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Abstract— This paper presents the dynamic electrothermal
simulation of a rectangular resistor integrated on a semiconduc-
tor substrate. Due to the temperature dependence of the electrical
conductivity of the resistive sheet, self heating provokes a cou-
pling between the electrical and thermal problem and gives rise
to nonlinear phenomena. We introduce a time stepping iterative
method to perform the calculations. The electrical and thermal
solvers are based on FEM and Green’s functions techniques
respectively. An extensive dynamic analysis of the device will
be presented. The results include heating and cooling curves,
Nyquist plot (complex locus) of the thermal impedance, time
constant spectrum and structure function. Comparisons with the
linear case, i.e. a temperature independent resistor, are made and
accompanied by analytical approximations if possible. One key
observation is that the nonlinearity may easily be overlooked: its
detection is only possible in particular characteristics.

I. INTRODUCTION

It is a well known fact that the electrical characteristics
of many electronic devices vary according to the operating
temperature. This is simply a reflection of the underlying
temperature dependence of a whole range of semiconductor
properties, influencing the internal behaviour. Therefore heat-
ing of a device, either self-induced or by neighbouring elec-
tronic elements, may change the electrical operation. In turn,
the alteration of dissipated power leads to a new temperature
distribution, thus establishing a coupling between electrical
and thermal behaviour.

In multi-chip modules electrothermal analysis is a useful
instrument to detect and characterise coupling effects between
the different components. Various simulators have been re-
ported in the literature [1-3] both for steady state and transient
modes. Typically both electrical and thermal behaviour are
represented by an equivalent compact network model. Such
a technique allows for a SPICE-like solution of the problem.
Electrothermal coupling is then established by iteration be-
tween the electrical and thermal solver until convergence is
reached, as shown schematically in Fig. 1.

Recently, attention is being dedicated also to device level
simulation, e.g. for characterisation of hot spots in transistors
and interconnection lines [4,5]. Whereas multichip simulators
usually consider one single network node for every device, the
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Fig. 1. Iteration diagram for electrothermal simulator.

current and power densities and temperature are actually non-
uniformally distributed inside each component. This in itself
gives rise to electrothermal coupling.

In this paper a dynamic electrothermal analysis will be
carried out at device level for a single integrated resistor.
In the next sections we will introduce the resistor design
and describe the methods used in the electrical and thermal
solver. Then a brief overview is given of the various methods
and characteristics that can be used for dynamic thermal
characterisation of the device. Next the simulation results are
presented and discussed. Analytical approximations are pro-
vided for comparison; good matching with characteristics for
1-D spherical heat spreading is observed. The analyses clearly
reveal nonlinearities caused by the electrothermal coupling.
Finally a summary concludes the paper.

II. INVESTIGATED STRUCTURE

We will investigate a thin resistive film with thickness d
integrated on top of a semiconductor substrate. Electrodes are
attached at two sides of the film, between which a voltage
Vin(t) is applied. The considered layout is sketched in Fig. 2.

Although the method described later is in principle appli-
cable to more complicated structures, this simple geometry is
chosen to facilitate interpretation of the results and to enhance
physical insight. A halfinfinite substrate is used mainly because
of calculation time reasons. In principle however also finite
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Fig. 2. Resistor integrated on halfinfinite substrate.

substrates or even multi-layered structures can be taken into
account, as explained further in section III.B.

It would be interesting to apply the presented analysis
method to a more realistic situation, e.g. a power transistor.
The physical description for such a device will be quite differ-
ent, in particular for the electrical model. Namely the Eqs. (1)
– (5) need to be replaced by a coupled set of ’semiconductor
equations’ providing the carrier concentrations, electrical field,
current density etc. In general terms however, phenomena
similar to those observed in a resistor can be expected, e.g. the
non-uniform temperature and power distributions could lead to
current displacement and runaway behaviour.

III. SIMULATOR PROCEDURES

In order to simplify the modelling of the device, we will
assume the thickness of the resistor to be much smaller than its
lateral dimensions. In most practical situations this condition
will be fulfilled. Due to this approximation all electrical
and thermal fields inside the resistor can be treated as two-
dimensional, i.e. they are only (x, y) dependent.

