlasov-Poisson system [NPS] and of the Keller-Segel
for Chemotaxis [KS, JL, CMPS].
Mathematically speaking, we establish some existence theorems for local
smooth, global smooth or global weak solutions of the different models. We
also justify that the inertia terms can be rigorously neglected under ap-
propriate scaling assumptions in the Generalized Navier-Stokes-Boussinesq
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Convection and optimal transport

equations.
Finally, we show how a “stringy” generalization of the AHT model can be
related to the magnetic relaxation model studied by Arnold and Moffatt to
obtain stationary solutions of the Euler equations with prescribed topology
(see [AK, Mo, Mo2, Sc, VMI, Ni]).

1 The Angenent-Haker-Tannenbaum model for Opti-

mal Transport problems

In this section, we consider the model introduced by Angenent, Haker and
Tannenbaum [AHT]. This model was designed in order to seek the solu-
tions of some optimal transport problems as equilibrium states of a suitable
dynamical system that could be efficiently solved on a computer. The con-
crete applications have been computer vision, image registration and image
warping.

1.1 Optimal transport and rearrangements

Let us briefly recall some typical results in Optimal Transport Theory, such
as the polar factorization of maps. More precisely, let D be the closure of a
bounded connected open set in Rd, with a boundary of zero d-dimensional
Lebesgue measure. Up to a rescaling, we assume the Lebesgue measure of D
to be 1. Given an L2 map y : D → Rd, we call image measure of the Lebesgue
measure on D by y the unique nonnegative (Borel) measure µ defined by:

∫

Rd

f(x)µ(dx) =
∫

D
f(y(a))da, (1)

for all compactly supported continuous functions f on Rd. We have
∫

Rd

µ(dx) = 1,
∫

Rd

|x|2µ(dx) =
∫

D
|y(a)|2da,

which means that µ belongs to the set Prob2(R
d) of all (Borel) probability

measures µ on Rd such that
∫ |x|2µ(dx) < ∞. In this space, we say that a

sequence µn converges tightly to µ in Prob2(R
d), if:

∫

Rd

f(x)µn(dx) →
∫

Rd

f(x)µ(dx)

for all continuous function f on Rd such that

sup
x∈Rd

|f(x)|
1 + |x|2 < +∞.
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Convection and optimal transport

Given two L2 maps y and z from D to Rd, we say that they are rearrange-
ment of each other if they define the same image measure. When y is a
rearrangement of the identity map, we say, in short, that y is Lebesgue mea-
sure preserving.
Next, we define the class of maps with convex potential:

Definition 1.1 We say that an L2 map from D to Rd belongs to the class C
of maps with a convex potential if there is a lower continuous convex function
p : Rd →] −∞, +∞] such that, for Lebesgue almost every point x ∈ D, p is
differentiable at x and its gradient ∇p(x) coincides with y(x).

Then, we get from [Br]:

Theorem 1.2 (Rearrangements with convex potentials)
For each L2 map y : D → Rd there is a unique rearrangement map with a
convex potential y∗ ∈ C. The map y∗ depends on y only through the associated
measure µ defined by (1).
In addition, the nonlinear operator y ∈ L2 → y∗ ∈ L2 is continuous as well
as the induced operator µ ∈ Prob2(R

d) → y∗ ∈ L2, with respect to the tight
convergence.

We get more precise results if y is a non degenerate map, in the sense
that the pre-image of every Lebesgue negligible set is also negligible:

Theorem 1.3 (Polar factorization of maps [Br])
Let y be a non degenerate L2 map from D to Rd. Then, there is a unique
“polar factorization” y = Y ◦ X where Y belongs to C and X is a Lebesgue
measure preserving map of D. In this decomposition, Y is the unique rear-
rangement y∗ of y in C and X is the unique measure preserving map of D
that minimizes

∫

D |X(a) − y(a)|2 da. In addition, X can be written:

X(a) = (∇Φ)(y(a)), a.e. a ∈ D, (2)

where Φ is a convex Lipschitz function defined on Rd.

For (much) more results on optimal transport, we refer to Villani’s text-
book [Vi]. The expression “optimal transport” comes from the fact that y∗,
among all possible rearrangements y of y0, is the unique minimizer of the
“transportation cost”.

∫

D
|y(x) − x|2 dx,
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Convection and optimal transport

where | · | denotes the Euclidean norm. The name “map with convex poten-
tial” is due to Caffarelli [Ca]. The concept of polar factorization has been
extended to Riemannian manifolds by McCann [Mc]. Examples of concrete
applications of optimal transport techniques to natural and computer sci-
ences can be found in [FMMS, HZTA].

1.2 The AHT model

The AHT model is an attempt to get the unique rearrangement y∗ of y0,
with convex potential, as the equilibrium state at t = +∞ of the following
set of evolution equations:

∂ty + (v · ∇)y = 0, (3)

Kv + ∇p = y, ∇.v = 0, (4)

where y = y(t, x) ∈ Rd, v = v(t, x) ∈ Rd, p = p(t, x) ∈ R depend on t ≥ 0
and x ∈ D, and K is a “dissipative” operator to be chosen, for instance
K = I or K = −∆. In these “AHT” equations, we denote the inner product
in Rd by · and we use notations:

∇i =
∂

∂xi
, v · ∇ =

∑

j=1,d

vj
∂

∂xj
, ∆ =

∑

j=1,d

∂2

∂x2
j

.

The boundary conditions for the AHT system (3,4) are:
i) the initial value of y at t = 0, y(0, x) = y0(x),
ii) v is parallel to the boundary ∂D if K = I and v = 0 along the boundary
if K = −∆.
Notice that neither p nor v need initial conditions. As a matter of fact, as
K = I, the second AHT equation (4) just corresponds to the “Helmholz
decomposition” of y as a sum of a gradient field and a divergence-free field
parallel to the boundary ∂D. The field p can be recovered by solving the
Poisson problem:

∆p = ∇.y,

inside D with inhomogeneous Neumann condition ∇p · n = y · n along the
boundary, where n denotes the outward normal. Then, we get: v = y −∇p.
So, we can write: v = Py, where P is a linear singular integral operator
bounded in all Lp space for 1 < p < +∞, provided that the domain D
is smooth enough. In the case K = −∆, in a similar way we can write
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Convection and optimal transport

v = P∆y, where P∆ is a linear singular integral operator bounded from Lp to
the Sobolev space W 2,p, for all 1 < p < +∞, D being assumed to be smooth.
Thus we can write the AHT system (3,4) in a more abstract form:

∂ty + (PKy · ∇)y = 0, (5)

with PK = P if K = I and PK = P∆ if K = −∆.

