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DNA loop statistics and torsional modulus

Vincent Rossetto

Laboratoire de physique, École normale supérieure de Lyon
46 allée d'Italie, 69364 Lyon CEDEX 7, France(∗).

PACS. 87.15.La � Biomolecules: structure and physical properties: Mechanical properties.
PACS. 36.20.Ey � Conformation (statistics and dynamics).
PACS. 82.35.Lr � Physical properties of polymers.

Abstract. � The modelling of DNA mechanics under external constraints is discussed. Two
analytical models are widely known, but disagree for instance on the value of the torsional
modulus. The origin of this embarassing situation is located in the concept of writhe. This
letter presents a uni�ed model for DNA establishing a relation between the di�erent approaches.
I show that the writhe created by the loops of DNA is at the origin of the discrepancy. To take
this into account, I propose a new treatment of loop statistics based on numerical simulations
using the most general formula for the writhe, and on analytic calculations with only one �t
parameter. One can then compute the value of the torsional modulus of DNA without the need
of any cut-o�.

General motivations. � New experimental techniques in single molecule manipulation of
DNA and supercoiling control have stimulated improvements in the understanding of DNA
mechanics [1�4]. Surprisingly, the measurements have to be interpreted through a rather
sophisticated model in order to extract physical constants [5�7]. Di�erent approaches lead to
disagreeing values of, in particular, the torsional modulus C of the molecule along its axis.
The method used by Moroz and Nelson [6] leads to the value C/kBT = 109 nm, while using
the same experimental data the model provided by Mézard and Bouchiat [7] gives 84±10 nm.
Recently, another experiment performed two direct measurements [1] with a weighted average
of 102 ± 6 nm. In this letter, I will establish the domains of validity of the two mentioned
theoretical approaches, clarify the origin of their disagreement and compute a value of the
torsional constant C with a new model.

This letter is organized as follows: It starts with a short introduction to two widely used
models for elasticity of a polymer. In order to take into account DNA resistance to torsion, one
of them, worm-like chain model, is improved with a new elastic energy term. As these models
only contain a local description of the molecule, the following paragraph introduces the global
geometrical description of a single DNA molecule. Its three dimensional coiling is described
by a quantity called writhe, whose �uctuations reduce the e�ective torsional modulus. I relate
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the models of Ref. [6] and [7] and study their domains of validity. The writhe �uctuations are
interpreted in the following paragraph by considering the loops formed by the molecule. The
last paragraph describes both a full numerical computation of the writhe �uctuations and a
one parameter �t for the interpretation in terms of loops. The di�erent theoretical models
are also compared to this new treatment of the writhe, and a value of the torsional modulus
is computed.

I will use the notations: β = 1/kBT , F = fkBT the force exerted on the ends of the
molecule and θ the angle of a vector with the direction of the force, L the length of the
molecule, A = `pkBT the bending modulus, C = `tkBT the torsional modulus, Γ = γkBT
the torque exerted on the free end of the molecule, z its vertical extension and χ the rotation
angle of the free end. The torsion ω(s) of the DNA molecule is the di�erence per unit length
of the rotation angle of one strand around the other with respect to the unconstrained state
in the same conformation. It is a function of the arc length s and can be seen as �twist angle
density�: The torsion integrated along the molecule is called twist angle and is noted Ω.

DNA elasticity models. � Thanks to its double helix structure, DNA is a very stable
polymer. This stability is needed to conserve genetic materials. It gives opportunity to submit
a single molecule to mechanical constraints (forces above 0.04 pN) without destroying it and
to measure its response. The extension z of a single molecule submitted to a force F = fkBT
is the �rst quantity that has been studied. It has to be interpreted within a polymer elasticity
model.

The freely jointed chain (FJC) describes a polymer as a succession of independent sticks
of length b. For one stick the elementary partition function is

z =

∫ 1

−1

exp(−fb cos θ) d(cos θ) =
sinh fb

fb
. (1)

For a whole chain, the free energy is thus FFJC = kBTL
b ln z, leading to a relative extension

z/L = fb/3 when f tends to zero, and z/L = 1− (fb)−1 for large forces.
The worm-like chain is on contrary a continuous model based on the bending energy of

the axis. The state variable is the tangent unit vector, described by its angle θ with the force,
thus the phase space is made of functions θ(s). The resistance of the molecule to bending
creates a correlation between tangent vectors along a curvilinear distance `p ' 50 nm called
the persistence length. The Hamiltonian for this model is obtained by analogy with a quantum
system (see Ref. [7]):