As a second key assumption we will suppose the resistor,
from an electrical point of view, is operated in quasi-static
regime. In other words it is assumed that for each change in
the driving voltage the relaxation of all electrical phenomena
is completely finished within the considered time step. In
practice it can indeed be expected that electrical time constants
are several orders of magnitude smaller than their thermal
counterparts, except for very small devices. For high frequency
operations, accurate electrical modelling would also require to
take capacitive and inductive effects into account. This falls
outside the scope of the current work. Here we simply assume
the device is at every moment acting as a pure resistor.

A. Electrical solver
As explained earlier, the voltage distribution inside the

resistor can be thought of as 2-D: φ = φ(x, y; t). The electric
field ~E (in V/m) is then given by:

~E(x, y; t) = −~∇φ(x, y, ; t) (1)

The resistor material is characterised by an electrical conduc-
tivity σ(x, y; t) (in Ω−1m−1) and a temperature coefficient α
(in K−1). The latter describes a linearisation of the tempera-
ture dependency of the resistivity σ−1, leading to:

σ(T ) =
σref

1 + α∆T
(2)

in which σref = σ(Tref ) is a reference value (typically at
300K) and ∆T = T −Tref . As the temperature distribution is
normally non-uniform, the conductivity is location dependent
as well, hence the notation σ(x, y; t). The conductivity relates
the electric field to the current density ~J (in A/m2):

~J(x, y; t) = σ(x, y; t) ~E(x, y; t) (3)

Under the assumed quasi-static regime, the continuity equation
becomes:

~∇ ◦ ~J(x, y; t) = −∂ρ

∂t
≈ 0 (4)

hence combining (1), (3) and (4) produces

~∇ ◦
[

σ(x, y; t)~∇φ(x, y; t)
]

= 0 (5)

This is a partial differential equation (PDE) for the voltage
inside the resistor. The boundary conditions are as follows: (i)
φ(x, y; t) = Vin(t) at the positive electrode, (ii) φ(x, y; t) = 0
at the negative electrode and (iii) ∂φ

∂n = 0 along all other
boundaries. Eq. (5) can be solved relatively easily using
numerical techniques, such as FEM. A triangular mesh is
generated and the voltage for each grid node is calculated. This
was achieved with the PDEtools functions in Matlab. Once the
voltage is determined, we can calculate the volumetric power
density (in W/m3) as:

pV (x, y; t) = ~J(x, y; t) ◦ ~E(x, y; t) (6)

The equivalent surface power density is then immediately
obtained by multiplying pV with the thickness d of the resistor.
Finally this leads to:

p(x, y; t) = d · σ(x, y; t)

[

(

∂φ

∂x

)2

+

(

∂φ

∂y

)2
]

(7)

The obtained density p functions as input for the thermal
solver (see Fig. 1) to calculate the temperature distribution
as explained below.

B. Thermal solver
The substrate material is characterised by a thermal con-

ductivity k (in W/mK), assumed isotropic, and a volumetric
heat capacity Cv (in J/m3K). We will neglect the temperature
dependence of k; one might however consider an a posteriori
correction of the temperature field based on an estimated
average temperature in the relevant substrate area [6]. Inside
the substrate, the 3-D diffusion equation must be solved:

k∇2T (x, y, z; t)− Cv
∂T

∂t
= 0 (8)

The resistor is dissipating power with a density p(x, y; t) as
just obtained by the electrical solver. We will assume the
adiabatic condition at the top substrate surface, hence all this
power must be removed by conduction. A semi-analytical
method will be used for temperature calculation, based on a
Green’s function. The latter is the fundamental solution of the
heat equation, i.e. it gives the temperature field generated by a
1 Watt Dirac impulse both in space and time. The temperature
generated by a distributed heat source as we are dealing with
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here is then found by superposition. In case of the halfinifinite
substrate, we have for the source temperature:

Ts(x, y; t) = 2

t
∫

0

dτ

∫∫

resistor

p(x, y; τ)G(∆x, ∆y, 0; t − τ)dx′dy′

(9)
where ∆x = x−x′, ∆y = y−y′ and G is the Green’s function
for the 3-D space:

G(∆x, ∆y, ∆z; t) =

√
Cv

8 (πkt)
3/2

exp

(

−Cvr
2

4kt

)

(10)

with r2 = (∆x)2 + (∆y)2 + (∆z)2. The extra factor 2 in
(9) is needed because of the adiabatic boundary condition.
Note that (9) can still be applied for substrates with finite
thickness using a multiple reflection technique: one has simply
to adjust the Green’s function according to the image sources.
The same holds for a squarely laterally limited substrate. For
other cases, i.e. multiple layers, a different technique such as
finite element or boundary element method must be used to
obtain the temperature. For the actual calculation the resistor
(heat source) is divided into a grid of rectangular elements.
To each of them a power density is attributed according to
the average values in the underlying triangular mesh of the
electrical solver. The temperature for each rectangular segment
is then found by numerical evaluation of the integral (9).
Special care is taken for correct treatment of the singularities
occurring in the Green’s function. Once the thermal field is
known, Eq. (2) produces the electrical conductivity needed by
the electrical solver.

