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We formulate a framework for the depolarization of linearly polarized backscattered light based
on the concept of geometric phase, i.e Berry’s phase. The predictions of this theory are applied
to the patterns formed by backscattered light between crossed or parallel polarizers. This theory
should be particularly adapted to the situation in which polarized light is scattered many times but
predominantly in the forward direction. We apply these ideas to the patterns which we obtained
experimentally with backscattered polarized light from a colloidal suspension.

The transport of light through human tissues is one
of the most promising technique to detect in a noninva-
sive way for instance breast cancer. For medical imaging
applications, it is important to extract the information
contained not only in the intensity but also in the polar-
ization of backscattered light. This is not easy in general
due to the complexity of vector-wave multiple scattering.
In this paper we study a simple experiment, in which
polarized light is backscattered from a diffuse medium.
In these conditions, one observes between crossed po-
larizers a fourfold symmetry pattern which was first in-
terpreted qualitatively by Dogariu and Asakura [1]. Re-
cently more quantitative approaches have been developed
for Mie scatterers using Mueller matrices [2]. A rather
good agreement has been found between the experimen-
tal shapes of the patterns and the theoretically predicted
ones [2–4].

In this paper, we propose an alternate approach, which
is very simple to implement because it is not based on
a vector radiative transfer method as used generally in
the literature. Instead our approach is based on the no-
tion of geometric phase, which was introduced by Berry
[5] in his interpretation of the experiments showing op-
tical activity in an helically wound optical fiber [6]. So
far, the concept has been mostly applied to quantum me-
chanics and to field theory but has not been used in the
context of the transport of polarization in random media
except in the recent ref. [7], which we follow and extend in
this paper. Before presenting our framework, we discuss
the cross-shaped patterns using the Stokes formalism to
make contact with previous work [2–4].

The Stokes parameters are the elements of the vector
I = (I,Q, U, V ) which is defined with respect to a plane of
reference containing the direction of propagation. If the
plane of reference is rotated through an angle φ, the new
Stokes vector is L(φ)I where L(φ) is a rotation matrix
[3]. We used the scattering matrix S corresponding to
a distribution of spherical scatterers. The incident light

is linearly polarized, is described by a Stokes vector I0
and is normal to the medium. Since the medium has
cylindrical symmetry, the S matrix is independent of φ.
After going through an analyzer (with Mueller matrix
A), the outgoing Stokes vector is A · L(φ) · S · L(φ) · I0.
This means that the outgoing intensity in the crossed
polarized (resp. copolarized) channel is

I⊥ =
1

4
(2S11 + S33 − S22)− 1

4
(S22 + S33) cos 4φ, (1)

I‖ =
1

4
(2S11 − S33 + S22)−S12 cos 2φ+

1

4
(S22 + S33) cos 4φ,

(2)
corresponding to Stokes parameters I = I⊥ + I‖ and
Q = I‖ − I⊥. Note that according to Eq. 1 the crossed-
polarized pattern has a four-fold symmetry, whereas ac-
cording to Eq. 2, we see that the copolarized pattern con-
tains in addition a two-fold symmetry due to the term
proportional to S12 [4]. In the particular case, which
is satisfied in multiple light scattering [8], when S =
S11diag(1, C, C,D), with C = S22/S11 and D = S44/S11,
Eqs. 1-2 take the simple form

I⊥ =
1

2
I0 (1− C cos 4φ) , (3)

I‖ =
1

2
I0 (1 + C cos 4φ) , (4)

corresponding to outgoing Stokes parameters I = I0 =
S11 and Q = CI0 cos 4φ. Note that a cross is expected
now in both polarization channels and that C measures
the contrast of these patterns. We have shown here that
the patterns follow from general properties of symmetry
independently of the order of scattering or of the degree
of coherence of the source.

Let us now discuss the geometric depolarization of
linearly polarized light. For Rayleigh scattering, the
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FIG. 1: Representation of a typical path in a semi-infinite
random medium in backscattering. The Frénet frame consists
of the tangent u, the normal n, and the binormal b vectors.
R denotes the distance between end points, φ is the initial
angle between the polarization vector E and the normal n,
and Ω is the geometric phase.

(linear) polarization vector after scattering E′ is E′ =
k′ × (E× k′), in terms of the polarization vector before
scattering E and the scattered wavevector k′. This im-
plies that E evolves by parallel transport in the limit
of small scattering angles, and diffuse on the sphere of
wavevector directions until the memory of the polariza-
tion has been lost. Akkermans et al. has shown that
this leads to a depolarization with a characteristic depo-
larization length `p equal to `/ ln(10/7) ' 2.8` [9]. Re-
cently `p was measured using polarization resolved DWS
[10], which confirmed Akkerman’s prediction for Rayleigh
scatterers, and which gave `p ' `∗ in the limit of forward-
peaked scattering g → 1 in agreement with Monte Carlo
simulations [11]. Here we assume forward-peaked scat-
tering because it applies to many biological tissues, and
because in this case there is a clear analogy between light
scattering paths and semi-flexible polymers [7]. Recently,
this analogy has been put on a solid basis, by realizing
that the Fokker-Planck (FP) equation which describes
semi-flexible polymers can be derived from the radia-
tive transfer equation in this limit [12]. In the following,
we carry further the analogy by discussing the degrees
of freedom of twist (polymer) analogous to polarization
(light scattering).

