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INTRODUCTION 

When a deformable porous medium saturated by an 
aqueous solution is placed in a solution at different 
concentration (but of the same composition as the 
saturating solution), the medium is dehydrated and 
charged in solute or on the contrary becomes soaked 
with water and discharged of solute: It is the osmotic 
dehydration or hydration phenomenon. This com-
munication is concerned by the strain of a saturated 
porous medium subjected to an osmotic pressure. 
One of the industrial applications consists in making 
some molecules (agents of texture, conservatives, 
tasteful booster cushions, …) penetrate into the me-
dium (fruits, meats, fishes, …) by reducing the mois-
ture content (Raoult-Wack et al. 1992).  

In the case of biological media and gels, osmotic 
dehydration or hydration comes along with impor-
tant strains. These strains are related to the kind of 
porosity in the medium and to the size of the solute 
molecules. Besides, a high concentration gradient 
amplifies this phenomenon. The example of a 
spherical sample of agar gel, about 40 mm size, ini-
tially saturated with pure water, is illustrated in Fig-
ure 1. The sample is soaked into an aqueous solution 
at different polyethylene glycol concentrations, from 
30% to 60%. The diameter is observed as a function 
of time. 

 
 

 
This figure shows clearly that the diameter de-

creases when concentration increases. Other meas-
urements show that the medium diameter depends 
also on the solute molecule size as illustrated in Fig-
ure 2. It presents a more significant decrease in case 
of larger molecules. These two results show the os-
motic phenomenon influence on the strain of a po-
rous medium. 

 
 

 
 
Figure 1. Kinetic of the agar gel diameter decrease for different 
concentrations of polyethylene glycol. 
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ABSTRACT: This paper deals with an experimental and theoretical study of a porous medium strain during 
the transfers of a solution, which is composed of one solvent and only one solute. The porous medium is im-
mersed into the same solution at different concentration. Resulting from concentration gradients, solvent and 
solute fluxes are created in opposite directions. Under some conditions relatives, for example, to the skeleton 
texture or to the solute molecule size, this mass transport can generate strains. We present a thermoporoelastic 
model taking into account the solvent / solute transport and the stresses / strains in a saturated porous me-
dium. The porous medium is assumed to be isotropic, elastic and saturated with an ideal solution. We pay par-
ticular attention to the determination of the various parameters of the model. In the isothermal case, we give 
analytical relations that express the three most specific coefficients of this study.  



The approach used gives an extension of the 
models established by Coussy (1991) and Mrani 
(1993). This last model uses the same material, but 
doesn’t take the solute penetration into account, 
which doesn’t allow reproducing the experimental 
results presented above. Another method consists in 
expressing for each phase the relations of Gibbs, 
Euler and Gibbs-Duhem (Sicard & Mathieu 1998). 
However, this method does not allow us to relate the 
mass transport to the strains. 

 
 

 
 

Figure 2. Kinetic of the agar gel diameter decrease for different 
size of solute molecules (polyethylene glycol). 

1 DESCRIPTION OF THE SYSTEM 

We consider a porous medium saturated by a solu-
tion (noted l). This solution contains a solute (noted 
i) and a solvent (noted e) that corresponds to the 
principal constituent in the liquid phase. The skele-
ton is deformable and has an elastic behavior. The 
solid phase (noted s) as well as the solution is sup-
posed to be incompressible. 

The system state is described using the following 
variables: the temperature T, the strain linear tensor 
of the skeleton εkj, the solvent content we=me/ms, and 
the number of moles of the solute ni by mass unit of 
solid. 

The medium can exchange fluid constituents 
(solvent and/or solute) with the outside. Solid phase 
is supposed to be inert. We are interested in the evo-
lution of the medium resulting from an imbalance 
due to a solute concentration difference between the 
inside and the outside of the medium. 

2 BALANCE EQUATIONS 

In the following developments, kinematics and 
strains are defined by referring to the skeleton.  

2.1 Mass balance equations 
In a volume Ω, the mass of the constituent α is given 
by: 

!" "= dm ## $  (1) 

where !"  is the apparent bulk mass density of con-
stituent α (α = s, e or i). 

According to our assumptions, the material de-
rivative (Coussy 1991) of the masses of solid, sol-
vent and solute constituents equals zero. The local 
mass balance equations are: 
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where vs = velocity of the solid, Jl = filtration flux of 
the liquid phase through the skeleton, 

e
!  and 

i
!  are 

the diffusive fluxes respectively of the solvent and 
of the solute in the liquid phase. The mass liquid 
balance is obtained by adding Equations 3 and 4. 
The balance of total mass is obtained by adding 
equations 2 through 4. 