C. Iteration and time stepping
Let us consider a set of increasing time values t =

t1, t2, . . . , ti, . . . The time steps are chosen in such a way that
they allow to accurately follow the input voltage. For each time
value the aforementioned procedures are now alternated, i.e.
we run the electrical / thermal / electrical / thermal / ... solver
as illustrated in Fig. 1. The iteration continues until the relative
change of a testing quantity, e.g. the average temperature, gets
smaller than a preset value. At the end of each cycle the power
density p(x, y; ti) is stored in memory, since it is needed in
(9). Then we move to the next time value, adjust the input
voltage accordingly and start a new iteration cycle.

IV. DYNAMIC THERMAL CHARACTERISATION

Before moving to the actual simulation results, we will
briefly explain the various methods used to represent the
dynamic thermal behaviour of electronic devices.

A first and obvious way is to provide the thermal step
response. The power is suddenly switched either on or off and
the according temperature is captured as a function of time.
These responses, which are the heating and cooling curve
respectively, are each others complement for a linear system.
In case of electrothermal coupling however this equivalence is
lost, as will be shown later.

A second characteristic is the thermal impedance. This is
simply an extension of the well known thermal resistance Rth

to dynamic phenomena. One may use a transient impedance
Zth(t), being the ratio of the temperature T (t) and applied
power P (t), although the concept is more commonly used in
the Laplace domain:

Zth(s) = L [Zth(t)] =

∞
∫

0

T (t)

P (t)
exp(−st)dt (11)

The evaluation along the complex axis Zth(s = jω) is partic-
ularly interesting, as this gives the thermal frequency response
of the system. This function can be visualised as a Nyquist
plot (complex locus), i.e. Im[Zth(jω)] vs. Re[Zth(jω)] with
ω as a parameter.

Another way of representing the dynamic behaviour is the
time constant spectrum. The heating curve normalised to a
1W power step, i.e. the transient impedance, can be approxi-
mated as the superposition of a large number of exponentials
of the form Ri[1 − exp(−t/τi)]. In practice the thermal time
constants are not limited to a discrete set of values i; they
cover a wide range instead. So eventually the summation of
discrete components merges into a continuous integral:

Zth(t) =

∞
∫

−∞

R(ζ) [1 − exp(−t/ exp(ζ))] dζ (12)

in which we used ζ = ln(τ) as a logarithmic time constant
variable. The time constant spectrum R(ζ) can be obtained by
numerical deconvolution of the differentiation of the step re-
sponse in logarithmic time scale [7]. If the complex impedance
function Zth(s) is known, the spectrum can also be obtained
as [7]:

R(ζ) =
1

π
Im [Z(s = − exp(−ζ))] (13)

A final dynamic thermal characteristic we will use is the
structure function. Two variants can be considered. The
cumulative structure function (CSF) shows the cumulative
thermal capacitance C∑ as a function of the cumulative ther-
mal resistance R∑, while the differential structure function
(DSF) uses dC∑/dR∑ as ordinate. Values for R∑ and C∑

are obtained from the elements in an equivalent Cauer network
representing the dynamic behaviour. Such can be derived by
turning the time constant spectrum into an equivalent Foster
network, followed by a Foster-Cauer transformation. It has
been shown that structure functions provide direct information
about the heat flow path, where R∑ should be seen as a
generalised coordinate [8]. One can e.g. prove the DSF is
proportional to the squared cross section area of the heat
flow path. This and other properties make the DSF a useful
instrument for thermal characterisation and failure detection
of multi-layered systems and electronic packages [8,9].

V. SIMULATION RESULTS

We will study a 1 kΩ resistor design for a power amplifier
(max. 15V voltage drop over the resistor). The resistor is
implemented as a 1 µm thin film of n-type silicon with doping
concentration of 1017 cm−3. This leads to [6]:

σref = 1.3× 103 Ω−1m−1 (Rsheet = 769Ω/square)

α = 0.0043 K−1 (14)
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The resistor is integrated on a silicon substrate. The finally pro-
posed design and all relevant electrical and thermal parameters
are shown in Fig. 3.