Let us consider a path of light, which we assume to
be normally incident on a semi-infinite random medium.
Following ref. [5], we express the polarization vector E
in a basis of two vectors (n,b) normal to the tangent
vector u (if the path is regular enough, the Frénet frame
is a possible choice) as shown in figure :

E(t) = c1(t)n(t) + c2(t)b(t), (5)

where t is a parameter which goes from 0 to s along
the path. Let us call φ, the angle between E and n at
t = 0, so that c2(0)/c1(0) = tanφ. Since the polarization
evolves by parallel transport ċ1 = τc2 and ċ2 = −τc1,
where τ denotes the torsion on the trajectory, as found
many years ago by Rytov [13]. In the backscattering
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FIG. 2: Distribution of the geometric phase Ω for different
values of the path length s and in the inset variance of the
distribution as function of s/`∗.

geometry, n(t = s) = −n(t = 0) and b(t = s) = b(t =
0), therefore we find that the polarization vector at the
end of the path is

E(t = s) = − cos(φ+Ω(s))n(s)+sin(φ+Ω(s))b(s), (6)

where Ω(s) is a geometrical phase, equal to the opposite
of the integral of the torsion between t = 0 and t = s
modulo 4π [5]. In the analogy between a path of light
and a semi-flexible polymer, the twist of the path is zero
for light (it would be non-zero only in chiral medium),
and the writhing angle is precisely Ω. This writhe is a
real value since the path is open, and that value is equal
to the algebraic area of a random walk on a unit sphere,
with the constrain that the path goes from the north pole
to the south pole in the backscattering geometry. From
Eq. 6, we find that the output intensity after the light
has gone through an analyzer crossed with respect to
the direction of the incident polarization, is proportional
to sin2(2φ + Ω). Because the medium is random, this
intensity must be averaged with respect to all paths :

I⊥ (R) =

∫
P ′(s,R)ds < sin2(2φ+ Ω(s)) >, (7)

where P ′(s,R) is the distribution of path length for a
given distance to the incident beamR, and< .. > denotes
the average over paths of length s. After expanding the
r.h.s of Eq. 7, we obtain the form of Eq. 3 with I0(R) =∫
P ′(s,R)ds and the contrast is

C(R) =
1

I0(R)

∫
P ′(s,R)ds < cos (2Ω(s)) > . (8)

The factor cos(2Ω) in Eq. 8 means that the contrast re-
sults from grouping pairs of paths of opposite geometrical
phases, and the sum over s means that the phases of any
other paths are uncorrelated. Interestingly a similar de-
phasing occurs in the theory of magneto-conductance of
Anderson insulators [14].

To evaluate the distributions of Ω for fixed s, P (s,Ω)
shown in figure , we use a Monte Carlo algorithm orig-
inally developed for semi-flexible polymers. Random
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FIG. 3: Contrast as function of R: the crosses have been
obtained from Monte-Carlo simulations using Eq. 8 and the
squares are experimental values, obtained from an analysis of
the Stokes parameter Q.

paths are generated with an exponential distribution of
path length with a characteristic step equal to the elas-
tic mean free path `. The incident photons are normal
to the interface, but when exiting the medium all outgo-
ing angles of emergent photons are accepted. The paths
can be generated for an arbitrary ratio of the transport
mean free path to the elastic mean free path `∗/`. The
geometric phase are calculated by closing the paths on
the momentum sphere with a geodesic [7]. Because of
this closure, the distribution of Ω for short paths s� `∗

is peaked at zero as is also found for planar random walks
(Levy’s law). For long path s � `∗, the distribution of
Ω widens, until the polarization is completely lost. In
this regime, the distribution P (s,Ω) is gaussian as re-
quired by the central limit theorem (the variance which
was quadratic for s � `∗ becomes linear for s � `∗ as
seen in figure ), which implies that < cos 2Ω(s) > is a
decreasing exponential function of s. In figure , we show
the corresponding curve for the contrast of the pattern
calculated from Eq. 8, together with experimental points,
which we obtained by averaging the Stokes parameter Q
of an image along two perpendicular directions thereby
suppressing a possible contribution in cos(2φ) present in
Eq. 2. In the experiment, a colloidal suspension of latex
particles of negligible absorption (diameter 0.5µm, wave-
length λ = 670nm) was used and the sample was about
8.8`∗ thick [4]. The value of the anisotropy parameter g
in the simulation was chosen to match the experimental
value g ' 0.82. In this figure, we see that the contrast de-
creases exponentially as function of the distance R with
a characteristic distance of the order of `p ' `∗ both
in the theory and in the experiments in agreement with
refs. [10]-[11]. In the central region of the pattern, low
order scattering is dominant as confirmed numerically.
This could explain the discrepancy between experiments
and simulations in this region, since our model only treats

low order scattering events in an approximative way.
To conclude, we have developed in this paper a

simple theoretical framework for geometric depolar-
ization, which we have applied to the experimental
backscattering patterns. The mechanism of geometric
depolarization is general provided that the scattering
is peaked in the forward direction. We hope that our
work will motivate further theoretical studies on the
role of geometric phases in the transport properties of
polarization in random media.

We acknowledge many stimulating discussions with T.
Maggs, M. Cloitre, F. Monti, and B. A. van Tiggelen.
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