βĤworm(f`p) = − 1

2 sin θ

∂

∂θ
sin θ

∂

∂θ
− f`p cos θ. (2)

When f tends to zero the worm-like chain extension is z/L = 2
3f`p. In the large force

approximation, the molecule is almost aligned with the force (θ � 1) and the Hamiltonian (2)
reduces to an harmonic oscillator whose ground state gives the free energy [8]

βFworm =
(
−f`p +

√
f`p

) L
`p

(f`p � 1). (3)

From β∂Fworm/∂(f`p) = −z/`p, when f`p � 1, one deduces

1− z

L
' 1

2
√
f`p

(f`p � 1). (4)
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I now compare the two models. At low force, entropy dominates and the models both
describe an object following Hooke's law. Requiring the relation b = 2`p between their param-
eters makes them equivalent. This is known to be a good approximation when f`p = fb/2 ≤ 1
or in other terms F ≤ 0.08 pN. On the contrary at large force, the two models do not have the
same asymptotic behaviour. Comparison between experimental data and theoretical models
indicate that the worm-like chain provides a more appropriate description of DNA elastic-
ity [2].

The double helix structure of DNA has also for consequence a resistance to torsion along
its axis. Mézard and Bouchiat [7] showed that taking into account the local torsion of DNA
introduces new elastic terms in the Hamiltonian (2), proportional to γ2: A term due to local
torsion energy, βĤtorsion = − 1

2γ
2 L/`t, and a term related to the geometry of the molecule

βĤrod(f`p, γ) = βĤworm(f`p) + βĤtorsion −
γ2

2

1− cos θ

1 + cos θ
. (5)

This improved model is called the rod-like chain. In the large force approximation, the de-
nominator 1 + cos θ ' 2, thus to second order in θ the Hamiltonian rewrites βĤrod(f`p, g) '
βĤworm(f`p − γ2/4) + βĤtorsion − γ2/4. This approximation is valid when θ is small, thus in
a domain where the relation (3) is correct. One deduces the expression of the free energy of
the rod-like chain in the large force regime:

βFrod(f`p, γ) = βFworm(f`p − γ2/4)− 1

2
γ2

(
L

`t
+

L

2`p

)
. (6)

The writhe and its �uctuations. � Experimental devices also allow to change the angle χ,
and to measure how the molecule responds to this constraint [3]. One says that the molecule
is supercoiled. Supercoiling is quanti�ed by the writhing angle of the DNA axis C [9, 10]:

Φ =
1

2

∮
C

dr ·
∮
C

dr′ × r − r′

‖r − r′‖3
. (7)

This expression is a priori valid only for closed chains. However, in experimental devices the
molecule can not go around its ends [4], which is equivalent to having a very long molecule
only manipulated in a small region. The molecule axis can therefore be imaginarily closed
and the formula (7) extends to open chains in experimental conditions [11]. Therefore, the
fundamental geometrical relation between χ, Ω and Φ [12],

χ = Ω + Φ, (8)

is exact in experimental conditions. Formula (8) is widely known by DNA specialists, in
biology and physics [10]. It explains that a DNA molecule has two ways to deal with an
applied torque : to modify its local torsion (modify Ω) or to change its shape (modify Φ).

The twist angle Ω is only related to the torsion. The writhe angle Φ, as it is computed
from the shape of the axis, is only related to the curvature. A general study of DNA elasticity
performed by Marko and Siggia [8] asserts that a coupling between bending and torsion is at
least of the third order in strains, and the estimated coupling constant is small [6]. As one
wants to focus on regimes close to relaxed state, one shall neglect this coupling and assume
that there are no correlations between Ω and Φ. (The same assumption has been made in
Ref. [6, 7].) Eq. (8) then gives the �uctuations of χ in this approximation:〈

χ2
〉

=
〈
Ω2
〉

+
〈
Φ2
〉
. (9)
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The �uctuations of Ω, thanks to the locality of torsional energy and independance of Ĥtorsion

with θ, are proportional to the length L,
〈
Ω2
〉

= L/`t. If one measures the torsional modulus
of a molecule only taking the angle χ into account, one one obtains an e�ective value, denoted
kBT`t

eff , related to the real torsional constant, kBT`t, through the �uctuations of the writhing
angle:

L

`t
eff

=
L

`t
+
〈
Φ2
〉
. (10)

The e�ect of writhing of the molecule is then to reduce the measured vale of the torsional mod-
ulus between its ends. To deduce the value of C along the molecule axis from measurements,
one needs to know the writhe �uctuations.