2.2 Momentum balance equation 
Using the same development, the momentum con-
servation principle allows one to derive the follow-
ing balance equation (Mrani et al. 1995) : 
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where ρ is the total bulk mass density given by: 

 
iess
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l
 (6) 

ρFk is the forces of volume acting in Ω. σkj is the to-
tal stress tensor. 

2.3 Total energy Balance equation  
The total energy balance is obtained by applying the 
first thermodynamics principle to the material sys-
tem contained in a volume element at a time t. 



[ ]

0

d

d

=!
"

#
$
%

&
'++

!
"

#
$
%

&
'++()

(
+

++)'+)

k,

i

k

i

ki

k,

e

k

e

kek

j,s

k

k,

k

j,skj

k

i

k

e

k

e

kkk

h)J(

h)J(v)e(
t

)e(

qv)()F(J

l

l

l

l

ll

*

*

*

*
*

*

+,,,

 (7) 

where e designates internal energy, γl, γe and γi are 
respectively phenomenological accelerations of the 
liquid phase, the solvent and the solute. he and hi are 
the mass enthalpies of the solvent and the solute and 
q is the heat flux. 

2.4 Expression of the Entropy relation  

2.4.1 Gibbs relation  
 
With the chosen state variables, Gibbs relation is 
written in the following form: 
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where s’ and e’ are respectively the entropy and the 
specific internal energy regarding to the mass unit of 
solid. µe and µi are chemical mass potential of the 
solvent and the solute. Mi is the molar mass of the 
solute (Mi =mi/ni). 

2.4.2 Source of entropy and phenomenological re-
lations 

 
By introducing the mass and energy balances into 
the Gibbs Equation 8, we obtain the entropy balance 
equation in the following terms: 
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where se and si are the specific entropies of the sol-
vent and solute. Near equilibrium, the linear TIP 
(Thermodynamics of Irreversible Processes) allows 
one to deduce the phenomenological relations. These 
relations express in a linear way the thermodynamic 
forces χ as some functions of the associated fluxes J 
and ! . Equation 12 leads to the generalized Darcy's 
law and Equation 13 gives the solvent transport law 
that makes appear the osmotic pressure (Ruiz & Bé-
net 1998). 

3 STATE EQUATIONS 

If the variable T, ε, we and ni are sufficient to de-
scribe the system state, then we can express free en-
ergy as follows: 
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The differential of Φ can be written by Gibbs’ re-
lation:  
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Since dΦ is a total exact differential, we can ex-
tract from it the formal expressions of the following 
state equations: 
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By using the method proposed by Coussy (1991), 
for small perturbations around a reference state 
noted by a superscript (0), second order limited de-
velopment of the potential free energy around this 
state is: 
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where λ and µ are the Lamé’s coefficients; Cε is the 
mass heat with constant strain; K is the coefficient of 
compressibility; αΤ is the thermic expansion coeffi-
cient. Besides these coefficients, already known in 
the literature, we find the hygrometric expansion co-
efficient βe as well as two coefficients e

w
d  and e

T
d  

which are similar to those introduced notably by Sih 
et al. (1986) and Mrani et al. (1995) without solute. 
Finally, three coefficients appear: e

n
i

d , i

n
i

d  and 
kj

i
å )(d  which are specific in this modeling and re-



lated to the presence of solute. These coefficients are 
the object of particular developments in the fourth 
section. 

 
Considering Equation 17, the Equation 18 allows 

one to establish explicitly the following state rela-
tions: 
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4 DETERMINATION OF THE COEFFICIENTS 

The exploitation of Equations 19 through 22 requires 
the determination of the state coefficients, from ex-
perimental measures. Mechanical or thermic coeffi-
cients are classic although particular precautions 
should be taken for their determination in the con-
text of this study. If we only take into account iso-
thermal situations, five coefficients require a specific 
experimental study: namely e

w
d , 

e
â , e

i
n
d , i

i
n
d  and 

kj

i

å )(d . The first two coefficients should be compared 
with two coefficients dw and β introduced by Mrani 
et al. (1995). Then, we show, using some assump-
tions, how to reach the three other coefficients less 
known, namely: 

- Coefficients e

i
n
d  and i

i
n
d  which express 

the dependence of solvent / solute chemi-
cal potential on solute concentration. 

- Coefficient kj

i

å )(d , which gives the influ-
ence of the solute concentration on 
stresses. 