1.3 Expected long time behaviour of the AHT model

Let us now explain why the AHT model is expected to solve the Optimal
Transport (or rearrangement) problem, at least for a large class of data.
First, we observe that equation (3) expresses, at least formally, that, at each
time t, y(t, ·) is a rearrangement of y0. Indeed, for any smooth compactly
supported function f , we get:

d

dt

∫

D
f(y(t, x)) dx = −

∫

D
(∇f)(y) · (v · ∇)y dx

= −
∫

D
v · ∇[f(y)] dx,

(using the chain rule) which is zero, since v is divergence free and parallel
to ∂D and is therefore L2 orthogonal to any gradient field. (Notice that
this calculation can be made rigorous provided that v has enough regularity.
According to Ambrosio’s recent improvement of the DiPerna-Lions theory on
ODEs [Am, DL], it is enough that v belongs to L1

loc(R+, BV (D, Rd)).)
Next, we get the following balance law for the AHT

d

dt

∫

D

1

2
|y(t, x) − x|2 dx = −

∫

D
(v · Kv)(t, x) dx, (6)

which implies, at least formally, that y and v respectively belong to the func-
tional spaces L∞(R+, L2(D, Rd)) and L2(R+, HK(D)). Here HK(D) denotes
the Hilbert space of all divergence free fields w(x) ∈ Rd for which

∫

D w·Kw dx
is finite with suitable boundary conditions (w parallel to ∂D as K = I or
w = 0 on ∂D as K = −∆). The formal proof of (6) is as follows:

d

dt

∫

D

1

2
|y − x|2 dx = −

∫

D
(y − x) · ((v · ∇)y) dx

5



Convection and optimal transport

(using the first AHT equation (3))

= −
∫

D
v · ∇(

1

2
|y − x|2) dx −

∫

D
v · (y − x) dx

= −
∫

D
v · (y − x) dx

(since v is divergence free and parallel to ∂D and is therefore L2 orthogonal
to any gradient field)

= −
∫

D
v · (Kv + ∇(p − 1

2
|x|2)) dx

(using the second AHT equation (4))

= −
∫

D
v · Kv dx.

At this point, we can describe the expected long time behaviour of the AHT
system through the following heuristics. Since Kv ·v is space-time integrable,
we first argue that, as t → +∞, v presumably tends to zero. Then we
expect y to have a definite strong limit y∞ in L2, which is, then, necessarily
a rearrangement of y0. Passing to the limit in the second AHT equation
(4), we conclude that y∞ must be a gradient. Therefore, at the end of the
process, y0 has been rearranged as a map y∞ with a potential. Observe that
this potential needs not being convex. This is obvious in the special case
when y0 is itself a map with a potential which is not convex. Indeed, then

y(t, x) = y0(x), v(t, x) = 0,

is a trivial stationary solution to the AHT equations (3,4) and we get y∞ = y0

as a map with a non convex potential. So, we need further assumptions on y0

to be convinced that y∞ has a chance to have a convex potential. A natural
assumption is that y0 is smooth with a positive jacobian determinant valued
in some interval [r, 1/r] with 0 < r < +∞. Indeed, for such an initial
condition, the AHT equations have a global smooth solution y (at least in
the case when K = −∆, as discussed in the next subsection), with a jacobian
determinant that must stay in the same interval [r, 1/r], since y is always a
rearrangement of y0. So if the convergence to y∞, as t → +∞, is strong
enough, we expect y∞ to have a convex potential and, therefore, coincide
with the unique rearrangement of y0 with convex potential y∗ provided by
Theorem 1.2. The results obtained in [AHT] are only partial and leave as an
open question this issue.
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1.4 Wellposedness of the AHT equations

From the PDE viewpoint, it is crucial to check that the AHT system (3,4)
is wellposed, which is done by Angenent, Haker and Tannenbaum in [AHT],
for a class of dissipative operator K including K = I. Let us briefly discuss
the wellposedness issue in the cases K = I and K = −∆.
For K = I, the AHT system is similar to the inviscid Burgers equation,

∂ty + (y · ∇)y = 0, (7)

since PK behaves like a pseudo-differential operator of order zero. Thus, the
local in time existence of smooth solutions for smooth initial conditions can
be obtained from rather standard energy estimates. It is a challenging and
interesting open question whether the Lipschitz norm, in space, of such so-
lutions may blow up in finite time (as it would be the case of the inviscid
Burgers equation). In sharp contrast, in the case K = −∆, smooth solutions
are clearly global in time. Indeed, from (3), we immediately get that |y(t, x)|
is uniformly bounded by the sup norm of y0 that we denote by M0 and sup-
pose, here, to be finite. Thus, because of (4), according to standard elliptic
regularity theory, the L∞

t (W 2,p
x ) norm of v(t, x) is controled by M0 for all

finite p. Thus, the same is true for the sup norm of ∇v(t, x). Differentiating
(3) in x, we deduce that the sup norm of ∇y(t, x) in x cannot grow, in sup
norm, faster than exponentially in t as soon as ∇y0 has a finite sup norm.
So, there is no possible blow up of the Lipschitz norm of both v and y and,
therefore, by a standard argument, smooth solutions must be global in time.
(Notice that the dissipative operator K = (−∆)1/2, with appropriate bound-
ary condition, would be borderline to get such a Lipschitz estimate. In that
case v would be a priori only Log-Lipschitz, just like the Yudovich solutions
of the 2D Euler equations [MP].) For more details, we refer to the paper by
Angenent, Haker and Tannenbaum [AHT], where different kinds of operator
K are considered.

1.5 Interpretation of the AHT system in terms of Con-

vection Theory

From a Fluid Mechanics viewpoint, the AHT equations look very similar to
the Boussinesq equations for convective flows, in particular to their Darcy-
Boussinesq version. A classical model for Convection Theory is provided
by the Navier-Stokes Boussinesq (NSB) equations that we are now going to

7
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review with more details. Using the Boussinesq approximation, the Navier-
Stokes equations for an inhomogeneous incompressible fluid subject to gravity
along the xd direction read:

ρ0(∂tv + (v · ∇)v) − ν∆v + ∇p = y, ∇ · v = 0, (8)

∂ty + (v · ∇)y = 0. (9)

