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Koiter Estimate Revisited

MONIQUE DAUGE AND ERWAN FAOU

Abstract.  We prove a general adimensional energy estimate between the solution of the
three-dimensional Lamé system on a thin clamped shell and a displacement reconstructed
from the solution of the classical two-dimensional Koiter model. This estimate only involves
the thickness parameter €, constants attached to the mid-surface S, the two-dimensional
energy of the solution of the Koiter model and “wave-lengths” associated with this latter
solution. This bound is in the same spirit as Koiter’s heuristic estimate in [26] and can be
viewed as an a posteriori estimation of the modeling error by means of the two-dimensional
solution. It is general with respect to the geometry of the mid-surface S which is an
arbitrary smooth manifold with boundary. Taking boundary layer terms into account, we
prove that our estimates are sharp in the cases of plates and elliptic shells.

1 INTRODUCTION

This paper deals with shell theory whose aim is the approximation of the three-dimensio-
nal linear elastic shell problem by a two-dimensional problem posed on the mid-surface.
This is an old and difficult question. As written by KOITER & SIMMONDS in 1972 [28]
“Shell theory attempts the impossible: to provide a two-dimensional representation of an
intrinsically three-dimensional phenomenon.”

1.A FRAMEWORK

A shell is a thin three-dimensional domain characterized by its mid-surface S and its (half-
)thickness €. Such a domain, denoted by ()¢, coincides with the surface S thickened in
its normal direction by the length ¢ which is assumed to be small in comparison with the
characteristic lengths of .S . For the body represented by €2°, the simplest and most classical
assumption is to consider homogeneous and isotropic material laws.

For a given load f, let u be the displacement field, solution of the problem (P;p)
consisting of the three-dimensional Lamé system on €2° with clamped boundary conditions
on its lateral boundary. We consider this u as the “exact” solution and address the question
of the approximation of w via the solution z of a problem (P,p) posed on the mid-surface

S.

Many papers deal with this question. Concerning the classical aspects of the derivation
of shell models, let us quote KOITER [25, 26, 27], JOHN [23], NAGHDI [32], NOVOZHILOV
[35]. Concerning plates (that is, flat shells), the derivation of the first two-dimensional model
was done much earlier, see KIRCHHOFF [24].



Most of classical shell models rely on a 3 x 3 system of equations on .S depending on
¢, which can be written in the form

K(e) := M+ ¢’B (1.1

where M is the membrane operator on S and B a bending operator. The above authors all
agree about the definition of the membrane operator M. On the contrary, different expres-
sions for B can be found in the literature. The most natural in a geometrical and mechanical
point of view, is the one given by KOITER (see [26]) but the question of determining the best
model was very controversial (see in particular [8] and the discussion in [27, 32]). Without
special mention, we always take K(c) as the Koiter operator.

So the equation in the mid-surface S takes the form K(¢)z = g, with the mean value g
of the load f across each normal fiber to S. When considering laterally clamped shells, this
equation has to be complemented by the Dirichlet boundary condition and defines problem
(P,p). The unique solvability of this problem was proved by BERNADOU & CIARLET
[6]. The question of the “validity” of z solution of problem (P,p) is central in shell theory.
However, it has been proved that in general, z is not an approximation of u in energy norm,
but in weaker norms, as stated and proved by SANCHEZ-PALENCIA [37] and CIARLET,
LoDs, MIARA [10, 12, 11]. Considering the energy norm, the approximation of v by z
relies on a reconstruction operator mapping the two-dimensional displacement z onto a
three-dimensional displacement Uz .

1.B  KOITER ESTIMATE AND THIN PLATE COUNTER-EXAMPLE

KOITER proposed for Uz a modified Kirchhoff-Love three-dimensional displacement, which
we may write as
Uz := UKtz + UsmP2, (1.2)

where UKLz is the Kirchhoff-Love displacement associated with z and the complementary
term U“"Pz is a transverse displacement quadratic in the normal variable x3: see (2.23)
below for their expressions. In his main papers [26, 27], KOITER obtained for “standard”
load f = g independent of x5 the following tentative energy estimate:

e g2
Soju—Uz] < Cs (E + ﬁ) ESplz], (1.3)

where E§j is the quadratic energy functional associated with problem (Psp) and E5, is
the quadratic “physical” energy associated with problem (P,p) . Moreover 1/R denotes the
maximum principal curvature of S and L a “wave length” associated with the solution z
and which depends on ¢ in general.

But, in the situation of plates, L does not depend on ¢ and, of course, % = 0. Two
years after the publication of [26, 27], it was already known that estimate (1.3) does not
hold as € — 0 for plates. We read in [28] “The somewhat depressing conclusion for most
shell problems is, similar to the earlier conclusions of GOL’DENWEIZER, that no better

accuracy of the solutions can be expected than of order  + %, even if the equgztions of
. . . . . . I3 g »
Jfirst-approximation shell theory would permit, in principle, an accuracy of order +5 + & .
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The reason for this is also explained by JOHN [23] in these terms “Concentrating on
the interior we sidestep all kinds of delicate questions, with an attendant gain in certainty
and generality. The information about the interior behavior can be obtained much more
cheaply (in the mathematical sense) than that required for the discussion of boundary value
problems, which form a more “transcendental” stage.”.

The presence of boundary layer terms for thin plates in the vicinity of the lateral part of
the boundary was already pointed out by GOL’DENWEIZER [21] but a multi-scale asymptotic
expansion combining (for plates) inner (boundary layer) and outer (regular) parts was only
available later, see Chapters 15 and 16 in [31] and its bibliographical comments. A more
specific form adapted for clamped thin plates is provided by NAZAROV & ZORIN in [33]
and DAUGE & GRUALIS in [15]. From these results we can deduce the sharp estimates for
plates, valid for a “standard” load, see [16, §12]

So[u” —Uz®] <bgeE5p[z°], as e—0. (1.4)

In (1.4), the factor ¢ in the bound is sharp and comes from the contribution of the three-
dimensional boundary layer term along the lateral part of the boundary, and bg' has the
dimension of a length — so that bge is adimensional. This contradicts estimate (1.3), since
in this case it would yield £ instead of ¢.

1.C RIGOROUS ESTIMATES

For shells, the complexity of a multi-scale analysis (if possible) is much higher than for
plates. There is at least one situation where such an analysis was successfully performed:
the case of clamped elliptic shells. In [19, 20], FAOU proved that

1. The solution z = 2° of the Koiter problem (P,p) has a boundary layer in the vicinity
of S atascale /¢, which yields that the wave length L isa O(y/¢),

2. The solution u = u* of the Lamé problem (P3p) has a complete three-scale asymp-
totics combining regular and boundary layer terms at scales /¢ and .

Relying on this one can prove that estimate (1.4) holds true, and that it is sharp. But now,
both terms in the sum 2—22 + % area O(e) and this proves that the first Koiter estimate (1.3)
is asymptotically valid for clamped elliptic shells.

In a fairly general situation for the geometry of the mid-surface, LODS & MARDARE
proved in [29, 30] the estimate

solu” — Uz < Ce'?ES, [us].

Here the constant C' depends on the load f. This strong result shows the convergence of
Uz® towards u° in energy norm. However it does not validate or invalidate Koiter type
estimate.



1.0 OUTLINE OF RESULTS

In this paper, we prove general estimates in the spirit of (1.3) without a priori knowledge
of multi-scale expansions for «# and z . The complete result is given in Theorem 2.8. Our
estimate now involves the three following constants:

a) A global wave length L associated with z similar to the one which Koiter used,
b) A lateral wave length ¢ for z, allowing to take boundary layer effects into account,

c¢) A curvature constant r depending on the curvature of S and its derivatives.

Besides these three main quantities, two more lengths D and d attached to the mid-surface
S take part in our statement.

Let us briefly describe our result under a simplifying hypothesis. The constant L typ-
ically describes the characteristic length of layers appearing in the shell. According to the
formal result in [36], this wave length can typically be assumed of size L > \/Lge where
Lg has the dimension of a length and is uniformly bounded in €. Under this assumption,
and in the specific case where the loading forces f are constant along each normal fiber of
the shell, our general estimate (2.24) in Theorem 2.8 yields

g2 g2

Esp [u — Uz] < as <e + 4 LQ)EgD[z] (1.5)
where ag is an adimensional constant. Note that the difference with Koiter’s original esti-
mate (1.3) lies in the presence of a boundary term depending on the lateral wave-length /.
We also prove (Theorem A.1) the following bound for the difference between the energies

of z and Uz: )

€ €%\
|E5p[Uz] — E5pl2]| < <E+ﬁ>E2D[z], (1.6)
where cg is an adimensional constant depending only on S'.

Under the same assumption on L as above, we deduce from (1.5) and (1.6) the relative
energy estimate for ¢ small enough:

Esp[u — Uz]

S
ESp[Uz] r?

ﬁ) (1.7)

€

< 2as < 7l

In the cases of plates and elliptic shells, the behavior of the three characteristic lengths
L, ¢, and r with respect to the thickness ¢ can be made explicit for families of solutions
corresponding to a standard load: For plates, r = 400 and the two wave-lengths L and
¢ are O(1), whereas for elliptic shells, { is O(1),and L is O(y/cRy) where Ry is the
curvature radius along the boundary of S'. In both cases our general estimate (1.5) gives
back the optimal estimate (1.4).

Our result can be viewed as an a posteriori estimation of the modeling error © — Uz by
means of the 2D solution z . It is general with respect to the geometry of the mid-surface S
which can be hyperbolic or parabolic as well. However, the question of the behavior of the
wave-lengths L and /¢ in the latter cases is still open.



Estimate (1.5) is not only an asymptotic result: It is indeed valid for all ¢ for which the
domain €2° is well-defined as a shell. Likewise, it does not specify any special dependency
(or independence) of the mid-surface S or the loading f with respect to <. In particular,
the mid-surface S can be embedded in a family depending on ¢, as exemplified by the case
of shallow shells.

Our result does not require more regularity than L? for the loading f . However, for the
right-hand side of (1.5) to be finite, we need that the mean value g of f across the shell is
more regular. Still, loadings like those of [22, 34] can be considered.