4.1 Coefficient i

ni
d  

This coefficient results from a solute chemical po-
tential variation according to an infinitesimal varia-
tion of the solute mole number in a solid unit mass 
volume. It is given by the relation: 
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In the case of an ideal solution, mass chemical 
potential of the solute can be expressed as (Arnaud 
1995): 
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where +
i

µ  is the mass chemical potential of the con-
stituent i in the pure state, and R is the constant of 
the perfect gases. We can therefore write: 
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Soustelle (1990) leads to the same expression by 
using the molar chemical potential 
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Equations 23 and 25 enable us to write:  
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In the case of a very diluted solution, Equation 26 
can be approximated by: 
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4.2 Coefficient e

ni
d  

This coefficient results from a solvent chemical po-
tential variation according to an infinitesimal varia-
tion of the solution mole number in a solid unit mass 
volume. It is given by the relation: 
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The Maxwell Relations of symmetry allow writ-
ing: 
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or by using Equation 24: 
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and therefore, coefficient e

i
n
d  is expressed as: 
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or by using the solvent content state variable we: 

)nMmw(

RT

M

M
mñ)n,w,T(d

iesei

e
ssie

e

ni +
=  (32) 



4.3 Coefficient kj

i )d( !  
This coefficient results from a variation of the 
Cauchy’s stresses tensor when the quantity of solute 
varies at fixed temperature and solvent content. It is 
given by the relation: 
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If we adopt the decomposition of the stress tensor 
kj!  in two tensors of average stresses s

kj!  and l

kj!  
respectively in the solid phase and liquid phase: 

l
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This decomposition leads to propose the follow-
ing expression (Coussy 1991): 
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where !  is the porosity defined as the ratio of the 
pore volume to the total volume. The variables with 
superscript* refer to the microscopic level. Equation 
35 suggests that on a tiny element of surface, the 
stress vector is associated to the actions of both solid 
and solution according to the volume fraction occu-
pied by each phase. In case of a saturated medium, 
the assumption of a non-sticky solution (i.e. the av-
erage stress tensor of the liquid l

kj!  reduces to a 
spherical tensor characterized by the phenomenol-
ogical pressure *

PP
ll

!=  where *
P
l

 is the pore pres-
sure) leads to the following decomposition of the 
stress tensor:  
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Assuming that the solute does not penetrate into 
the solid phase and does not precipitate. This allows 
one to reduce the Equation 33 to: 
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Equation 37 shows that this coefficient is reduced 
to a scalar. The same conclusion can be deduced 
from the isotropy assumption. Indeed, this condition 
imposes that: 
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A sign change of variations Δε12, Δε13 and Δε23 in 
the state Equation 21 can not modify the variation of 
the mass chemical potential of the solution, there-
fore:  
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In the case of a porous medium saturated by a so-
lution, the mass chemical potential of the solvent can 
be written (Ruiz & Bénet 1998): 
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where )T(e
+µ  depends only on the temperature, π = 

the osmotic pressure given by the Van't Hoff law: 
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By using Equations 30, 40 and 41, we find: 
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In the case of a diluted solution (ni<<ne), this co-
efficient is negligible, and the corresponding terms 
in Equations 21 and 22 can be neglected. 

Within the framework of adopted assumptions, 
this result shows that the chemical potential of the 
solute i is not affected by the deformation of the 
solid (Equation 21). By taking this coefficient equal 
to zero in the Equation 22, we notice that the influ-
ence of the mass transport on the variation of the 
stress tensor is due essentially to the variation of the 
solvent content through the hygrometric expansion 
coefficient βe.  

Let us note that the solute transport participates in 
an implicit way. The law of solvent transfer (Ruiz & 
Bénet 1998) depends on the osmotic pressure gradi-
ent, which is directly related to the gradient of solute 
concentration. 

CONCLUSION 

The clear influence, of the solute molecules size and 
concentration on the osmotic dehydration of a de-
formable porous medium, was shown. We proposed 
a modeling of the phenomenon by privileging the 
solid phase. The balance equations and the phe-
nomenological relations were thus established. A 
second order development of the free energy poten-
tial has allowed us to derive the state equations con-
cerning mass chemical potentials and stresses. These 
state equations make appear phenomenological coef-
ficients. Some of these coefficients have already 
been analyzed in the case of a solvent without sol-
ute. Others are related to the presence of the solute. 
Simple analytical expressions allow one to quantify 
these coefficients. A numerical implementation of 
this model would enable to emphasize the behavior 
of deformable porous media under osmotic pressure 
gradient effects. Applications in gels and in biologi-
cal media will then be possible. 
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