Here, v = v(t, x) ∈ Rd is the velocity field, p = p(t, x) ∈ R the pressure
field, ρ0 > 0 the average density of the fluid, ν the (constant) viscosity of the
fluid, while y has only one component in the “vertical” direction xd, which
is −g θ(t, x), where g is the gravity constant and θ(t, x) is the difference be-
tween the density of the fluid at (t, x) and the averaged density ρ0 of the fluid.
(Usually in Convection Theory, a diffusion term is added to the advection
equation for y [ID].) We recall that the Boussinesq approximation amounts
to consider a variable density incompressible fluid for which the density vari-
ations are sufficiently small to be neglected in all terms except the gravity
force. This approximation is widely used for ocean and atmosphere modelling
[Pe]. (To the best of our knowledge the justification of this approximation
is still an open problem in mathematical Fluid Dynamics, mostly because
of our rather poor knowledge of the Navier-Stokes equations for inhomo-
geneous flows, see discussions in [Li, Ma] for instance.) By neglecting the
inertia term, or equivalently by setting ρ0 = 0 in the NSB (Navier-Stokes-
Boussinesq) equations, we get the simpler Stokes-Boussinesq (SB) (related
to large-Prandtl-number Convection Theory as in [DOR, Wa], for instance).
If, in addition, the diffusion term −ν∆v is replaced by a friction term such as
v, we get the Darcy-Boussinesq (DB) model. We immediately see that both
the SB and the DB equations are just particular cases of the AHT model
(3,4), for which the vector valued function y has only one component along
the xd axis. Indeed, the DB and SB models then respectively correspond to
the choice K = I and K = −∆ in the second AHT equation (4). According
to the discussion made in subsection 1.3, we expect, for the AHT model, the
y(t, x) to converge, as t → +∞, to a map y∞(x) with, hopefully, a convex
potential. In the particular case of the convective DB and SB models, y(t, x)
has only one component in the xd direction, namely −g θ(t, x). Interest-
ingly enough, the convergence toward a map with convex potential, exactly
means, for the DB and SB models, that the density field tends to a density
“profile” ρ∞(xd), depending only on the vertical coordinate xd, and monoton-
ically decreasing. This clearly corresponds, in terms of Convection Theory,

8
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to a “stable hydrostatic equilibrium”. Notice that a similar discussion can
be found in Moffatt’s paper [Mo] (section 2) as a prelude to his Magnetic
Relaxation model that we will consider at the end of the present paper.

2 Generalized Navier-Stokes-Boussinesq equations

The interpretation of the AHT model in terms of Convection Theory suggests
the following “GNSB” generalization of the NSB (Navier-Stokes-Boussinesq)
equations:

ǫ(∂tv + (v · ∇)v) + Kv + ∇p = F (x, y), ∇ · v = 0, (10)

∂ty + (v · ∇)y = G(x, y), (11)

where y = y(t, x) ∈ Rm is a vector-valued function (m ≥ 1, in practice
m = d or m = 2d for the models discussed below), F and G are given
smooth functions with bounded derivatives up to second order, respectively
defined on Rm and Rm × Rd, ǫ > 0 is a scaling factor introduced to single
out the inertia term, and K is a linear dissipative operator. Depending on
the applications in view, only the following cases will be considered: K = 0
(no dissipation), Kv = v (linear friction), Kv = −∆v (viscosity).

2.1 Existence theory for the GNSB equations

For simplicity, we consider in this subsection the domain D to be the unit
periodic cube T d = Rd/Zd, in order to avoid technicalities due to spatial
boundary conditions. For the three possible choices of the dissipative oper-
ator K

Kv = 0, Kv = v, Kv = −∆v, (12)

the existence and uniqueness of a local in time smooth solution (y, v) of
the GNSB equations (10,11), for each smooth initial initial condition (y0, v0)
given on the torus T d, follow from standard theory on Euler and Navier-
Stokes equations (for which we refer to [Li]).
We say that (y, v) is a weak solution if:
1) y(t, x) and v(t, x) depends continuously on t with values in L2(D, Rd)
(with respect to the weak topology of L2);
2) For all smooth time dependent vector fields w(t, x), z(t, x), with ∇·w = 0,
we have:

d

dt

∫

v · w dx =
∫

[ǫv · (∂t + (v · ∇))w − Kv · w + F (x, y) · w]dx, (13)

9
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d

dt

∫

y · z dx =
∫

y · (∂t + (v · ∇))z + G(x, y) · z)dx, (14)

3) The following energy inequality holds true:

1

2

d

dt

∫

( ǫ|v|2 + |y|2 )dx +
∫

Kv · v dx ≤
∫

[F (x, y) · v + G(x, y) · y] dx. (15)

When K = −∆, the existence of global weak solutions for the GNSB equa-
tions follows from standard arguments à la Leray combined with the DiPerna-
Lions theory on ODEs [Li, DL]. They are unique in 2 space dimensions. In
sharp contrast, as K = I or K = 0, nothing can be said about global weak
solutions.
Concerning global smooth solutions, the existence theory is quite challenging,
even in 2 space dimensions. Recently, Chae, Hou and Li [Ch, HL] have proven
that Navier-Stokes Boussinesq equations (8,9) (just called Boussinesq equa-
tions in these papers) have global smooth solutions when d = 2 and K = −∆.
The same result can be readily extended to the GNSB equations (10,11), es-
sentially because we assume the right-hand sides F (x, y) and G(x, y) of each
equation to be smooth functions of y and v with bounded derivatives up
to order two. (Indeed, these assumptions are enough for a straghtforward
adaptation of the proof of Theorem 1.1 in Chae’s paper, through estimates
(2.1 · · · 17) in [Ch]. Some constants involved in these estimates have just to
be modified to take into account the Lipschitz constants of F and G.)
So, we can summarize all these results in the following Theorem, which is
nothing but a straightforward adaptation of known results:

Theorem 2.1 Assume the dissipative operator K to be of type (12). Then,
the generalized Navier-Stokes Boussinesq equations (10,11) admit, for any
smooth initial condition, a unique local smooth solution.
If K = −∆, the GNSB equations admit at least a global weak solution (y, v)
(in the sense (13,14,15)) for any initial condition (y0, v0) in L2. If d = 2,
these weak solutions are unique. Furthermore, still for d = 2, the solutions
are globally smooth for smooth initial conditions.

2.2 Zero inertia limit of the GNSB equations

By zero inertia limit of the GNSB, we mean the formal limit obtained by
dropping the scaling factor ǫ in front of the inertia terms in (10,11). Namely,
in Eulerian coordinates,

∂ty + (v · ∇)y = G(x, y), (16)
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Convection and optimal transport

Kv + ∇p = F (x, y), ∇ · v = 0.

We are able to make a rigorous derivation of the zero inertia limit when K
is strictly dissipative (K = 0 being so excluded):

Theorem 2.2 Assume the dissipation operator K to be coercive in L2, namely
K ≥ α for some constant α > 0. Then the zero inertia equations (16) admit,
for any smooth initial condition, a local smooth solution, which is global if
d = 2 and K = −∆. This solution can be obtained as the limit, as ǫ goes
to zero, of the weak solutions of the GNSB equations (10,11), with the same
initial condition.

For the convergence, we use a simple energy method. Namely, given a
weak solution (y′, v′) to the GNSB equations (13,14,15) and a solution (y, v)
of the HF equations, with same initial conditions (y0, v0), we introduce

e(t) =
∫

T d

( ǫ|v′|2 + |y − y′|2 ) dx (17)

and try to get an estimate of form:

d

dt
(e(t) + O(ǫ)) +

1

2

∫

T d

K(v − v′) · (v − v′) dx ≤ (e(t) + O(ǫ))c, (18)

where c depends only on the limit (y, v), for any fixed finite time interval
[0, T ] on which (y, v) is smooth. From this estimate (18), we immediately get
that y − y′ and v − v′ are of order O(

√
ǫ) in, respectively, L∞([0, T ], L2(T d))

and L2([0, T ], L2(T d)), using the coercivity of K (K ≥ α for some α > 0).
So, we are left with proving (18). Notice first that, from equations (15) and
(16), the following energy balances hold true:

1

2

d

dt

∫

( ǫ|v′|2 + |y′|2 )dx +
∫

Kv′ · v′ dx ≤
∫

[F (x, y′) · v′ + G(x, y′) · y′] dx

1

2

d

dt

∫

|y|2 dx +
∫

Kv · v dx =
∫

[F (x, y) · v + G(x, y) · y] dx.