1.E PLAN OF THE PAPER

In §2, we introduce problems (P;p) and (Pap), the different characteristic lengths, the
reconstruction operator, and state our results. In §3, we start the proof of our main estimate:
Our strategy is rather classical, see [29, 30], and consists of two main steps:

(i) A variational type estimate of the energy scalar product of the difference u — Uz
against all displacements v satisfying the clamped boundary conditions,

cor

(ii) An energy estimate of a correcting displacement ©" constructed so that Uz + »*"

also satisfies the clamped boundary conditions.

For step (i), instead of the reconstructed displacement Uz alone, we consider a more
elaborate reconstruction operator. Such a method was initiated in the early works of KOITER,
JOHN and NAGHDI see [26, 27, 23, 32]. In order to bound efficiently the remainder by a Korn
like estimate, we need a formal expansion of u up to £* : For this we take the first five terms
of the formal series expansion of u provided in [19], and recalled in §4.

In §5, we prove adimensional a priori estimates for norms of z by norms of its mem-
brane and bending strain tensors « and p. Using the wave-lengths, these latter norms can
be compared to the energy of z . This formalism allows to obtain intrinsic adimensional es-
timates. With all these tools at hand, we perform the step (i) in §6 which is the most delicate
part of our work, partly due to the requirement of adimensionality.

Step (ii) is performed in §7 by an explicit construction. The corrector term only depends
on the trace of Uz along the boundary and mimics the three dimensional boundary layer
behavior appearing in the situations of plates and in the general formal analysis of [19]. In
8, we show that our estimate is optimal for plates, for shallow shells in the sense of [13] and
for elliptic shells. For this, we rely on the sharp asymptotic expansions provided in [15], [4]
and [20]. Finally, we prove in Appendix Appendix A the energy estimate (1.6).

2 STATEMENT OF RESULTS

In this section, we now formulate precisely our assumptions, the definitions of problems
(P3p) and (P,p) and of the different lengths occurring in estimates (1.5) and (1.6), and
we state our main results. We use everywhere the convention of repeated indices for the
contraction of tensors.



2.A THE THREE-DIMENSIONAL PROBLEM

In all this work {2} <, denotes a family of elastic shells defined for &, sufficiently small,
made with an isotropic and homogeneous material characterized by its two Lamé coefficients
A and g . The mid-surface of the shell is represented by a smooth 2-manifold S embedded
in R?, compact with non-empty boundary 95 . We stress that no other assumption is made
on the geometry of the surface S'. In particular, its main curvatures may have different signs,
or even be zero, in which case the shell is a plate. The domain 2° is then the image of the
manifold QF := S X (—¢&,¢) by the application P :

Q° > (P, a3) — ®(P,x3) = P+ 13mn(P) € Q° CR? .1)

where m is a continuous unit normal field on S'. For a function f defined on ¢, we have

ft 2 )ydttdt?de’ = | f(®(P,x3)) (1 + h(zs))dS des, (2.2)
Qe

(953

where {t'} denote a Cartesian coordinate system in R?, and where |h(z3)| < 1/2 (pro-
vided ¢ is small enough).

The shell has two faces IS corresponding to S x {£e} and a lateral boundary I
corresponding to S x (—¢,¢). The boundary conditions applied to the shell are the free
traction conditions on the two faces I'S. and the clamped conditions on I';. The space of
admissible displacements is then

V() ={ueH ()’ | u=0 on Ij}. (2.3)

If v and v are two displacements on €)°, we define the energy scalar product
asp(u,v) = / Ak i (w) epe(v) dt* dt? di?, (2.4)

Azgk[ — )\5”6]65 _i_,u((slkéjf + 5155]k)

is the rigidity tensor of the material, with the Kronecker tensor 6“ . The tensor e;;(v) =
%(&vj + 0jv;) is the strain tensor in Cartesian coordinates, where 0; denotes the derivative
with respect to t*. The associated quadratic three-dimensional energy of a displacement v
is then:

Esp[v] = a5p(v,v). (2.5)

For a load f € L2(Q2)3, the “exact solution” w is the displacement solution of the
variational problem :

(Psp)  Find w € V(QF) suchthat Yv € V(Q), a5p(u,v) = [ f-odt'dt*de’.
Qe



2.B  NORMAL COORDINATES AND TENSORS

The shell ¢ is diffeomorphic to the manifold Q° via the application (2.1). Any local
coordinate system (x,) on S yields a coordinate system (z,,23) on QF and thus an atlas
on S provides an atlas on 2° whose local maps are U x (—e,e) where U are the maps of
the atlas on .S'. Such a coordinate system is called normal coordinate system, and induces a
basis for tensor fields on €2°.

This implies that every tensor on 2 can be decomposed into several two-dimensional
tensors depending smoothly on x3 and living on S. Typically, any displacement (i.e. a
1-form on 2°) v splits into

(i) a surface displacement (v,), which means that z3 — (v,(x3)) takes its values in
1-formson S'.

(ii) afunction vs, in other words x3 — wv3(z3) takes its values in functions on S .

On the same way, for each fixed w3, the strain tensor e;; splits into: ess, which is a
function on S, (e,3) which is a covariant tensor of order 1 on S, and (e,s) whichis a
covariant tensor of order 2 on .S. These three surfacic tensors depend smoothly on x5 .

We denote by a = (a,g) the metric tensor on S induced by the ambient metric in R3,
andby b = (b,s) the curvature tensoron S (seee.g. [17, 38]). These tensors are symmetric
covariant tensors of order 2. Moreover, the metric tensor induces an isomorphism between
covariant and contravariant tensors. For instance, the tensor b2 is defined by b2 = a*’bg, ,
with the inverse a®’ of the metric tensor. We also denote by D,, the covariant derivative
induced by the Riemannian metric a,3 on S.

Let us recall the definition of the Sobolev norm of a tensor on a manifold. Consider
a covariant tensor field 7 of order £ on S. In a local coordinate system, we denote by
Toyasay, its components. The norm |7| of 7 at a fixed point P € S is defined as |7| =
(Torezakg o a)? Where 7919279 s the contravariant tensor associated with 7 using
the metric tensor, as explained above. The expression of the norm |7| is independent of
local coordinate systems and makes sense for tensors of any type, since it depends only on
the order of the tensor and not on its representation as covariant or contravariant tensor. We
have for example |b|*> = b*’b,3 = b3bS so that can write b = [bas| = [05].

The L? norm |7[, . of 7 is defined as ( [, |‘r|2dS)1/2. For n € N, we denote by

D7 the tensor of order k£ +n with components Dg, -+ Dg, 7o a5...a;, 10 @ local coordinate
system. The semi norm of order n of 7T is thus

7] D (2.6)

n;S: 0;S°

As the surface S is smooth, this expression makes sense on S for all n, and does not
depend on a choice of a local coordinate system. We define similarly the semi-norms |’T|n 95
on the lateral boundary 0S5 .

In the following, we denote by H*(S) the space of 1-form fields (z,) such that
25| .4 < oo for n = 0,...,k, and by H*(S) the corresponding space for functions.

We also use the notation 3(S) := I'(T1.5) x €>°(S) where I'(T1S5) denotes the space of
smooth 1-form fields on S (see e.g. [19] for details).
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2.c THE TWO-DIMENSIONAL PROBLEM

The Koiter operator on S is defined as K(¢) = M+¢&?B where M is the membrane operator
and B the bending operator. Both of them involve the rigidity tensor M @Bod corresponding
to the modified Lamé constants A = 2\u /(A + 2p) and p:

Maﬁaé _ ;\aaﬁaaé + M(aaaa(w + aaéaﬁa)‘
Both operators M and B act on spaces of z = (z,, z3) where (z,) isa 1-formon S and
z3 a function on S. The target space contains elements of the form g = (g,,93) where
(g9,) isa 1-formon S and g3 a function on S . Typical spaces for z are H! x L?(S) and
H! x H(9).
The operator M 1is the operator associated with the bilinear form ay defined for any
z = (20723) and n= (770"773) in H' x L2(S) by

(o) = au(zm) = [ M0 95(2) 205(m) S,
s
where the membrane strain tensor field
Yas(2) = 5(Dazs + Dgza) — bapzs (2.7)

is the change of metric tensor.

The operator B is associated with the bilinear form ag defined for any z and 7 in
H' x H?(S) by

1
() = as(zim) = 5 [ M 05(2) posl) S
where
pap(2) = DaDpgzs — bbsp23 + b5 Dpzs + Dabfzs (2.8)

is the change of curvature tensor.
The two-dimensional energy scalar product is defined for z, n € H' x H?(S) by
asp(2,m) = am(z,m) + *ag(2,m). (2.9)

This bilinear form is associated with the Koiter operator K(¢) = M + 2B . The physical
quadratic energy associated with a displacement z is defined as:

ESplz] = 2ea5p(z, 2). (2.10)
The right-hand side g = (g,,¢g3) of the two-dimensional problem (P,p) is defined as
1 3
g(P) = 2—5/ F(P.xs)dws, P €S @.11)

The admissible two-dimensional displacement space is H{, x H3(S) . The two-dimensional
problem then writes:

Find z € H} x H3(S) such that
V€ Hy X HE(S),  asplzn) = [ (@ gy + gam) dS.
We define the residual load as
JEN (P, x3) = f(Px3) — g(P). (2.12)

(Pap)



2.0 PHYSICAL DIMENSIONS

In Table 1 we collect the physical dimensions of the objects present in problems (P3p) and
(Pop)

Physical object Notation Dimension Notation Dimension
3D 3D 2D 2D
Displacement u m z m
Volume force f N.m™3 g N.m™3
Energy Esp[u] N.m (Joule) Eoxp[2] N.m (Joule)
Curvature b8 m™!
Covariant derivative D, m~?
Deformation rate e;j(u) Adimensional
Change of metric Yas(Z) Adimensional
Change of curvature Pap(Z) m~t
Material coefficients | E, X\, | N.m~2 (Pascal) | E, A, u | N.m~2 (Pascal)

Table 1. Physical dimensions

Here, I/ denotes the Young modulus of the material. We recall the formulas

~u(3X +2p) B A
E = Nt and V_—Q(/\‘f‘,u)’ (2.13)

where v is the adimensional Poisson coefficient. Conversely

Ev FE

A AT oam) M ATy

(2.14)

2.E WAVE LENGTHS

Before defining wave lengths attached to the solution z of (P,p), we introduce a sequence
of characteristic quantities depending on the curvature tensor of 5.