For the rod-like chain model developed in the preceding section, one remarks that
〈
χ2
〉
is

deduced from Frod, Eq. (6), by di�erentiation −2β∂Frod/∂(γ2)|γ=0 =
〈
χ2
〉
, so

〈
Φ2
〉

=
1

2

(
1− z

L

) L

`p
(θ � 1). (11)

This result, combined with relation (4), was �rst given by Moroz and Nelson [6] as a correction
like in Eq. (10), when the force is large enough:

〈
Φ2
〉

=
1

4
√
f`p

L

`p
. (12)

Their model is therefore an approximation of the more general rod-like chain model described
by Mézard and Bouchiat. Let us now evaluate the minimum force on their common validity
range. Expression (11) is obtained when the molecule is almost straight, namely when f`p �
1. That might be translated into physical units to F � 0.1 pN, thus for forces of the order
of 1 pN.

While Mézard and Bouchiat's approach is more general, it has been pointed out that it
su�ers from a pathology related to the writhe formulation [13]. More precisely, the expression
for the writhe used in Ref. [7], ∫

(1− cos θ(s))dφ(s), (13)

is equal to formula (7) modulo 4π (φ is the azimuthal angle of the tangent vector). They are
equal only when the molecule can be straightened out without cutting it, nor having a point
passing through θ = π at any time. Otherwise the formulæ di�er by a multiple of 4π [14,15].
When the molecule is deformed into a blob, such con�gurations where the formulæ disagree
are numerous. Typically, in this case the molecule has loops. The following section is dedicated
to an estimation of the number of loops in order to extend the validity range of formula (11).

Estimation of the loops contribution. � Each loop contributes to the writhing angle Φ by
an amount of the order of one turn. I will note ∆2 the mean square value of a loop contribution.
This quantity will be numerically estimated in the next section. Under the assumption that
loops are uncorrelated, the central limit theorem asserts that the contribution of loops to

〈
Φ2
〉

is n(f`p)∆2, where n(f`p) is the average number of loops for f`p �xed. In Ref. [6], a treatment
of loops was proposed, but only equilibrium loops were considered. This approach does not
explicitly provide any loop size. Since the length of one stick being 2`p, the model avoids the
smaller loops, that require much bending energy.
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Fig. 1 � Writhe angle �uctuations as a function of the tension. The experimental force range is
indicated by the grey bar. The plain line presents the results of the present letter model, compared
to modi�ed Moroz and Nelson's result

〈
Φ2

〉
`p/L = (1 − z/L)/2 (dashed line) and Mézard and

Bouchiat's (dashed-dotted line). Moroz and Nelson's result is valid only for large forces (F > 1 pN),
validity range of Mézard and Bouchiat's is wider but fails for the lowest experimental force values,
around F = 0.2 pN. The estimated contribution of loops is displayed as a dotted line (see text). It
corresponds to the best �t for ∆2 in Eq. (15) [16]. The grey line is obtained from the same data
set, but after removal of all con�gurations that have backward facing regions ; therefore there are no
loops in this restricted ensemble. The results of Mézard and Bouchiat's model and the one presented
in this letter have been obtained numerically, from equilibrated sets of 50.000 chains of 32 `p for each
point, with discretisation `p/30, error bars are thiner than the line thickness. The two other curves
are analytical expressions.

The average number of loops is estimated here by de�ning a loop as a region where cos θ <
0, which gives, using Eq. (1) and b = 2`p,

n(f`p) =
L

b

1

z

∫ 0

−1

exp(−fb cos θ) d(cos θ) '
f→0

L

4`p
exp(−f`p). (14)

Thus one obtains an estimate for
〈
Φ2
〉
in an extended force range by adding the contri-

bution of the loops (regions where cos θ < 0), given by the preceding formula, to the one of
the other regions (where it is supposed that θ � 1), given by the expression (11):

〈
Φ2
〉
' 1

2

(
1− z

L

) L
`p

+
1

4
∆2 exp(−f`p)

L

`p
(f`p ≤ 1). (15)

Adding these contributions is allowed here thanks to Fuller's formula for writhe change during
a deformation with �xed boundary conditions (see Ref. [14]). When f`p is small, the last
term of Eq. (15) becomes dominant: The writhe is dominated by the loops contribution. ∆2

is computed in the next section.