Since (y′, v′) and (y, v) are respectively supposed to be a weak solution of
the GNSB equations and a smooth solution of the zero inertia limit (16), we
also get

− d

dt

∫

y · y′ dx

11
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=
∫

[((v · ∇)y) · y′ − ((v′ · ∇)y) · y′]dx −
∫

[G(x, y) · y′ + G(x, y′) · y]dx

=
∫

((v · ∇)y − (v′ · ∇)y) · (y′ − y) dx

+
∫

[(G(x, y) − G(x, y′)) · (y − y′) − G(x, y′) · y′ − G(x, y) · y]dx

(using that
∫

(w · ∇)y) · y) dx = 0 for both w = v and w = v′)

≤ c1

∫

(|v − v′||y − y′| + |y − y′|2) dx −
∫

[G(x, y′) · y′ + G(x, y) · y]dx

where c1 depends on the Lipschitz constants of G (as a function of y and v)
and v (as a function of x). Thus, adding up these three equalities, we get by
definition (17):

d

dt
e(t) +

∫

(Kv′ · v′ + Kv · v) dx

≤ c1

∫

(|v − v′||y − y′| + |y − y′|2) dx +
∫

[F (x, y′) · v′ + F (x, y) · v] dx.

From (13) and (16), we also get:
∫

F (x, y) · v′ dx =
∫

(Kv + ∇p) · v′ dx =
∫

Kv · v′ dx

and
∫

F (x, y′) · v dx = ǫ
d

dt

∫

v′ · v dx − ǫ
∫

v′ · (∂t + v′ · ∇)v dx +
∫

Kv′ · v dx

=
√

ǫ(
d

dt
r1(t) + r2(t)) + e2(t) +

∫

Kv′ · v dx,

where
r1(t) =

√
ǫ

∫

v′ · v dx,

r2(t) = −
√

ǫ
∫

v′ · ∂tv dx

and
e2(t) = −ǫ

∫

v′ · (v′ · ∇)v dx.

Notice that r2
1, r2

2 and |e2| are bounded by c2e(t) (by definition (17)), where
c2 depends on the Lipschitz constant of v as a function of both t and x. So,
we have obtained:

d

dt
(e(t) −

√
ǫr1(t)) +

∫

K(v′ − v) · (v′ − v) dx

12



Convection and optimal transport

≤ c1

∫

(|v − v′||y − y′| + |y − y′|2) dx +
√

ǫr2(t) + c2e(t).

Using the coercivity of K (K ≥ α > 0) and definition (17), we find c3

depending on the Lipschitz constants of F , G and v such that:

c1

∫

(|v − v′||y − y′| + |y − y′|2) dx ≤ c3e(t) +
1

2

∫

K(v′ − v) · (v′ − v) dx.

This leads to:

d

dt
(e(t) −

√
ǫr1(t)) +

1

2

∫

K(v′ − v) · (v′ − v) dx ≤ (c2 + c3)e(t) +
√

ǫr2(t),

which leads to a differential inequality of the desired type, namely (18), since
r2
1 + r2

2 ≤ 2c2e. Thus, the proof of Theorem 2.2 is now achieved.

2.3 A Mechanical interpretation of the GNSB equa-

tions

In this subsection, we provide a mechanical interpretation of the GNSB equa-
tions and their zero inertia limit. For this purpose, it is worth considering the
GNSB equations (10,11) in “Lagrangian coordinates”. Assuming the vector
field v to be smooth enough, denoting by a ∈ D the position of a fluid parcel
at time t = 0, we can recover its position X(t, a) ∈ D at later time t ≥ 0 by
solving the ODE

∂tX(t, a) = v(t, X(t, a)), X(0, a) = a, ∀a ∈ D. (19)

Notice that, for each t, a ∈ D → X(t, a) ∈ D is a measure preserving map
as a consequence of the fact that v is a smooth divergence-free vector field
parallel to ∂D. Let us also introduce:

Y (t, a) = y(t, X(t, a)) ∈ Rm. (20)

Then, the GNSB equations (10,11) read in Lagrangian coordinates:

ǫ ∂ttX(t, a) + (Kv)(t, X(t, a)) + (∇p)(t, X(t, a)) = F (X(t, a), Y (t, a)), (21)

∂tY (t, a) = G(X(t, a), Y (t, a)),

where a ∈ D → X(t, a) ∈ D is Lebesgue measure preserving. Let us now
provide a possible mechanical interpretation. We model the atmosphere (or

13
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the ocean) as a continuous distribution of infinitesimal rigid balloons floating
inside D, each of them having position X(t, a) at time t, with X(0, a) = a,
and being attached with probability λ(a) ≥ 0 to an an anchor with an elastic
cable. Of course, to be a realistic model with real balloons, λ should be a
discrete probability distribution concentrated on a finite collection of points
and the corresponding balloons should have a finite extension! Let us rather
assume, for mathematical simplicity, that the balloons are just points and
that λ is a smooth nonnegative density function on D with unit mass. The
cable corresponding to the balloon labelled by a is modelled by a (possibly
non Hookean) spring with restoring force −k(ξ, a) = k(−ξ, a) ∈ Rd where
ξ ∈ Rd is the elongation of the spring. Notice that k may depend on a. The
location of the anchor attached to the balloon labelled by a is not necessarily
fixed and denoted by Y (t, a) ∈ Rd. (We may also think of an aircraft, or
a boat, or any kind of carrier instead of an anchor.) Notice that we do not
require the anchor to be located in D. Neglecting any interaction between the
fluid and both the anchors and the springs (which may not be very realistic),
we obtain the following dynamical equation for each balloon

ǫ∂ttX(t, a) + (Kv)(t, X(t, a)) + (∇p)(t, X(t, a)) = (22)

−λ(a)k(X(t, a) − Y (t, a), a).