Definition 2.1 (i) We set ko = 1 and define recursively for j > 1 the numbers k; by:

k1 =max|b| and k; =max {nj_l, max ‘D[j,l]b|1/j } for §>2, (2.15)
PeS PeS

where b is the curvature tensor. For any j > 1, the constants r; have the dimension of the
inverse of a length.



(ii) For any tensor field on S let for all n € N the semi-norm |7‘|S)S be defined by*
() n g 1/2
¥ = (Zn?mn_m) . (2.16)
j=0

With the definition (2.15) we have x; = 1/R where 1/R is the maximum principal
curvature of S. Since the covariant derivative has the dimension of the inverse of a length,
we see that all the terms in the sum of the right-hand side of (2.16) have the same dimension.

In the case of plates, we have x; = 0 for j > 1, and hence |T|S’.)S =7l -

Definition 2.2 An operator L acting on tensor spaces on S is said to be b-homogeneous
of degree n if it is a linear combination with adimensional coefficients of contractions of
tensors of the form B, --- B,, where each B; is either the covariant derivative D, or the
curvature tensor b,z .

Note that the operators z — 7,5(z) and z — p,3(z) are b-homogeneous of degree 1
and 2 respectively. Similarly the membrane is b-homogeneous of degree 2, which means
that both surfacic and transverse components are b-homogeneous of degree 2, and the
bending operator is b -homogeneous of degree 4.

This definition is motivated by the following lemma:

Lemma 2.3 Let L be a b-homogeneous operator of degree n acting on tensors T of order
k, ans let s € N. Then there exists an adimensional constant A such that,

v, Lr|® <A

Let v and p denote the membrane and bending strain tensors of the solution z of
problem (Pap). With our notations, we can reformulate Koiter’s definition of the quantity
L in [25, 26] as “the wave length of the deformation pattern of shell theory, defined by the
order of magnitude relations Dy = O(/L) and Dyjp = O(p/L).”

Without being exactly the same, our definitions retain the idea of inverse inequalities for
the membrane and bending strain tensors v and p.

Definition 2.4 For z € ¥(S) we denote by v = V,5(2) and p = pas(z) the membrane
and bending strain tensors associated with z. We set Ly = 1 and for all k > 1, we
define the global wave length Lj of z as the largest constant such that there holds, for
j=1,...,k 4 '

’7|j;S§L;J|7‘O;S Cll’ld ‘p‘j;SSL;]‘pIO;S' (217)

*We could have introduce factorial normalization terms in the definitions (2.15) and (2.6). This could in
principle lead to analytic estimates in the case where S is analytic. In this situation, ~; would tend to the
analytic radius of convergence of b when j — .
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Note that L; > Ly > --- , and that L; can be equivalently defined by requiring (2.17)
for 7 = k only. We have, by definition:

(B \2 2 ok 2 (b) \2 2 ok %
(|’Y|n7s) S ”Y|0;S ZLkzk/ﬂ;jJ and (|p’n’3) S |p‘0;s ZLk2kﬁ;j]' (218)

j+k=n Jtk=n
We now define a similar wave length, now for the norms on the boundary 05 .

Definition 2.5 With v and p as in Definition 2.4, we define { as the largest constant such
that there holds

7,05 < € 1/2|'7|0;s and [p|; o <€ 1/2|P|0 S (2.192)

Vs SO gs and Iply e <Pl - (2.19b)

Note that the quantity ¢ has also the dimension of a length.

2.F KORN INEQUALITIES

We now define a length D through Korn inequalities 2° involving the Young modulus £
and the thickness ¢ of the shell.

Proposition 2.6 There exists a constant D independent on ¢, having the dimension of a
length, such that for all v € V() defined in (2.3), we have

< D*EeT?E5p[v]

sy S D2E~ e 2 E5p[v].

0720
L) (2.20)

Do |72 ey + 1050l

L2(Qe)

Proof. We perform the scaling X3 = ¢ 'x3 mapping the manifold Q° to the manifold
Q =8 x(—1,1). In Q, the expression of the deformation tensor e;;(¢)(v) is obtained
like in [12] by changing 8,, to £ 'Ox,. The variable X3 and the derivative Jx, are

adimensional, as well as the tensor e;;(¢)(v).

The lateral boundary T'g = 0S x (—1,1) is the image of I'j by the scaling. We define
the space V(Q) as the set of v € H(Q)? such that v ‘Fo = (0. On the manifold Q, the
following inequalities hold (see [12]): For all v € V(Q),

[91l,2) + IDallzg) < Cre™"llesi(€) (v) (221)

L2(Q) ||L2(Q) )

where

el = (3 [ estelwrasax)™

4,7=1,2,3
where dS is the volume form on S .

The shear deformation tensor is written as the convergent series (see [32, 19]):

ea3(€)(v) = (Davs + £ 7' 0x,00) + Y 7 XJ (B ) g
k=0

11



where (V)7 denotes the product of j -times the curvature tensor b. We thus have
1
105, vall 2 o) < 2€leas(@)(®) 1 +e(zsﬂ N0l 2oy + £lIDall a0,

Combining this estimate with (2.21), we obtain the existence of (5, having the dimension
of a length, such that
10x501l 2 o) < Colles (@) (V)] 2 g »

which improves the corresponding estimate in [12]. Scaling back to Q¢ and using (2.2), we
get the estimates for the squared norms:

1lzigy < Coe2lles ()l page

IDa® ;e + 1050l oy < Cae2lless ()1

L2(09)
The constants Cs and C, have the dimensions m* and m? respectively.

Using relations (2.14) we obtain adimensional constants a and A such that
aFE <A< AF and aoF <pu<AE. (2.22)
Since E > 0, there exists an adimensional constant A; such that

2 —1le
e @)1 g, < 41 Explo].

Denoting by D the length max {(A;C3)"/*, (4:C4)"/?} , we obtain the result. n

2.6 MAIN ENERGY ESTIMATE

Our main result gives an estimate between the three-dimensional displacement field and the
reconstructed displacement. Besides the notations defined in the previous sections, we need
one more characteristic length d of the shell S'.

Definition 2.7 Let r denote the geodesic distance in S to the boundary 0S5, and let s be
the arc-length along 0S. We denote by d the maximal width of the tubular neighborhood
in which (r,s) € [0,d] x 0S defines a smooth coordinate system.

It is clear that d has the dimension of a length and that d is proportional to the minimum
radius of curvature of the boundary 0S viewed as a sub-manifold of S'.

Let z = (2,,23) be solution of (Pp). With z, we associate the three-dimensional
displacement Uz defined by the formula (cf. [26])

2o — 03(Dgzz + 20%24) + 22020, (2),
Uz = (2.23)
25— pasna(z) + p 505(2),

where 0,(z) = D,z3 + 0%z, and p = A(A +2pu) 1.
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Theorem 2.8 Let w and z be the solutions of (Psp) and (Pap) respectively, and let Uz
be the displacement (2.23). Let L = L, and { be defined in Definitions 2.4-2.5, r = 1/ks
given by Definition 2.1. Assume that € < £y < min{r,d} and that

e €2
_+_

7T Iz <M < 0.

sup
e<ep

Then the following estimate holds:

&€ € — rem 2
ESp[u — Uz] < as (Bs(e; z) Esplz] + D’ B ||LQ(QE))
£
1

where E is the Young modulus, " is the residual load (2.12) and D the constant ap-
pearing in Proposition 2.6. The constant ag is an adimensional constant such that

2 2 42

g g
+r_2+ﬁ+ i

with Bg(e; z) = (2.24)

as < bs(1+ M?) (2.25)

where bg is an adimensional constant depending only on S .

Remark 2.9 For the quantity L. = L4 to be finite, we need that the mean value g of f
across the shell is more regular. The ellipticity of the Koiter operator in the sense of AGMON,
DOUGLIS, NIRENBREG [1] clearly implies that L, is finite if g belongs to H3(S)? but the
control of L, with respect to the small parameter ¢ is in general very difficult (see [2, 29])
and depends on the geometry of the mid-surface S and its regularity (see in particular [7]
for non smooth mid-surfaces).

Remark 2.10 If the loading belongs to H!(€) , owing to the estimate
rem 2 2
”f HL2(Qs) < ASSQ”foLz(Qe)

with an adimensional constant Ag , the contribution of ™™ to the bound of E5p [u — Uz}
is of higher order. If g = 0, the 2D displacement z is also 0, and we are in a regime of
higher order answers (see [5, 14] for the case of plates).

3 METHOD OF PROOF FOR THE MAIN ESTIMATE

To prove (2.24), we have to take lateral Dirichlet boundary conditions on I'j into ac-
count. As Uz does not satisfy these boundary conditions in general, we will add a correction
term u°" to it so that Uz + u“" is zero on I7.

The plan of the proof of (2.24) originates from the following

Theorem 3.1 Let u be solution of problem (Psp), z the solution of problem (Pyp) and
u" constructed so that Uz + u" € V(Q°). If we have the estimates

Yo e V() asp(u—Uz,v) < By E5plv]'2, 3.1)
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and
E3p[u'] < B, (3.2)

then there holds ,
Esplu — Uz] < (B)? +2B,%)" (3.3)

Proof. Let u™" = Uz + u®" € V(). Since ©u — Uz = (u — u"") + u*", we start
from the triangle inequality

Esplu — Uz]"? < Esplu — u™"]Y? + E5p[u]Y/2. (3.4)
The last term of the rhs is bounded by B;/ ® . As for the first one we write

new]

Esplu—u ")

— € new
= apu—u"" u—u

= aip(u—Uz,u—u"™") + a5p(u™, u — u™").