Numerical results. � A Monte-Carlo simulation of semi�exible chains was performed
(described in details in Ref. [11]) and the writhe angle of each con�guration of the simulated
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equilibrated ensemble was computed, with both expressions (7) and (13). It has been shown
numerically that extra closure terms are negligible [11]. Results are displayed in �gure 1. The
estimate of Eq. (15) is also displayed for the best value of ∆2 = 6.4 (one could conjecture that
the geometric exact value be 2π). The validity ranges estimated above appear reasonable, and
the domains where di�erent model agree are clearly observed. The distribution of writhe angle
is Gaussian, of width proportional to L/`p and centered around zero. The estimated loops
contribution formula agrees quite well with the results and explains the di�erence to other
models: It is not counted in one case and overestimated in the other one [16]. If one removes
the curves that have at least one backfacing region, which corresponds to the de�nition of a
loop (see Eq. (14)), one gets a curve similar to Moroz and Nelson's. The three models agree
for F ≥ 1 pN, so the origin of model disagreement is located at low force.

The numerical results for the writhe angle displayed in �gure 1 combined with the exper-
imental data of references [3, 4] obtained at low force, in the elastic regime, give the value

`t = C/kBT = 93± 10 nm.

This value has to be compared with the ones given in the introduction. The theory of Ref. [7]
was applied for forces below this value, in a domain where it overestimates the writhe �uctu-
ations. The value obtained by Moroz and Nelson is the closest to the recent value of Ref. [1].
It was obtained by eliminating data points obtained with a force lower than 0.3 pN therefore
in a domain where all models are equivalent. It is suggested in Ref. [1] that applying a large
force could lead to an overestimated value for C because of structural modi�cations of the
double helix. This question is still open until now.

Discussion. � Unlike Mézard and Bouchiat's theory, neither Moroz and Nelson's model
nor this work needs to be regularized by any cut-o�. The value of this cut-o� is di�cult to
relate to an independently measurable quantity. It is suggested in Ref. [6] that a treatment
of self-avoidance could be necessary.

In the low force regime, where the freely jointed chain model is valid for DNA, let us
consider one molecule as a chain of sticks of length b = 2`p and diameter d = 2 nm. The

molecule is located in a region of size R ∼
√
Lb. In the low force regime, the sticks have almost

random orientations, so excluded volume interactions can be estimated with the second virial
coe�cient. It follows that excluded volume interactions appear when ρ2R3b2d & 1 where
ρ = (L/b)R−3 is the density of sticks. This gives L/b & (b/d)2 = 2500. The length of
the widely used λ-phage DNA is 16µm ' 300`p [3]. For larger forces, the molecule gets an
orientation and self-avoidance e�ects are still smaller. It is established in Ref. [5] that self-
avoidance e�ects can be neglected as long as z/L & 0.25. This argument does not apply as
is in the present study since DNA stores torsion. It is known, for example in the case of a
plectoneme, that self-avoidance stabilizes some torque constrained con�gurations. I focused
on the elastic regime, where the torque is small and in presence of a small but non-zero
force, then applying a torque diminishes z/L. In this situation, the assumption that has been
made consists in considering self-avoidance negligible when γ → 0, or quantitatively when
z/L > 0.25. As a consequence of self-avoidance the statistical weight of conformations with
large writhe increases, in other words ∆2 is underestimated in our model. Consequently,
taking into account self-avoidance e�ects would result in an small increase of the value of C
given above.

In the numerical work, self-avoidance was not taken into account, following the consider-
ations of the preceding paragraph. As a consequence, the studied ensemble contains knotted
con�gurations. I showed from the same numerical simulations that a 8`p long worm-like chain
has a probability of (5± 1) 10−4 to knot [11]. For a force of 0.02 pN the polymer statistic can
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be split into independent elastic blobs of size 8`p. Then the probability to have a knot in at
least one blob is around 2.10−2 for a 16µm DNA molecule. If the force is higher, the knot
probability decreases, as blobs become smaller, and is negligible in the experimental force
range. Knotted con�gurations are then believed to play no role in the experimental force
range.

In this work, I have investigated the connections between di�erent DNAmodels and showed
that Moroz and Nelson's model and Mézard and Bouchiat's are related in a simple way, which
depends on how DNA loops are taken into account. The estimates of the writhe �uctuations
of the molecule in those models have been compared to numerical results. I have shown that
the di�erences between those models are due to the absence (in Moroz and Nelson's model) or
the overestimate (in Mézard and Bouchiat's model) of the contribution of the molecule loops
to the writhe. This model takes more accurately writhe �uctuations into account whithout
introducing any cut-o�. It also provides a reasonable value for the torsional modulus of DNA
under small constraints.
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