(Observe that as λ(a) = 0, the corresponding carrier Y (t, a) is just fictitious!)
Let us consider the special case when the speed of each anchor is constant
and given by:

∂tY (t, a) = W (a) ∈ R2. (23)

Implicitly define a field y = (ỹ, ŷ) = y(t, x) ∈ Rd × D by setting

ỹ(t, X(t, a)) = Y (t, a), ŷ(t, X(t, a)) = a

(remember that a → X(t, a) is supposed to be a diffeomorphism). Noticing
that

((∂t + v · ∇)y)(t, Y (t, a)) = ∂t[y(t, X(t, a))] = (∂tY (t, a), 0)

= (W (a), 0) = (W (ŷ(t, X(t, a))), 0)

and going back to Eulerian coordinates, we recover the GNSB equations
(10,11) in the particular case:

F (x, y) = −λ(ŷ)k(x − ỹ, ỹ), G(x, y) = (W (ŷ), 0). (24)

14
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(Notice that assuming λ and the restoring force k to have bounded derivatives
up to order 2 is not very realistic! These assumptions are clearly made for
mathematical convenience.) We may also consider the following variant of
this mechanical model. Instead of prescribing their velocity by (23), we may
assume that the carriers are driven by a friction-dominated retroaction of
type:

η∂ttY (t, a) + ∂tY (t, a) = −µ(a)k(Y (t, a) − X(t, a), a),

where µ is a given nonnegative function. Dropping the inertia term (η = 0)
leads to the following law:

∂tY (t, a) = −µ(a)k(Y (t, a) − X(t, a), a), (25)

In that case, we get (keeping unchanged the definitions of Y and y) again
the GNSB equations (10,11) with F and G given by:

F (x, y) = −λ(ŷ)k(x − ỹ, ŷ), G(x, y) = (−µ(ŷ)k(ỹ − x, ŷ), 0). (26)

Let us finally consider a second variant where the Coriolis force is added to
the model (rotating ocean or atmosphere). Neglecting the vertical extension,
so that d = 2, and assuming the rotation vector to be perpendicular to the
ocean and of unit length, the Coriolis force Jv = (−v2, v1) is completely
absorbed by the pressure term and the fluid parcels are not sensitive to it.
(Indeed, v = (v1, v2) being divergence free, Jv is a gradient and can be
removed from the dynamical equation.) However we may think that the
carriers are still sensitive to the Coriolis force. Thus, we get for them

η∂ttY (t, a) + J∂tY (t, a) = −µ(a)k(Y (t, a) − X(t, a), a),

instead of (25), neglecting a possible friction term. Neglecting the inertia
term (η = 0) leads to the balance equation:

∂tY (t, a) = Jµ(a)k(Y (t, a) − X(t, a), a) (27)

(using that J2 = −J). So we end up with a third version of the GNSB
equations (10,11), for which:

F (x, y) = −λ(ŷ)k(x − ỹ, ŷ), G(x, y) = (Jµ(ŷ)k(ỹ − x, ŷ), 0). (28)

To summarize this subsection, let us just say that the GNSB equations
(10,11) provide a rather flexible framework to describe the interaction be-
tween an incompressible fluid confined in a d−dimensional domain D (each
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fluid parcel being labelled by its initial position a ∈ D having position X(t, a)
at time t), and a set of particles (also labelled by a and of position Y (t, a))
moving in the ambient space Rd. The unusual feature of the resulting mod-
els is that the interaction is pairwise (X(t, a) interacts only with Y (t, a) for
the same label a), except for the mediation by the pressure field p(t, x) wich
preserves a → X(t, a) in the class of Lebesgue measure preserving maps of
D at each time t.

3 The Generalized Hydrostatic Boussinesq equations

In this final section, we investigate the most degenerate version of the GNSB
equations (10,11), where we neglect not only the inertia terms but also the
dissipative operator K. Thus we are left with the strange looking system:

F (x, y) = ∇p, ∇ · v = 0, (29)

∂ty + (v · ∇)y = G(x, y), (30)

that we call Generalized Hydrostatic Boussinesq (GHB) equations (by seing
(29) as a generalization of the hydrostatic balance in Convection Theory).
Let us concentrate on the simpler case when m = d and

F (x, y) = y − x (31)

(which corresponds to cables modelled by Hookean springs, according to the
mechanical interpretation of subsection 2.3). Thus, (29) just reads:

y = x + ∇p(t, x). (32)

In Lagrangian coordinates, the Generalized Hydrostatic Boussinesq equations
(30,32) become:

Y (t, a) = X(t, a) + (∇p)(t, X(t, a)), (33)

∂tY (t, a) = G(X(t, a), Y (t, a)), (34)

where, for all t, a ∈ D → X(t, a) ∈ D is a measure preserving map.

3.1 Formal derivation of some optimal transport mod-

els from the GHB equations

We claim that several models involving optimal transport and the Monge-
Ampère equation correspond to these GHB equations. In particular, we
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consider the following generalization of the “semigeostrophic (SG) equations”
[Ho, CNP, BB, CGP, Lo]:

∂tρ + ∇ · (ρw) = 0, (35)

w(t, x) = B∇ϕ, (36)

det(I + D2ϕ) = ρ, (37)

where B is a d × d constant matrix and D2ϕ is the “Hessian” matrix, made
of all second order derivatives of ϕ(t, x) with respect to x. This system, that
we call Generalized Semi-Geostrophic (GSG) equations involves the “fully
nonlinear” Monge-Ampère (MA) equation (37) which, requires, in order to
be of elliptic type, the convexity condition:

I + D2ϕ(t, x) > 0, (38)

in the sense of symmetric matrices, for each time t. The 2D SG equations
[Ho, CNP, BB, CGP, Lo] just correspond to the special case when d = 2 and
B is the rotation matrix of angle π/2. The case when B is just a number can
be related to drift-diffusion and Keller-Segel type models [CMPS] for which
the MA equation is replaced by the linear Poisson equation

∆ϕ = ρ − 1, (39)

which can be seen as a linear approximation of the MA equation (37) as
ϕ is small. The drift-diffusion case corresponds to (35,36,39) with B > 0.
The simplified version of the Keller-Segel model [KS] treated by Jäger and
Luckhaus [JL] corresponds to B < 0 (with an additional diffusion term for ρ
in equation (35)).

Let us now show that a solution of the GHB equations (33,34) corresponds
to a solution of the GSG equations (35,36,37,38), in a suitable sense. For
this purpose, in order to use the Polar Factorization Theorem 1.3, we make
the following a priori assumptions for each time t:
A1: The map Y (t, ·) is non degenerate,
A2: The map x ∈ D → x + ∇p(t, x) ∈ Rd has a convex potential.