Since u — u™" belongs to V() , we may use (3.1) and obtain:
Eplu —u™] < (B + E5plu™]"?) ESplu — ur*)'/,
whence, using (3.2) again
Esplu—u"]"* < B +B,".
With (3.4) this gives the estimate (3.3). ]

Thus, to obtain (2.24), it is sufficient to prove estimates (3.1)-(3.2) with By, By <
Ag(e, z, fM) with

rem g - rem 2
As(e,z, f") = Bs(e1 2) Exp[2] + D*E M| £ Lo e - (3.5)

where Bg(e; z) is defined in (2.24). In §6, we do this for B; and in §7 we construct the
correction term 4" and prove that By < Ag(e, z, f") .

4 FORMAL SERIES REDUCTION

4.A SHIFTED DISPLACEMENT AND RECONSTRUCTED DISPLACEMENT

Let u be the displacement solution of (P3p). We can express this displacement in the
shifted normal components introduced by NAGHDI (see [32]) and commonly used in classi-
cal shell theory. As a matter of fact, computations are easier when considering the shifted
components. The shifter is the tensor 1 (see [32]) defined by

[ (%o, x5) = 05 — w3b)(24),

where 67 is the Kronecker tensor. If u' = (u/,u}) is any displacement, the shifted dis-
placement w’ = (w.,w}) is defined by the relations

wh=uy and wl = (u ),

14



where (p71)? is the inverse of the shifter. Let L and T the interior and boundary operators
defined by the relation: For all v € V(Q°) and all u’ € H'(Q¢)3

asp(u’,v) = —<L'w’,v>L2(Qg) - <Tw’,v>ri. 4.1)

The coefficients of the operators L and T express in terms of the normal coordinate x5, the
covariant derivative D, and the curvature tensor b,gs, see [19]. If we denote in particular
by w = (w,,ws) the shifted displacement associated with w , we find that w is solution
of the boundary value problem

Lw = f in €F
Tw = 0 on I (4.2)

w = 0 on I§.

Let z = (z,,23) be solution of (P,p). With the three-dimensional displacement Uz
defined in (2.23) is associated the three-dimensional shifted displacement Wz given by the

formula
2, — x30,(2),
Wz = p (4.3)
23— pa3ye(2) +p 5 pa(2).

4.B SCALING IN THE 3D BOUNDARY VALUE PROBLEM

The formal series approach of [19, 18] relies on the scaling X3 = ¢ 'z3 which transforms

problem (4.2) into a problem posed on a domain independent of ¢, with operators which are
power series of ¢ . This allows a formal series reduction of the 3D problem.

The scaling x5 +— X5 = ¢ 'z3 is one-to-one from the shell ¢ onto the manifold

Q := 8 x(—1,1) and we denote by I'y. its upper and lower faces S x {£1} and by Ty its
lateral boundary 9S x (—1,1). Likewise V(Q) denotes the space of v € H'(Q)? which
satisfies the Dirichlet boundary condition v |Fo =0.

In the following, we denote by wu the displacement w viewed on the manifold Q. In

a local coordinate system (x,) on S, this means that w(z,, X3) = u(z,,x3) for X5 =

e 'ry. Similarly, w and f correspond to the shifted displacement w and the loading

forces f. To denote the displacements Uz and Wz on Q. we use the notations U(e)z
and W(e)z so that we have with (4.3)

2y —eX30,(2),

. (4.4)
23 — eXspa(2) + €2 5kp pl(2),

W(e)z = {

and a similar formula for U(e)z .

In the same way, we define the three-dimensional energy on Q by the formula
Esp(e)[u] = E5p|u]

involving the scaled strain tensor e;;(¢)(u) = e;;(u) , and associated with the bilinear form
asp(e)(+, -) on V(Q). In particular, we will often use the relation, for v € H(Q),

leis(©)®) 20y = & B Esn(e) 0], (4.5)
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Note that with these notations, Korn inequalities (2.20) read, for v € V(Q),

lol, < D'E-'eEs(e)v)
IDav]sg < D?E-'e™Esp(2)[e] (4.6)
|0x,0l%) < DB~ Exp(e)[v]

(Q)

The scaled displacement u € V(Q) is solution of the variational problem
Vv eV(Q), asp(e)(u,v)= €<i,v>g;€, 4.7

where for v and v’ in L*(Q)? (see (2.2))
@Lvﬁgfzi/(v-d)m.+h@xgnd5dxg. (4.8)
k Q

The 3D interior operator L(x,,z3;D,,d3) in problem (4.2) is transformed into the op-
erator L(¢)
L(€) (xaa X37 Dau an) = L('Taa €X3; DOL? 8718}(3)7

and similarly for the boundary operators T(z,,23;D,,0;) and T(e). Note that on the
manifold Q, the variable X3 and the partial derivative Ox, are adimensional. The operators
L(¢) and T(e) expand in power series of ¢ :

Z&meT E}Wk (4.9)

where L* and T* are intrinsic operators in Q which are polynomial in X3 and in Oy,
with coefficients b -homogeneous operators of degree £, see [19, Thm. 3.3].

So problem (4.2) is equivalent to the problem

L(e)w f in Q
Te)w = 0 on Iy (4.10)
w = 0 on IY.

Moreover there holds for all v € V(Q) and all ' € H'(Q)? (see (4.1))

7~

asp(e)(u',v) = —e(L(e)w, v> —e(T(e w',v>Fi;E, (4.11)

where

<U, ’U/>Fi.6 = / (v-v") (14 h(+eX3))dS.
’ Q
Here, w’ is the scaled shifted displacement corresponding to «’ i.e.
uy=why and u, = (6] — eX3b))wj,. (4.12)

For instance (4.11) holds with v’ = U(¢)z and w’ = W(e)z.
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4.C SOLUTION OF TRANSVERSE PROBLEMS

The treatment of the first two equations of (4.10) can be performed by solving Neumann
problems in X3 and introducing suitable compatibility conditions. This can be done in a
fully exact way without approximation using the formalism of formal Laurent series and
formal power series, as follows.

With expansions (4.9) we associate the formal Laurent series

L(X) = ) L*=X* and T(X)= ) THIX:

k>—2 E>—1

The three-dimensional formal series system {L(X), T(X)} can be reduced to a two dimen-
sional one, cf. [19, Thm. 4.1]:

Theorem 4.1 There exist two unique formal power series V(X) = 37, - VEX* and A(X) =
> k>0 AFXE satisfying the following three conditions:

1. The coefficients V¥ are reconstruction operators acting from X(S) with values in
©>°(1,%(S)), and such that for all z € ¥(S)

VP2 =2 and Vk>1, VF2=0 on S,

2. The coefficients A* are 2D operators acting from Y(S) into itself,

3. There holds the formal series equation

{ LX)V(X) = —ZoA(X) in Q (4.13)

TX)V(X) = 0 on TI'y.

Here, the operator T is the natural embedding operator from Y.(S) to the space
¢ (1,%(5)) and the product between two formal series is the standard Cauchy prod-
uct.

Thus the equation (4.13) means that there holds

LOVOZO, L0V1+L1V0:0, Z Ljvk:_IoAifZ, 222 (4143)
Jt+k=i
d TVvE=0, ix>0. (4.14b)

k=i

Following the proof of [19, Thm. 4.1], we can see that the term V¥ of the formal series V(X)
is polynomial in X3 and b-homogeneous of degree k. We have

Vizg = —X30,(2), Véz = —p X373 (2)

g

and
X2 X2
Vor = pDova(a). Viz=p 2t (ra(z) - peYs (2) — 20275 (2))
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as first terms. Actually, the reconstruction operator W(e): z — W(e)z in (4.4) coincides
with VO + eV! + £2(V2 — v?) where v? is a residual part of the operator V2.

The term A* of the formal series A(X) is a b-homogeneous operator of degree k -+ 2.
The zero-th order term A° coincides with the membrane operator M, A! is zero, so that
A(g) = M + 2A? + ... . Moreover, adapting the proof of [19, Prop. 4.5] we obtain the
following estimate for the difference A? — B where B is the Koiter bending operator: If z
and 1 € X(S5) and n satisfies the boundary condition 7 | 0s =0

(b)
(8 = B)z.m)ag | S B (@), g Iy, s + 3121 Iy,

(b) (b)
irlzsly, o Yl g+ ), Il m ) i), @19)

where the constants «;, j = 1,2 are defined in (2.15).

5 A PRIORI ESTIMATES

Let z = (z,,23) Where (2,) isa 1-form field on S and 23 a function on S. In this
section we prove estimates for the Sobolev norms of z, first by Sobolev norms of its strain
tensors v := y(z) and p := p(z) and then, with the help of the wave lengths L, , by its
quadratic energy E5p[z], cf. (2.10).

Lemma 5.1 There exists a positive adimensional constant A such that

vz e H2 x H(S), 2oy ¢ < Al g+ mlzl, g +rilzl) 5).  (S.la)

Vz € H' x H(S), \23]2;5 < A(|p\0;5+H1\z]1;s+/§§]z\o;s). (5.1b)

Proof. Let us recall (see e.g. [32, 18]) that we have the following relation for the commuta-
tion of two covariant derivatives: For all z, ,

D.Dgsz, — DgDy2y = Rgacuz” (5.2)
where the Riemann tensor Rg,,,, of S is given by
Rgaor = bgubae — bauvbss.
Using this relation, and setting 7, = %(Daza + D, z,) , we have
DaDpszs = Da¥ss — DoVas + Dg¥sa — 3Rsacv?” + 3Roap” + 3 Ropan?”.
This formula clearly implies that there exists an adimensional constant A such that
20ly. s < AL, g + K221, ).

AS Yap = Vap — bapzs , this finally gives (5.1a).

The estimate (5.1b) is an easy consequence of the expression (2.8) of pqg . [ |

18



From the previous estimates, we are going to deduce bounds for |ZU| o and |z |(
by induction over n. In the remaining part of this section, we use the followmg notatlon
f < g means that there exist an adimensional constant A such that f < Ag. When f < g
and g < f wewrite f~g.

Applying the estimates (5.1b) and (5.1a) to Dsz in combination with (5.2) and then
using induction, we find the estimates for any n > 2:

‘Zg‘n;S ’S h/‘n—l;s_‘_ Z K;‘z’n—j;s (533)
1<j<n

|Z3|n;S ’S’ |p|n—2;S+ Z liﬂz’n—j;s ’ (53b)
1<j<n

Combining (5.3a) and (5.3b) for n,n — 1,...,0 we obtain for all n > 2 and all z €
H" x H"(S)3

(b) j
%ol,s S v st DL mlel gt Rzl gtz (S4a)
1<j<n—2
(b) :
e N S S 1 IO o MY 7 OB G
1<j<n-1

We can eliminate the terms HZ:%’ZM. ¢ 1 knlz|,. o with Poincaré type estimates, see [6].
Indeed, we can prove that for a given n > 1 there exist an adimensional constant A,, such
that

vz € HY x H2(S), Hn]z\1;5+/ii|z|0;s§An<]p\0;s+/in]7\0;s). (5.5)
Combining this with (5.4a)-(5.4b) we obtain
(®) (®) :
Zols S P st Y Kl e (5.62)
0<j<n—3
(®) (®) <
N R S SR 1 o I (5.6b)
0<j<n—2

Then we use the definition (2.17) of the wave lengths together with (2.18), and deduce from
the previous inequalities that there exists an adimensional constant A,, such that

(b) s L
2 <Ay s 3 Ltk + olys Yo L), (5.7)

Jjt+k=n—1 j+k=n—2

Remark 5.2 The adimensional constants A in (5.7) depend on n andon S via the Poincaré
type estimates (5.5). We can prove that these constants remain bounded in a family {S;} of
shallow shells in the sense of [13, 9], see also [3],as § — 0.

Using relations (2.22) we find immediately that E5;[z] ~ E5(|7|§~5+52|p|3~s) . Hence

V.5 SAET'e ' Eplz] and |pl; o S AE e B [2]. (5.8)

Estimate (5.7) combined with (5.8) yields the following energy estimates for any two-dimensional
displacement z satisfying the conditions of the clamped boundary:
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Theorem 5.3 For any n > 2, there exists an adimensional constant A > 0 so that for any
z € H} x H3(S) satisfying v € H""'(S) and p € H"2(S), there holds for any € > 0 :

(=10, ) < A2 (3

5 o ) Esol2]. (59)

where E is the Young modulus, k, the n -th constant estimating the curvature, L, 1 is
the global wave length of z, cf. Definitions 2.1 and 2.4, and where

G,=1{(,5,k) eN*|ic{0,1}, j+k=i+n—2}. (5.10)

6 INNER ESTIMATE

In this section, we prove the following result:

Proposition 6.1 With the definitions of Section 2, let k = k5, r = 1/k and L = Ly. For
v € V(Q), we have the estimate

asp(e)(u — U(e)z,v) S By *Esp(e)[v]'/

where ,
By =D*E""e|| ", + Bs(e:2)Esp 2], (6.1)
where f*" = f —g and
D4 g2k €4D2 €6D2
1o\
Biez) = (1+ ) (; S+t ) 62)

where F is the finite set {(i,j,k) € N*|i+j =k, k€ {1,2,3,4}}.
Scaling back to )¢, the previous result implies that for v € V(£2°) , we have
asp(u — Uz,v) < B *Esplv]'/?

where B; is given by (6.1). Note that using (4.8) we have s||fem||2g€ = ||frem||i2(ﬂg) .

Before starting the proof of the proposition, let us prove that B; in (6.1) satisfies By <
Ag(e, z, f™) given by (3.5) and (2.24) under the hypothesis ¢ < r and £2/L* < M of
Theorem 2.8.

First, the ratio D/r is an adimensional constant depending on S only. Hence,
2k

4n2 62
1, € e*D* e°D
BS(E’z>§ZL2ir2j+ 6 + I8

F

Now it is clear that under the hypothesis ¢2/L?* < M we have

o2k 2 g2 , £6D2 D2
ZLQierS(r_2+ﬁ)(1+M) and I8 SML6
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and this proves that By < Ag(e, z, f™) with an adimensional constant satisfying (2.25).

The leading idea of the proof of Proposition 6.1 is to replace U(e)z with a more precise
reconstructed displacement U®¥(e)z: Working in shifted displacement, we define the new
reconstruction operator W2 (e) as the first five terms of the formal series V(X) introduced
in Theorem 4.1:

Wa(g) = VO 4 eVt + e2V2 + 2V3 4 etV (6.3)
To this operator corresponds the operator U (¢) as in (4.12).

We first prove the following lemma:

Lemma 6.2 For v € V(Q), we have the estimate
as(e) (w = U™ (¢)z,0) S By Esp(e)[0]*

where U*Y(e)z is given in shifted components by the displacement W% (¢)z defined in
(6.3) and By by (6.1).

Remark 6.3 Owing to (2.2), it is clear that the norms || -{|, _and |||, () e equivalent
up to adimensional constants.

Proof of Lemma 6.2. Let v € V(Q). We split asp(c)(u — U*¥(e)z, v) into two terms.
Since w is solution of (Psp), eq. (4.7) yields

asp(e)(u,v) = &(f,v)o:c -
For the second term, using (4.11) we obtain
asp(e)(U(e)z,v) = —e (L(e)W*¥(¢)z, ’U>Q;€ — e (T(e)W*¥(e)z, ’U>Fi;6.
By definition of W2 (¢), and using (4.14a), we find
—L(e)W?¥(g) = M + £?A%+
+ 53(L1V4 FLAVE 4 L3V 4 LAV 4 L5VO) 4 gt Z Ei(g)vi7 (6.4)

0<i<4

where the operators L(¢) are given by the convergent power series
Cle) =) ekFLrto (6.5)
k=0

and define operators of order 2 in D, . The convergence of these series rely on the uniform
estimates for all n > 3 (see [19, Thm. 3.3])

1Ll s ) < 1 B (K2 Dproll s gy + 55~ 1Dl s gy + K51l s g

+ 5105, Dpgtall 2 gy + K I0x, Vo) ) (66)
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Similarly, using (4.14b), we find
—TEW(e)=¢* Y T(e

0<i<4

where T'(¢) are of order 1 in D, and 0 in ¢ and depend of the operators T* of (4.9).
These series are given as convergent operators series, owing to estimates similar to (6.6).

Since z is solution of (P,p), we have
Mz + e?A%z = g + £*(A? — B)z.

Putting all together, we find

asp(e)(u — U (e)z,v) = e(f —g,v)o;- (6.7a)
53(( B)z,v)o.. (6.7b)
e (L'Viz + L2V32z,v)g.. (6.7¢)
e (LV2z + L'V'z2 + Vo2, v)g.. (6.7d)
- 55 Z [<LZ £ z,v)Q;E +(T'(e Viz,v>ri;a]. (6.7¢)
1<i<4

The proof of Lemma 6.2 consists in estimating each term in the above right hand side: Term
(6.7a) in Sublemma 6.3.1, term (6.7b) in Sublemma 6.3.2, terms (6.7¢) in Sublemma 6.3.3,
and the remaining terms (6.7d) and (6.7¢e) in the end of this proof of Lemma 6.2.

Sublemma 6.3.1 For v € V(Q), we have the estimate:

e(f —g.v)0;c SDE%| £ , o, Esn(e)[v] /2. (6.8)

Proof of Sublemma 6.3.1. Let G be the mean value operator
1 /1
Gv = —/ ’U(Xg)ng
2/,
With (2.11), we obtain g = Gf and we compute

}€<i_ga Q; E’ - ‘ f Gf?” - GU Q 5| < EHf gHLQ H’U - GUHLQ(Q) .

Using the Bramble-Hilbert Lemma on (—1, 1), together with the fact that X3 is an adimen-
sional variable, we get

2
H’U - GUHL2(Q)

Combining this with Korn inequality (4.6) we finally find
H’U - G’U||L2(9) S DE_1/2€_1/2E3D(6)[’U]1/2’

2
S Han'UHLg(Q) :

We conclude using f™" = f —g. [
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Sublemma 6.3.2 For v € V(Q), we have the estimate:

(A2 = B)z,v), | S Bh(e: )" *Expl]*Esn(e) 0]/, (69)

Qe
where Bi(e;z) is given by (6.2).

Proof of Sublemma 6.3.2. Using (4.15), we have for a 3D displacement v satisfying the
homogeneous lateral boundary condition

(b)
(A2 = B)z,0) | S B(W(2),, ¢+ &Bl21 + milzsly, o ) V@) g

+ E(rlv(2)l, s + @)y, ) (IDavll o) + Fillvll g ) (6.10)
But for any v we have in non-shifted components (see (6.17¢) and [19, Prop. 3.2])

Yap(V) = €ap(e)(v) — eX5(capvs + v;Dab}).
Thus we have
1Y)l 20y S leas(@) ()l g +er2lIvll s g, - (6.11)
Combining (6.11) with Korn inequalities (4.6) in (6.10) we find

(A2 = B)z,v), | S e 2B Eap (=) ]2
e(I7(2)ly, ¢ + 3121 + mlzsl, ¢ ) (1 + D)
+ (ml (@), g+ mlv(2)l, 6 ) (D + D) .
Using (5.5) and the definition 2.4 of the wavelength L,, we find using (4.5)
(A2 = B)z,v), | < e 2B Exp () [0]'/2]
e((L32 + R (), s + ralol(2)], ¢ ) (1 + D)
+ (L + K (2)] ¢ (D + 51D }
Using (5.8) we find
(A = B)z,v) 5 .| S as(e, 2)Espl2]*Eap () [0]
where
as(e,z) = e(eLy” + erj + ko) (1 + D?k3) + e(ki L' + £3)(D + £, D?).
Using the definition of r = 1/k5 and L = L, we can take

D2\ /e ¢ e €
ase2) = (14 )T+ 7+ 5)

and we get the result. [ |
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Sublemma 6.3.3 For v € V(Q), we have the estimates

€4<L1V4z,v>g;€‘ +

eN12VAz, v>Q;E‘ < Bl(e; 2)Y?E5p 2]V %Esp () [v] V2,
where Bi(e;z) is given by (6.2).

Proof of Sublemma 6.3.3. The operators V? and V* are polynomials in X3 with 2D
operator coefficients. These operators are b-homogeneous operators of degree 3 and 4
respectively. If A is a 2D operator acting form >(.S) into itself, it can be viewed as a block

2 X 2 matrix
A Ags
A — o g
(ABa A33>

a3« A3z

and the inequality

means that deg A,, < a.., etc..., where deg means the order as partial differential operator.