These assumptions mean that (33) defines the polar factorization of Y (t, ·)
where X(t, ·) is measure preserving and x ∈ D → x + ∇p(t, x) has a convex
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potential. According to the Polar Factorization Theorem 1.3, the measure
preserving factor X(t, ·) can be written:

X(t, a) = (∇Φ)(t, Y (t, a)),

where Φ(t, x) is convex and Lipschitz continuous in x ∈ Rd, or, equivalently,

X(t, a) = Y (t, a) + (∇ϕ)(t, Y (t, a)), (40)

where ϕ(t, x) = Φ(t, x)−|x|2/2. Since Y is supposed to be non degenerate (by
assumption A1), there is a nonnegative Lebesgue integrable “density field”
ρ(t, x) such that

∫

Rd

f(x)ρ(t, x)dx =
∫

D
f(Y (t, a))da, (41)

for all suitable functions f . Thus:

∫

Rd

f(x + ∇ϕ(t, x))ρ(t, x)dx =
∫

Rd

f(Y (t, a) + (∇ϕ)(t, Y (t, a)))da

(by definition (41) of ρ)

=
∫

D
f(X(t, a))da =

∫

D
f(x)dx

(thanks to (40) and because X(t, ·) is Lebesgue measure preserving). So, we
have obtained

∫

Rd

f(x + ∇ϕ(t, x))ρ(t, x)dx =
∫

D
f(x)dx, (42)

for all compactly supported continuous function f . This, combined with
the assumption that x + ∇p(t, x) has a convex potential can be seen as a
weak form of the Monge-Ampère equation (37) combined with the ellipticity
condition (38). Next, using (40), we can write (34) as

∂tY (t, a) = w(t, Y (t, a)),

where w is the vector field defined by:

w(t, x) = G(x + ∇ϕ(t, x), x), (43)
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which is nothing but a generalization of equation (36). Next, we get for all
smooth compactly supported function f on Rd:

d

dt

∫

D
f(Y (t, a))da =

∫

D
(∇f)(Y (t, a)) · w(t, Y (t, a))da,

which means, in terms of ρ defined by (41):

d

dt

∫

Rd

f(x)ρ(t, x)dx =
∫

Rd

∇f(x) · w(t, x)ρ(t, x)dx,

that is (35) in a weak sense. So, we have fully recovered the GSG system
(35,36,37,38), in a suitable weak form, from the GHB equations (33,34) under
Assumption A1,A2. In addition, equation (36) can be replaced by the more
general relation (43).

3.2 A global existence theorem for the GHB equations

We are now going to introduce a suitable concept of solutions of (33,34), by
assuming a priori that, in (33), for each time t, the map x ∈ D → x+∇p(t, x)
has a convex potential and, therefore, is the unique rearrangement Y ∗(t, ·)
of Y (t, ·) in the class C of map with a convex potential, as in Theorem 1.2.
(This corresponds to assumption A2 in the previous subsection.) Therefore,
we can just write (33) as:

Y (t, a) = Y ∗(t, X(t, a)).

From (34), we get (at least formally) that:

d

dt

∫

D
f(Y (t, a))da =

∫

D
(∇f)(Y (t, a)) · G(X(t, a), Y (t, a))da.

for all compactly supported C1 function f . Thus,

d

dt

∫

D
f(Y ∗(t, X(t, a)))da =

=
∫

D
(∇f)(Y ∗(t, X(t, a))) · G(X(t, a), Y ∗(t, X(t, a)))da.

Now, we can factor out X(t, a) and get a set of self-consistent equations for
Y ∗, namely:

d

dt

∫

D
f(Y ∗(t, a))da =

∫

D
(∇f)(Y ∗(t, a)) · G(a, Y ∗(t, a))da,
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without loss of information for Y ∗. This suggests the following concept of
solution for the GHB equations (33,34):

Definition 3.1 Assume that G is continuous and satisfies

sup
x,y

|G(x, y)|
1 + |y| < ∞. (44)

We say that Y ∗ ∈ C0([0, T ], L2(D, Rd)) is the “convex rearrangement” (CR)
solution to the GHB equations (33,34), if:
1) Y ∗(t, ·) belongs to the set C of all maps with convex potenial, for all
t ∈ [0, T ],
2) For all compactly supported C1 function f on Rd, we have:

d

dt

∫

D
f(Y ∗(t, a))da =

∫

D
(∇f)(Y ∗(t, a)) · G(a, Y ∗(t, a))da. (45)

This concept yields the following global existence theorem (without unique-
ness) for all initial conditions in L2:

Theorem 3.2 For each initial condition Y 0 ∈ L2(D, Rd), there is at least
one CR-solution Y ∗(t, a), in the sense of Definition 3.1,
such that Y ∗(t = 0, ·) = (Y 0)∗.
This solution can be obtained as the limit in C0

t (L
2
a) as h → 0 of a time

discrete approximation Y h(t, a) defined, first at discrete times t = nh, by:

Y h(nh + h, a) = [Y h(nh, a) + h G(a, Y h(nh, a))]∗, n = 0, 1, 2, · · · (46)

(where ∗ denotes the rearrangement operator as in Theorem 1.2) and, then,
linearly interpolated in t.

Proof

To get the existence result, it is enough to show the convergence of the time
discrete approximation Y h. First, we observe that, Y h(t, ·) is valued in C,
(the class of maps with convex potential) for all time t. (This is true by
definition for discrete times t = nh and preserved by linear interpolation
since C is a convex cone.) Next, we deduce from (46) and assumption (44):

√

∫

D
|Y h(nh + h, a)|2da ≤ hc + (1 + hc)

√

∫

D
|Y h(nh, a)|2da, (47)
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for some constant c depending only on G and D. We also get, for all com-
pactly supported C1 function f :

∫

D
[f(Y h(nh + h, a)) − f(Y h(nh, a))]da = (48)

= h
∫

D

∫ 1

0

(∇f)(Y h(nh, a) + hθG(a, Y h(nh, a))) · G(a, Y h(nh, a))dθda,

which can be bounded by:

hc sup
x

|∇f(x)|
1 + |x|

∫

D
(1 + |Y h(nh, a)|2)da, (49)

where c depends only on D and G.
So, from (47), we first see that Y h(t, ·) is bounded in L2 uniformly in t ∈ [0, T ]
and h ∈]0, T ] by some constant R. Therefore Y h is uniformly valued in CR

the set of maps with convex potential and L2 norm bounded by R, which is
a compact subset of L2.
Next, we deduce from (48,49) that, for each fixed C1 function f such that

|∇f(x)|
1 + |x| < +∞, t →

∫

D
f(Y h(t, a))da

is Lipschitz continuous on [0, T ], uniformly in h. Since Theorem 1.2 asserts
the continuity of the map µ → y∗, we get that Y h(t, ·) is uniformly equicon-
tinuous from [0, T ] to L2. Then, we deduce from the Ascoli-Arzela theorem
that the set of all time-discrete approximations Y h(t, a), for 0 < h ≤ T , is
relatively compact in C0

t (L2
a). Thus, there is a sequence of time steps h for

which Y h converges to some limit Y ∗ in C0
t (L

2
a), which is necessarily valued

in CR, and therefore in C. We also easily get (45) by letting h go to zero in
(48). So, the proof of Theorem 3.2 is now complete.

Remark: continuous dependence as d = 1

In the very special case d = 1, the rearrangement operator ∗ is well known
to be non expansive in L2:

∫

D
|y∗(x) − z∗(x)|2dx ≤

∫

D
|y(x) − z(x)|2dx,

21



Convection and optimal transport

for pair (y, z) of L2 applications from D to R. It follows that two CR solutions
y∗ and z∗, obtained as limits of the time-discrete approximations (46), with
respective initial condition y0 and z0, must satisfy:

∫

D
|y∗(t, x) − z∗(t, x)|2dx ≤ exp(ct)

∫

D
|y0(x) − z0(x)|2dx,

where c depends only on D and G.