With these notations, we have (see [19, Prop. 4.2]) that
3 2 3 4 4 3
degV° < (3 9 and degV® < 3 4 (6.12)
(i) Using the expression of the operator L! (see [19, Thm. 3.3]),
Ly (w) = —pub0x,ws + (A + 1) Do, ws — Xapub 0%, wa,
Lili(w> = _Mbgaxswﬁ‘ + <)‘ + M)Vg(aXSw)u

and the identity 7% (u) = D%u, — b%us, we find

(L'V*z, v>Q.8 = / (= ub30x,Voz + (A + p)Dy0x,Viz — X3ub20%, Vaz) v7dV
’ Q

+ / (= (N4 2p)b20x,V3z + (A + p)D*0x,Vaz) v3dV,
Q

where dV = (1+h(£X3))dS dX; (cf. (4.8)). Using the fact that v |FO = 0 we can integrate
by parts with respect to the surfacic derivative D, , and we obtain (we omit dV') :

(LViz0), = - /Q (b0, VEz + Xap20P Vi z) 0" — /Q (A + 1)(0x,Viz) Do
- [0+ amoaviz) B~ [ 0+ moxvin D
and hence
(LViz0), =~ /Q (1b%0x,Voz + Xsubi 0%, Vaz) v7 — /Q w(0x,V3z) bous
- [0 OV ) - [0 noxViz) D
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The operator V3! is b-homogeneous of degree 4, and of orders of derivative 3 in z, and
4 in z3. By integration by parts using the boundary condition on v, we obtain

‘ / 1(0x,V3z)bvs
Q

SE(Y w72l ) millval o) + Bralzsly, o IDavsll )

3
< B(Y w1l o) (IDavsll g + mallesll s ) )-

As the operator V! is b-homogeneous of degree 4, and of orders of derivative 3 in 23
and 4 in z,, we obtain

3
(SNPGRS DIt CH (L ETRERR
§=0

+B(|2s,, ¢+ ngj—qzb;s)||W(U)||L2(Q) . (6.13)
7=0

Using (6.11), the Korn inequalities (4.6) and inequality (5.8) we find

3
— 4—1q
(V12 0)g, [ S PEY 2 (al g+ D] ) (D + D) Eso(e) o]
j=0
3
+ e PEVR (|2, o+ )R IZ] ) Esp(@) W] (6.14)
j=0
Recall that x = k5 and L = L,. Here, because of asymmetry between surfacic and

transverse components, we do not use estimates (5.9): We obtain sharper estimates using
directly (5.6a) and (5.6b),

3
L
Zaly s T ) Ra 12l Z%‘”’ Ty (2 +Zfez Ip(z
j=0
< 32 (5 Z I Z /@Q‘jL_J) B2, 2]V

j=0 7=0

Similarly, we have
3 2
sl s T ) w2l g S Y R e(2) S+Z/€3 delC
j=0 =0
< —3/2E—1/2<Z/€2 ir- ]+€ZK,3 ir- >E§D[z]l/2.

7=0 7=0

Combining these estimates with (6.14) we find

< bs(z, €)Expl2]*Esn () [v] '/

Q;J ~

<54L1V4z, v>
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with
2 1
bs(z,¢e) = 5(D + D2/€) (€L’3 + sz KPILTT Z ﬁQ’jL’j)
=0 =0

2 2
+ &2 ( Z K2ZIL T 4+ ¢ Z m3_jL_j)
=0 =0

and we check that

bg(z,s)gz—z<D+DTQ>+<1+?—;>< Z 8)

and hence bg(z,¢) < Bl(z;¢)'/2. Note that we only need the introduction of 4 and Ls
to obtain this estimate.

(ii) Similarly, using the degrees (6.12) of V3 and the expression of L? cf.[19, Prop. 3.3]
L2(w) = —pX3c20x,we + uX3b2b20x,ws — pb*Dyws — ,ubgbfjwa + ADy5 (w)
+ 2pDayz (w),
L3 (w) = —puX5¢20x,ws + (A + p)b§ (0x, (Xsw)) + pbvg (w) + pD*0 (w),

we have after integration by parts that

(L*V?z, v>Q;€ =— /Q(quc§8X3V§z - qubgb§8X3V%z + ubglﬁViz)v" dv
+ / (ub*Viz — My2(V?2))Dyv” dV — / 2uy2(V32)Dyv” dV
Q Q

~ [ )GV AV — [ (4 )0, (XaV32)) (D0) dV
Q Q

- / (uV32)(DPbGus) AV — / 1100 (V3 2)(D%3) dV.
Q Q

Using the relation
T Dawg = 1075 (w) + 7bGws

valid for any symmetric tensor 7,3, and using integration by parts, we find the same estimate
as in (6.13) which yields the result. |

End of proof of Lemma 6.2. We now prove that the remaining terms (6.7d) and (6.7¢) in
equation (6.7) can be estimated by terms of the form

Bg(e; 2)"*Espl2]'*Esp () [v]

where the expression of the bound B} is given by (6.2).
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Using [19, Thm. 3.3], we can prove like for the estimates (6.6) the following uniform bound
forall n >3, we HY(Q)? and v € V(Q):

[(L"w, v)o:e| S nE ™ (IDavll s g + K2llvll 20 ) ¥
(IDawll o) + m2llwll o o) + 0% Dawll o o) + F2llOxswll s g )-

Recall that for all n > 0 the operators V" are b-homogeneous of degree n. Hence the
uniform estimates for all n > 3 and all i € {0, 1,2, 3,4}

}(L”Viz,v)g;€)|
n— (b)

S B2 (IDav]l 4 gy + Rallvl o) (12l 5 + Fal2 () 6.15)

<SnEY2e 3 2k72(D + D2K2)E3D(€)[v]1/2 (|2 a2 ),

using Korn inequalities (4.6).

This estimate yields immediately that
EHLVEE LV 4 L0z 0)

S &2 2y(D + D) (Y wblzly ) Ean (o) 0]
i+j=3

and using the a priori estimate (5.9) we get
[HLVEZ + LVIZ 4+ V2,0, |
SeDr+ D) (Y RLT ) Expla] Eap () 0] 2
i,J,k€G3

where (3 is given by the formula (5.10).

But the constant in the right-hand side can be written

D D2 8k+1 . L
. /2
(r + r2><, Z riLJ> S Bs(e:2)
i+j=k+1
ke{0,1}

after a change of index k +— k — 1 in the sum. This yields the result. Note we only need 3
and Lo to obtain this bound .

The operators L’ in the term (6.7¢) are the power series (6.5) of the operators L*. Using
(6.15) and the fact that ¢ < r, we derive that

4

4
Ti i (b) (b)
() T(e)Vz, v>Q;€‘ S ePEYPD(1+ Drao)Ean(e)[v] 2 Y (121, ¢ + kal2l; )
=0

1=0
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Owing to (5.9) for n = 5, this shows that

4

55<Z[i(€)viz,v>g;g‘ D(1 + Dks) ( Z e* kL™ ]>E5 [2]"/2Esp (e)[v] /2.

i=0 4,7,k€Gs5

But the constant in the right hand side is smaller than

D e*D D\ /2D €D D D? gk
1+7) X s () (F )G e) X
< + r/ Z rtli "~ + r L3 + LA * r + r2 Z rtLJ
i+j=k+1 i+j=k
ke{2,3} ke{2,3}

after separating in the sum the terms where ¢ = 0 and those for ¢ > 1. This term is
dominated by Bi(e; 2)!/2. Note that we only need 5 and L, to obtain this bound. The
estimate for the traction terms involving the operators T'(¢) can be done similarly, and this
proves the lemma. |

We can now prove the main result of this section.
Proof of Proposition 6.1. Using Lemma 6.2 we have

azp(e)(uw —U(e)z,v) = asp(e)(u— U (ez,v) + asp(e)(U(e)z — U (e)z,v)
S (B4 En(e)[U(E)z - U(2)2] ) Esn(e)[v] 2

Thus the proposition is proved provided we show Esp(e)[U(e)z — U*(e)z] < By, or
equivalently Ejp(e)[W(e)z —W?¥(e)z| < B;. Here the scaled shifted energy Esp(e)[v] is
given by, for v € V(Q)

Esn(e)[v] = /Q ATH(2)e () (0)erele) (0) AV
= [ [0+ 2wz a)ise) ) + ) ) E) w) + M) ) w
+ 4% () ()25 (2) (w)E) () (w) + 20 () (w) (o) (w) | AV, (6.16)

where a®(e)(z3) = (' (eX3))" a”” (pfl(ng))f is the inverse of the metric tensor of
the surface at the level z3 = X3 in the shell, see [32, 19]. The inverse (,u‘l(eXg)): of
the shifter can be expanded as

(11 (eX3)) ngxk (")

The shifted tensor & (¢)(w) has the expression in normal coordinates, cf. [19]:

&5(e)(w) = e Ox,ws, (6.17a)
e(e)(w) = (e 'Ox,wp — X3b§Op,wa + Op(w)), (6.17b)

&e)(w) = 5(w) + Y "X (w) + > ne"XF(" A H(w),  (6.17¢)
=1

n=1
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where 03(z) = Dgzs + b3z, and Aug(z) = 5(09Ds25 — b3Daz,) -
By definition, we have
W (e)z = W(e)z + ez + £3V3z + £'Viz (6.18)
where
X2 o
_pDU’YOL z),
viz = ; ( )ﬁ (6.19)
F (= PPy (2) — 2pbi75(2)).
We now successively estimate the energy of the three terms vz, V3z and Viz.
Using (6.16) we have for all v € H'(Q)

Esn(@)v] S 2E(125() (011120, + 18501120, + 1) @) g, )

where éé- (¢) is the deformation tensor (6.17a)-(6.17c) scaled on Q.

(i) Using (6.17a)-(6.17¢) and (6.19), we obtain
18V g S K, 0
1822 S 2+ o+ RN
182 g S (M)’

provided that ¢ is sufficiently small (¢ < ;' = R) to ensure the convergence of the series
in (6.17¢). Hence we have

Ean(e)[v*2] S B(ehly o + (7 +erdl; o + 7R+l 5 )
Multiplying by &* and using (5.8), we find
Esp(e)[e?v?2] < <54L_4 + (2 + e*R?) L2 + 2k% + 54/<4> ESpl2] (6.20)
with L = L, and k = k5, and thus we have
Eso(e)[e*v’2] < Bi(e: 2)Esp]
where Bi(e; z) is given in (6.2).

(ii) We recall that the operator V? is b-homogeneous of order 3 and that we have the bound
(6.12) for the orders of the derivatives of V3. We deduce that

2
2
~ 2 _ 3—7j
1BV 2) [ agy S = (12aly s+ DK 12, )
7=0
2 2 2 3 9
122 a0, S 2 (128l + DRIz o )+ (2l s+ Dokt 121, )
j=0 j=0

3
o 9 . 2
125V 2) e S (128l,5+ D mi7121 )
j=0

29



Hence we have

4

Ean(e) V2] < Fe- (ngqzy )2+E5<Z e, )"

=0

Multiplying by £° and using (5.9) we find

" 81 < 82k:+2/£:23i g2k+4 .20 .
Esp(e)[e’V7z] S ( > e > T)Ezo[ z],
i,j,k€G3 2 i,j,k€Gy 3

where for all n, G, = {(i,j,k) € N*|k € {0,1}, i + j = k+n — 2} . We can write the
previous equation as

B s o2k .2i
Eao(9)e*V2] 5 (Y. 75 )Einlzl
i.jkeG
where G = {(i,5,k) € N3| k € {1,2,3}, i + 7 = k } . This shows that
ESple"V?2] S Bi(e: 2)Expl2]
where Bi(e; z) is given in (6.2).

(iii) In the same way, we easily find :

5
Esn(0)[Viz] < B (Zmﬂzy o) B R )
=0

whence the result after multiplying by &%

obtain this result.

and using (5.9). Note that we used x5 and L, to

7 ESTIMATE FOR THE CORRECTOR TERM

cor

The goal of this section is to construct a displacement ©" satisfying the equation (3.2)
with By < Bs(e, z, f™), and such that Uz + u®" € V(§°). In shifted displacements,
this amounts to construct w" such that Wz + w" satisfies lateral Dirichlet conditions
and satisfying the same estimates

We recall from Definition 2.7 that 7 is the geodesic distance to S in S, s the arc-
length along 05, and d defines the tubular neighborhood (r, s) € [0,d]xdS . We introduce
the adimensional variable 7' = r/e. Let x(7') be an adimensional ¢ cut-off function
defined on [0, 00) satisfying x(7) =1 for T € [0,3] and x(T) =0 forall T > 1.

)
Consider now the displacement Wz as defined in (4.3). As z satisfies the boundary
conditions z ‘83 =0 and 0,23 }as =0 and

« x% (0%
Te = _p$3f>/a }83 +p?pa |8S
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We thus set

cor cor 1

2
_ N x5
w =0 and w§™ = x(e r)(—pxgva 8S+p—23pa|as). (7.1)

Note that this term is non zero only in the region where r < ¢. By definition, we have that
w + w € V(QF). It remains to estimate the energy of w*".

Proposition 7.1 Let w*" defined by the equation (7.1), then we have the estimate

2
~€ cor 2
Eiplw™] S B (17l o5 +221pl5 05 ) (14 7) + B (1] ps +22000) s ) 0.2)

where R =r".

Using the definitions of ¢ and the fact that £ < R, this estimate proves that
e cor ». € : ». € £’
Ep[w™] < Bs(e; z)Ep[z]  with  Bg(e;z) = 7 <1 + £—2>
and this finally yields (2.24) provided that /¢ < M .

Proof of Proposition 7.1. Using the fact that only the transverse component of w
zero, we have using (6.17a)-(6.17c¢) that

cr is non

~ 1
ESp[w ] S 0505 |1 g + ElIDotwS |z gy + E—Ilw“rll

L2(Qf) L2(Qe) L2(Qf)

Let us recall that in the coordinate system (7, s) in a tubular neighborhood of 05, the metric
satisfies a,,(r,5) = 1, a,s(r,5) = 0, and a4(0,s) = 1. This implies that the Euclidean
volume form on the tubular neighbourhood {r € (0,d),s € 0S,x3 € (—¢,€)} can be
written

drdsdzs(1+ j(r, s, x3))

where j(r,s,z3) is an adimensional convergent power series in r and x3 provided r < d
and |z3| < R, satisfying j(0,s,0) = 0 and with function coefficients defined on 05 . For
€ (0,e), s €0S and x3 € (—¢,¢), we can always assume for instance (compare (2.2))

14 j(r,s,23)] < 3/2.

Let us decompose ws® = ®z + Wz where

2
@ — I3 o —
Oz = —praVg [pg X(e7'r) and Wz = p=2plf x(eT ).

We see that
1 1
2 a 2 .
19212 e :p464/ / / XIx(eT)*(78(2) | g ) L+ 4(eT, 5,6 X35)| AT ds dX.
-1J0S5J0

This implies immediately that ||®z|” We have a similar estimate for W .

34| |2
L2(Qe) ~ ) 0;0S8°
Hence we deduce

105 2y S €10 05 + %1010,
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Similarly, we easily see that

10505112 ) S SV, 06 + €7l

L2(Q) 0;08 0;08 "

Note that with the change of coordinate (s, z3) — (T, s, X3), the term || D,wS”||?
has to be understood as (see formula (A.4))

[ @) au) D) av,

L2(Q5)

As € < g9 < d, we can assume that the metric on S in coordinates (r,s) is O(¢/d) close
to the identity. So, for € (0,¢), s € 9S and z3 € (—¢,¢) with ¢ < min(R,d), this

yields
HDO'wgorHLQ(Qa) S / / / ((arwgor)z + (aswgor)2> drds dl’g.
0 JoSJ—e

But we have
00z = —pr3(0:72) | ,g (')
and
0,0z = —& 'prsys |, (Orx) (e '7)

where here Orx is an adimensional function with supportin 7" € (0, 1) . This shows that

HD q)zHL2 Qe S/ €2|’7‘0 8S+84’7|1 a8’

and similarly
2 2
HD \IJZHL2 Qs N€4|p’0;as+€6|p‘1;as‘

Collecting together the previous estimates yields the result. [ |

8 CONCLUSION: OPTIMALITY OF THE MAIN ESTIMATE

To conclude our paper, we apply estimate (2.24) to families (u°) and (2z°) of solutions
of problems (P3p) and (Pyp) for each £ € (0,0] for a smooth fixed “standard load”
f ., which means that f has the form f(z,,z3) = g(x,) with a smooth surface load g
independent of . Hence g is the mean value (2.11) of f across the shell 2°.

8.A PLATES

A family of plates (2°) is defined by its mid-surface S which is a domain of R?. Thus the
normal coordinates (z,,x3) are globally defined by a Cartesian coordinate system. Hence,
the metric is the flat metric and the curvature vanishes on .S'. Consequently, we have x; = 0
forall j > 1, thus r = oo. Moreover the membrane and change of curvature tensor reduce
to

Yap(2) = 5(0a2p + 0pza) and  pag(2) = Dap2s.

32



This shows that the Koiter operator decouples into the restrictions M, and Bj of the mem-
brane and bending operators acting on the surfacic and transverse components z, and z3

respectively:
M, O

Thus the solution of the problem (P,p) is given by
2% = (2m,0) +£7%(0, z8)

where the membrane and bending parts zy € H(S) and zg € H2(S) solve the equations
M.zm = g, and Bszg = g3. Hence the wave lengths L and ¢ associated with z° are in
fact independent on ¢ .

Estimate (2.24) with f™™ = 0 then yields
so[u” — Uz®] <bs(g) e E5p[2] (8.1)

where bgs(g) has the dimension of the inverse of a length.

In [16], it is shown that the displacement w® admits a complete two scale asymptotic
expansion in powers of . This expansion includes regular terms bounded independently
of ¢, and boundary layer term exponentially decreasing with respect to /e where r is the
distance to 0S. Relying on this result, we can prove that the following optimal estimates
holds true, see [16, § 12.2]:

bs(g)eEsplu’] < Ejplu —Uz] < bs(g)eE5pluf] (8.2a)
ag(g) Ep[z°] < ESplu’] < as(g) E5p[27], (8.2b)

where bs(g), bs(g) have the dimension of the inverse of a length and as(g), a5(g) are
adimensional. In relation with the generic non-cancellation of the traces of 75 = divzy or
p% = Azg, the constant bs(g) is generically non-zero. This shows how (8.1) is optimal in
the case of plates.

8.B  ELLIPTIC SHELLS

In the case of elliptic shells, the curvature tensor b,g satisfies an estimate of the form
baslEP > c&€,, for all vector field €% on S and for a uniform constant ¢ independent
on ¢ . This implies that the constant r is a positive number.

Using the result in [20], it is possible to estimate the behaviour of the constants L and
¢ with €. In [20], it is shown that z° admit a multi-scale asymptotic expansion

25 (0 4 81/2<Z1/2 + C1/2) ve(Z Y-

in powers of £!/2, where the regular terms ¢*/? are uniformly bounded in ¢, and where
the terms Z"*/2 are boundary layer terms. These terms are sums of functions that are tensor
products of smooth functions of s € 05 and exponentially decreasing functions with respect
to the variable /b, /\/€ where by, is the (non zero) curvature along the boundary 9.5 (see
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equation (1.12) in [20]). This shows that L ~ (¢R5)'/?> where Ry denote the maximum of
curvature radius along the boundary 0, and that ¢ is a positive constant independent of ¢ .
Hence, estimate (2.24) with f™™ = 0 yields as before

E3p [us - Uzs} < bs(g) € Ep[2°].

As in the case of plates, this estimate turns to be optimal, see Theorem 1.4 in [20].

8.C SHALLOW SHELLS

Shallow shells in the sense of [13] are shells for which the mid-surface S = S° depend on
€ 1n such a way that the curvature tensor is of order Be where B has now the dimension
m~2. The limit surface S° is a domain of R?. The constant r is hence of order (Bg)™!.
Denote by (x5, 25) normal coordinates to S¢, for € € [0, g¢] .