4 Optimal transport and Magnetic Relaxation

In this section, we discuss a natural “stringy” generalization of the AHT
equations (3,4) (discussed in the first part of the paper) and establish a link
with the Arnold-Moffat model of Magnetic Relaxation (see [AK, Mo, Mo2,
Sc, VMI, Ni]).

4.1 The AHT model as a gradient flow

Using Lagrangian coordinates, we deduce from (3,4), in the case when the
dissipation operator is K = 1:

∂tX(t, a) + (∇p)(t, X(t, a)) = y0(a) − X(t, a) (50)

where X(t, ·) belongs to the set MPM(D) of all (Borel) Lebesgue measure
preserving maps of D. (These equations can be either derived directly from
(3,4) or obtained from the GNSB equations written in Lagrangian coordi-
nates (21), by setting ǫ = 0, K = I, F (x, y) = y − x and G(x, y) = 0.)
As explained in [AHT], in slightly different words, the AHT equation (50)
formally corresponds to the gradient flow of the “energy”

X → 1

2

∫

D
|X(a) − y0(a)|2da, (51)

on the “manifold” of all X ∈ MPM(D) for the L2 metrics. Let us recall
that, as seen in the first section, minimizing this energy is equivalent to solve
an Optimal Transport problem. The gradient flow structure can be easily
understood by considering the standard time discretization of such a gradient
flow. Let h > 0 be a time step and let us denote by Xh(t, a) the discrete
approximation of X(t, a) at discrete time t = nh, n = 0, 1, 2, 3, · · ·. At t = 0,
we set Xh(0, a) = a and, for t = nh, n = 1, 2, 3, · · ·, we require Xh(t, ·) to be
a minimizer among all X ∈ MPM(D) of the following functional:

X →
∫

D

|X(a) − Xh(nh − h, a)|2
2h

+
1

2

∫

D
|X(a) − y0(a)|2da, (52)
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or, equivalently,

∫

D
|X(a) − Xh(nh − h, a) + y0(a)h

1 + h
|2da (53)

(after rearranging the squares).
Thus, assuming a priori that Xh(nh−h, ·)+y0h is non degenerate and using
Theorem 1.3, this exactly means:

Xh(nh − h, ·) + y0h = y∗ ◦ Xh(nh, ·)

where y∗ is a map with a convex potential. If we write this map as

x → x + h(∇ph)(nh, x),

we get

Xh(nh − h, ·) + y0h = Xh(nh, ·) + h(∇ph)(nh, Xh(nh, ·)),

which can be seen just as a finite difference approximation of equation (50)
as h → 0. This is enough to interpret, at least formally, equation (50) as the
L2 gradient flow of energy (51) on the “manifold” MPM(D).

4.2 A stringy generalization of the AHT model

This analysis suggests the possibility of more complex models based on
similar ideas. A rather natural idea amounts to consider, instead of the
“manifold” MPM(D), the “manifold” of “strings” valued in MPM(D):
s ∈ [0, 1] → X(·, s) ∈ MPM(D), with fixed end values, say

X(t, a, s = 0) = X−(t, a), X(t, a, s = 1) = X+(t, a). (54)

Then, we may think of the L2 gradient flow of the following string energy:

1

2

∫ 1

0

∫

D
|∂sX(a, s)|2da ds. (55)

We claim that the resulting equation read:

∂tX(t, a, s) = ∂2
ssX(t, a, s) + (∇p)(t, X(t, a, s), s), (56)

where X(t, ·, s) is valued in MPM(D) and end point conditions (54) are
enforced. To get this system, as we did before for the AHT model, we define
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a time discrete approximation Xh(t, a, s), by setting Xh(0, a, s) = a and
asking, for t = nh, n = 1, 2, 3, · · ·, Xh(t, ·, ·) to be a minimizer among all
curves s ∈ [0, 1] → X(·, s) ∈ MPM(D) of the functional:

∫

D

∫ 1

0

|X(a, s) − Xh(nh − h, a, s)|2
2h

da ds +
∫

D

∫ 1

0

|∂sX(a, s)|2
2

da ds. (57)

The formal optimality condition reads:

Xh(nh, a, s) − Xh(nh − h, a, s)

h
=

= ∂2
ssX

h(nh, a, s) + (∇ph)(nh, Xh(nh, a, s), s),

for some scalar function ph. So, we formally obtain, as h → 0, the desired
equation (56). Equation (56) has an interesting interpretation, obtained
by assuming a priori that a ∈ D → X(t, a, s) is a smooth orientation and
measuring preserving diffeomorphism of D for each (t, s). Then we introduce,
for each (t, s), two divergence free vector fields parallel to the boundary ∂D,
namely v(t, x, s) ∈ Rd and b(t, x, s) ∈ Rd, defined by:

v(t, X(t, a, s), s) = ∂tX(t, a, s), b(t, X(t, a, s), s) = ∂sX(t, a, s). (58)

Then, we get from (56):

v = ∂sb + (b · ∇)b + ∇p, (59)

while, from (58), we get the compatibility condition

∂tb + (v · ∇)b = (b · ∇)v + ∂sv (60)

(by writting ∂2
tsX = ∂2

stX), to be added to the divergence free constraints

∇ · v = ∇ · b = 0, v//∂D, b//∂D, (61)

and the boundary conditions at s = 0 and s = 1 induced by (54), namely:

v(t, x, s = 0) = v−(t, x), v(t, x, s = 1) = v+(t, x), (62)

where v+ and v− are prescribed. When the fields v and b do not depend on s,
we get the Magnetic Relaxation model discussed by Moffatt in [Mo] (see also
[AK, Mo2, Sc, VMI, Ni]). As t → +∞, we expect, at least for a large class
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of initial conditions, the solution of equations (59,60,61) to converge toward
an equilibrium, for which v = 0 and b = b(x, s), p = p(x, s) are solutions
to the Euler equations [AK, MP] (s acting as the time variable and b as the
velocity field):

∂sb + (b · ∇)b + ∇p = 0, (63)

∇ · b = 0, b//∂D. (64)

Of course, we are far from being able to provide any rigorous proof of this
conjecture.

4.3 The “cross-Burgers” equation

In the case when D is the unit ball, The Magnetic Relaxation equations
(59,60,61) admit special solutions (b, v,∇p) which are linear in x:

b(t, x, s) = B(t, s)x, v(t, x, s) = V (t, s)x, ∇p(t, x, s) = G(t, s)x, (65)

where B, V are skew-symmetric matrices, while G is a symmetric matrix, all
depending only on (t, s). (Notice that the fields b and v are automatically
parallel to the boundary ∂D since D is the unit ball.) The resulting equations
for B, V and G are:

V = ∂sB + B2 + G, (66)

∂tB + [V, B] = ∂sV. (67)

Since B2 is a symmetric matrix, equation (66) reduces to:

V = ∂sB.