We define a regular family of loads f° on ¢ in the following way. For a fixed
smooth surface load G given in a neighborhood of S° in R?, we define the field F by
F(22,29) = G(20) . Then we set

f=F

1 &€
q- and g°= % / fe(xf) das,
and f° is the load in problem (Ps;p) on ¢, while g° is the right hand side of problem
(PQD) on S°.

In this situation, the Koiter model can be seen as an operator which couples the mem-
brane and bending operators for plates through low order terms, and it can be shown that z°
admits a complete asymptotic expansion in powers of ¢ with regular terms only. Hence, the
constant ¢ and L are independent of ¢, and estimate (2.24) yields an estimate similar to
(8.1).

In [4], it has been shown that the three dimensional displacement «* admits a complete
asymptotic expansion in powers of ¢ with regular bounded terms and boundary layer terms
exponentially decreasing in 7 /e . Using this result, it can again be shown that estimates of
the form (8.2) hold true in the case of shallow shells. This shows that (2.24) is optimal in
this case.

APPENDIX A ESTIMATE FOR THE DIFFERENCE OF ENERGIES

We give here an estimate between the energy of a two-dimensional displacement z and
the three-dimensional energy of the reconstructed displacement Uz :

Theorem A.1 Forall z € (H2NH})(S) x (H>NH2)(S), we have the following estimate

2

g g
Esplz] — ESp[Uz]| < A= + = ) E5pl2], Al
[Esole] — ExplUz)] < A( 5 + 13) Einl2 (A1)

for an adimensional constant A, where L1 is the first wave length for z defined according
to Definition 2.4, and R = k| according to Definition 2.1.
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Proof.

STEP 1. The proof is easier when using the shifted displacement Wz , see (4.3), correspond-
ing to the reconstructed displacement Uz . For any three-dimensional displacement w , we
recall that E5y[u] denotes its quadratic energy, cf. (2.5). If w is the shifted displacement
associated with « we denote the corresponding energy by EgD [w] which is defined so that
EED['w] = E5p[u] . Hence we have

EgD[w] :/ AT (W) (w) dV, (A.2)

where the modified strain tensor é;;(w) is defined so that é;;(w) = e;;(v). In normal
coordinates we have the following expressions for the tensor é;;(w), see [19] and (6.17a)-
(6.17¢):

Ex(w) = 0Opws, (A.3a)

ey(w) = 3(0pwp — 230505,wa + Os(w)), (A.3b)
&(w) = y5(w)+ > ai(B")ihw) + > naf (" gA H(w),  (A3c)
n=1 n=1

where 03(z) = Dgzs + b3z, and Aus(z) = 5(09Ds23 — b3Daz,) -

Using the definition of the rigidity tensor, we obtain
Eplw] = [ [0+ 2w (w)edw) + Dewesiw) + 7 (w)Fw)
+ 4pa®’ (z3)ed (w)el(w) + 2uel (w)ég(w) | dt' dt* dt®, (A4)

where a®’(x3) = a®” (1 (x3))2 (= (z3))? is the inverse of the metric tensor of the sur-
face at the level z3 in the shell, see [32, 19]. We thus reduce the proof to showing that
‘INE?:;D [Wz] — E5p[2]| is bounded by the right hand side (A.1). We note that E5p[2] is associ-
ated with the material law of Lamé coefficients 2up and p (we recall that p = A(A\+2u)~1)
and writes

Eioli] = 2¢ | [2m(2)(2) + 225 ()] as

2
3¢ [ fae) + 2l =)0, a9

STEP 2. We are going to calculate each term forming E5;[Wz] with the help of the splitting
of Wz into the sum of a displacement of Kirchhoff-Love type WKz and of a complemen-
tary term WPz which is a transverse quadratic displacement:

o 90 ) 07
WKL — { 4 T3 (Z) and WP — { . 2
23, _x3pf)/a(z) + Tppa(z)
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Lemma A.2 With the minimal principal radius of curvature R = k1", we have:

EWKz) = 0 for i=0,3 (A.62)

E(WKE2) = 29(2) — 23(p2(2) — 20872 (= +Zx1+n (P92 (2),  (A.6b)

and
ég(Wcmpz) = —pv5(2) 4+ pr3pi(z), (A.7a)
28 (W™z2) = —2ypDyy2(2) + LpDepli(2), (A.7b)
E2(WPz) = agpbag(z) + Y ayT (PP (=), (A7c)
n=1

where the tensors (PXY)(z) and (PS™P)(z) satisfy the estimates, for all n > 1,

By 5+ BT s < G (9 s+ ph(ys): A

for an adimensional constant A.

Equation (A.6a) justifies the denomination of WXtz after Kirchhoff-Love.
Proof. Itis clear that &3(WXt2) = 9,23 = 0. Using equality (A.3b), we calculate
283 (WHt2) = —0,(2) + 23b20,(2) + 0,(2) — 23b%0,(2) = 0,
which yields (A.6a).
The equation (A.7a) is clear. The expression (A.3b) of the operator é3(w) yields (A.7b).
To obtain (A.6b) we first note that

Rap(W<"2) = Aap(2) = 5 (4Dgb3(2) — H;Dablr(2))

and hence as D,03(z) = p(z) + bb,325 — b’ Dgz, we have

xs3

I3 I3
|Aaﬁ(WKL )| §|p<z)|o;s+ﬁ|za|1;s+ﬁ|z3|o;s

0; S |Z‘7|1 SjL

With expression (A.3c) we compute that
oW hz) = 72(2) + 25575 (2) + 23A%(2) — 2375 (2 Zaﬁ”” (Prt)g(2).

where 7,5 = 3(Dabs + Dgb,) and where the tensors (PX")(z) satisfy the estimate

An 1 1
(Pr)(2)]y. 5 < T (Ip(2)]y, 5 + §|Z|1;S + §|Z|0;S)~

But we have
P5— A% = o — 175
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Moreover, using (5.5) with n = 1, we have that for all z € H} x H2(S),

1 1 1
Slzly g+l s < AR o+ ShE, o)

Therefore we get (A.6b). The proof of (A.7c¢) is similar. [ ]

STEP 3. Gathering the previous results and setting (P,)(z) = (PKY)(2) + (P™P)(z), we
find that

GWz) = —p1a(2) + prspi(z),
B(Wz) = —5pD,ra(z) + FpDopi(2),
ee(Wz) = 75(2) — 3(p3(2) — pb33(2) — 26§75(2)) + 202, 25" (Pa)3 (2)
where (P,)(z) satisfies the estimate (A.8).

We compute now the different contributions in the integral (A.4). The previous computations
yield a convergent series expansion of each term in powers of x3. Therefore each contri-
bution in the integral (A.4) has also a convergent series expansion in powers of z3. When
integrating with respect to z3 from —e to ¢, the odd powers of x3 have no contribution.
Based on this remark we immediately obtain, first:

/ (A +2p)E3(Wz)és(Wz) dtt dit dt® = 2e(\ + 2u)p? / vg(z)vg(z) ds
. S
3

2e o
+ O 2 [ p()6(2)dS + Qule 2)
S
where the term (y(¢, z) is due to the function % is (2.2) and thus satisfies, using (5.8)
5
Qule, 2)| < A% Epl2].

Then:
/ N (W2) (W) de! e =
— 12 [ 13203 + Soane)] d + Qi 2)
where
Que.2) = [ (208m0() (802) + 25(2)

— 202372 (2)(P)4(2) + 2 23pp2 (2) (Py)4(2) + h.o.t.> dtt de? dt.

Hence using (A.8) we see that (Q);(e, z) satisfies:

2 4 3

3 2 € 2 €
Qu(e.2)| < AB(S 1y s + S lplo. s + Sy 1o s )
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where we used the fact that eR~! < 1. As we have
3 2 4

€ 2 € 2
7o, s1Ply s < A(Elvlo;s + E!p!0;5>
we get using (5.8)
€ €
|@u(e, 2)] < AL Baplz].

Similarly we compute that:
2

[%ﬁf(z)vg(Z) - ipz<z>p§<z>] dS + Qs(e, 2)

/ Aea(Wz)e (Wz) dtt dtt d® = 25)\/ 3

s
where, again, we have
6 I
Qa(e, 2)] < A Espl2].

We also have
Apa®’ (x3)e2 (Wz)eh(Wz) dt' dt' dt® = Qs(e, 2),

Qa
with: ) )
Qslz.2)| < AB(22h} o+ lol; )

and thus using the definition (2.17) of L; and the estimates (5.8),

2

|Qs(e, 2)| < AE 5 Edplz]-

1

Finally, we have:

/ 2085 (Wz)él (Wz) dt' dt' d?® =

2

sei [ [n2) + Srs()=)] 45 + Qute.2)

where, again:

Qule,2)| < A Espl2].

Finally, using the relation: A\ — 2\p + p*(\ + 2u) = 2up, we find that

BiolWal = 2¢ [ [2um(2f2) + 2022175 (2)] a5

2¢3

+ 5 [ 2t 2)05() + 2l (2)05(2)] 45 + Qe 2) (A9

where Q(e, z) is the sum 37,_, Q/(¢, 2) , and thus

c 2

Qe 2)| < A + 13 Eaolel
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But, compared with (A.5), the right-hand side of (A.9) writes E5p[z] + Q(, z) . Hence we
have

E%D[Wz] — E3plz] = Q(e, 2),
and this yields the result. [ |

Remark A.3 The part U°™Pz has a significant energy. If we evaluate the energy of UKtz
instead of the full Uz, we obtain the plain strain energy 2ecb5y(z,2) of z defined below
instead of the plain stress energy 2ca5p(z, z) : Recall that, cf. (2.9) a5y(z, z) is equal to

| RaEnie) + 2@ ds + 5 [ M@ + (=) ds,
S S

and let us define b5p(z, z) as

/ S (2)75(2) + 272 (2)75 (2) dS + % / A2 (2)p5(2) + 2upl(2)p5(2) dS.
S S

Using the previous computations, we can show that

2 4
€ £ € 2 g 2
‘E3D[UKLZ] — 25b2D(z,z)‘ < AE<_R"7|0;S + —R]p|0;s).
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