Thus, we get a single equation for B:

∂tB + [∂sB, B] = ∂2
ssB, (68)

where [A, B] denotes the skew product AB −BA. In the special case d = 3,
B can be identified as a 3-vector and [·, ·] as the cross product × in R3, which
leads to:

∂tB + ∂sB × B = ∂2
ssB. (69)

that we could call the “cross-Burgers” equation. This equation admits inter-
esting special solutions, such as:

B(t, s) = (α(t) cos s , α(t) sin s , β(t) − 1)
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where α ≥ 0 and β are solutions to:

dα

dt
= −βα,

dβ

dt
= α2,

or, equivalently,
d2λ

dt2
+ exp(2λ) = 0,

where λ = log(α).
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CEA-Cadarache/CNRS-Université de Nice and the ANR OTARIE project
(ANR BLAN07-2-183172). We thank Adrien Blanchet, Marco Di Francesco,
Francis Filbet and François Gallaire for fruitful discussions.

References

[Am] L. Ambrosio, Transport equation and Cauchy problem for BV vector
fields. Invent. Math. 158 (2004) 227-260.

[AK] V. Arnold, B. Khesin, Topological methods in hydrodynamics, Applied
Mathematical Sciences, 125. Springer, 1998.

[AHT] S. Angenent, S. Haker, A. Tannenbaum, Minimizing flows for the
Monge-Kantorovich problem, SIAM J. Math. Anal. 35 (2003) 61-97.

[BB] J.-D. Benamou, Y. Brenier, Weak existence for the semigeostrophic
equations formulated as a coupled Monge-Ampère/transport problem,
SIAM J. Appl. Math. 58 (1998) 1450-1461.

[Br] Y. Brenier, Polar factorization and monotone rearrangement of vector-
valued functions, Comm. Pure Appl. Math., 64 (1991) 375-417.

[Ca] L. Caffarelli, Boundary regularity of maps with convex potentials,
Comm. Pure Appl. Math. 45 (1992) 1141-1151.

[Ch] D. Chae, Global regularity for the 2D Boussinesq equations with partial
viscosity terms, Adv. Math. 203 (2006) 497-513.

26



Convection and optimal transport

[CMPS] F. Chalub, P. Markowich, B. Perthame, C. Schmeiser, Kinetic mod-
els for chemotaxis and their drift-diffusion limits, Monatsh. Math. 142
(2004) 123-141.

[CGP] M. Cullen, W. Gangbo, G. Pisante, The semigeostrophic equations
discretized in reference and dual variables, Arch. Ration. Mech. Anal.
185 (2007) 341-363.

[CNP] M. Cullen, J. Norbury, J. Purser, Generalised Lagrangian solutions
for atmospheric and oceanic flows, SIAM J. Appl. Math. 51 (1991) 20-31.

[DL] R. Di Perna,, P.-L. Lions, Ordinary differential equations, transport
theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547.

[DOR] C. Doering, F. Otto, M. Reznikoff, Bounds on vertical heat transport
for infinite-Prandtl-number Rayleigh-Bénard convection, J. Fluid Mech.
560 (2006) 229-241.

[FMMS] U. Frisch, S. Matarrese, R. Mohayaee, A. Sobolevski. A reconstruc-
tion of the initial conditions of the Universe by optimal mass reconstruc-
tion, Nature, 417 (2002) 260-262.

[HZTA] S. Haker, L. Zhu, A. Tannenbaum, and S. Angenent, Optimal Mass
Transport for Registration and Warping, International Journal on Com-
puter Vision, 60(3) (2004) 225-240.

[Ho] B. Hoskins, The mathematical theory of frontogenesis, Annual review
of fluid mechanics, Vol. 14, pp. 131-151, Palo Alto, 1982.

[HL] T. Hou, C. Li, Global well-posedness of the viscous Boussinesq equa-
tions, Discrete Contin. Dyn. Syst. 12 (2005) 1-12.

[ID] FP Incropere, DP DeWitt, Heat and Mass Transfer, John Wiley and
Sons, New York, 1996

[JL] W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial
differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329
(1992) 819-824.

[KS] E. Keller, L. Segel Model for chemotaxis, J Theor Biol 30 (1971) 225-
234.

27



Convection and optimal transport

[Li] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1. Incompress-
ible models, Oxford Lecture Series in Mathematics and its Applications,
Oxford University Press, New York, 1996.

[Lo] G. Loeper, A fully nonlinear version of the incompressible Euler equa-
tions: the semigeostrophic system, SIAM J. Math. Anal. 38 (2006) 795-
823.

[Mc] R. McCann, Polar factorization of maps on Riemannian manifolds,
Geom. Funct. Anal. 11 (2001) 589-608.

[Ma] A. Majda, Introduction to PDEs and Waves for the Atmosphere and
Ocean, AMS and CIMS, 2000.

[MP] C.Marchioro, M.Pulvirenti, Mathematical theory of incompressible
nonviscous fluids, Springer, New York, 1994.

[Mo] H.K. Moffatt, Magnetostatic equilibria and analogous Euler flows of
arbitrarily complex topology. I. Fundamentals, J. Fluid Mech. 159 (1985)
359-378.

[Mo2] H. Moffatt, Relaxation under topological constraints, Topological as-
pects of the dynamics of fluids and plasmas, NATO Adv. Sci. Inst. Ser.
E Appl. Sci., 218, Kluwer, 1992.

[NPS] J. Nieto, F. Poupaud, J. Soler, High-field limit for the Vlasov-Poisson-
Fokker-Planck system, Arch. Ration. Mech. Anal. 158 (2001) 29-59.

[Ni] T. Nishiyama, Magnetohydrodynamic approaches to measure-valued so-
lutions of the two-dimensional stationary Euler equations, Bull. Inst.
Math. Acad. Sin. (N.S.) 2 (2007) 139-154.

[Pe] J.Pedlosky, Geophysical fluid dynamics, Springer, New York, 1979.

[Sc] M. Schonbek, Decay of Solutions to non-oscillating Magneto Hydrody-
namics equations, Theory of the Navier-Stokes equations, 179-184, Ser.
Adv. Math. Appl. Sci., 47, World Sci., 1998.

[Vi] C. Villani, Topics in optimal transportation, Graduate Studies in Math-
ematics, 58, AMS, Providence, 2003.

28



Convection and optimal transport

[VMI] V.A. Vladimirov, H.K. Moffatt, K.I. Ilin, On general transformations
and variational principles for the magnetohydrodynamics of ideal fluids.
IV, J. Fluid Mech. 390 (1999) 127-150.

[Wa] X. Wang, Infinite Prandtl number limit of Rayleigh-Bénard convection,
Comm. Pure Appl. Math. 57 (2004) 1265-1282.

29