Si substrate
k = 160 W/mK

Cv = 1.78x10⁶ J/m³K

+15V

0V

26µm

20µm

n-Si resistor

thickness d =1µm
s = 1.3x10³/Wm
a = 0.0043/K

x

y

z

Fig. 3. 1 kΩ design used for electrothermal simulation.

We will analyse the behaviour during device switch-on (a
voltage step of +15V is applied) at t = 0. The resistor
was divided into a mesh containing 3968 triangles and a
grid of 520 squares for the electrical and thermal solver
respectively. Results are to be compared with those found
for a linear, temperature independent (α = 0) resistor. The
calculated heating curves were further processed using the
T3ster software provided by MicRed company.

A. Validation of the method
First the proposed simulation technique is checked for self-

consistence. For this purpose we have calculated the average
resistor temperature using different time step schemes (see Fig.
4).
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Fig. 4. Consistency check of the simulator.

One can clearly see that regardless the initial value or
distribution of the time samples, the results are extremely
similar. A very accurate estimation for the steady state value
can be even obtained with one single time step simulation at
t = 10 s.

B. Step responses
Heating curves were simulated with a resolution of 20 points

per decade. The obtained minimum, average and maximum
temperatures are shown and compared with the linear case in
Fig. 5. The graph also indicates the values obtained by a DC
electrothermal simulator developed earlier [6].
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The simulators agree fairly well, except for the minimum
temperature. The reason for this is not fully clear yet.

Initially all curves coincide, hence the temperature distribu-
tion is uniform. Moreover, up to about 200 ns both resistors are
showing the same behaviour. It is only from that moment α
starts to play a role and a deviation between the curves is ob-
served. This can be easily explained. Initially the temperature
rise is quite small. Hence the effective electrical resistance
Reff , i.e. the input voltage divided by the total current, is
close to the reference value. As the heating process continues
and the temperature rises, the resistance will increase, which
under a constant voltage reduces the dissipated power (see
Fig. 6). This finally leads to temperatures that are lower
compared to the linear case. It is needless to say that for the
linear case both Reff and P remain constant, at 1 kΩ and
225 mW respectively. Finally it was also observed the effective
electrical resistance could be fitted extremely well using:

Reff (t) ≈ (1 + αTavg(t)) · Rref , Rref = 1 kΩ (15)

as could intuitively be expected.
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C. Thermal impedance
Let us now calculate the thermal impedance, by normalizing

the average temperature to the dissipated power P (t). While
the heating curves for α = 0.0043 and α = 0 were clearly
different, their thermal impedance coincides both in the time
and frequency domain (Figs. 7 and 8 respectively).
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Based solely on the impedance plots, which are very com-
monly used as a major dynamic characteristic, the structures
can simply not be distinguished. This suggests that Zth

is mainly determined by the resistor geometry and thermal
substrate parameters. The minor influence that could arise
from the altered temperature distribution is probably wiped out
completely by taking the average temperature. In Fig. 8 the
Nyquist plot corresponding to a 1-D spherical heat spreading
is also given for comparison. For such a case one can prove
analytically:

Zth(s) =
Rth

1 +
√

s/s0

, s0 =
4π2k3R2

th

Cv
(16)

In the foregoing we took the variable nature of the power dis-
sipation into account. When doing measurements in practice,
we are however not always aware of the nonlinear behaviour
of the device. One could erroneously assume that the voltage
step simply leads to a constant power (namely 225 mW) being
applied to the resistor, and carry out the analysis accordingly.
As can be seen in Figs. 7 and 8 (’α = 0.0043, unaware’
curves), this approach leads to an underestimation of the
thermal impedance.

D. Time constant spectrum
The transient impedance curves were further processed to

obtain the time constant spectrum. The results are shown in
Fig. 9. For time constants up to about 100 ns the spectra are
almost identical. This should not be a surprise. It is again
because initially only small temperature rises are generated, so
nonlinear effects do not yet play a role. For larger τ values an
interesting observation is made. Whereas the impedance seems
identical for nonlinear and linear cases, small differences in
the time constant spectrum are noticed.
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Fig. 9. Thermal time constant spectrum.

This illustrates the advantage of a multi-viewpoint analy-
sis: some characteristics reveal information which cannot be
detected in others. The difference between the two structures
manifests itself in different sizes of certain peaks, however
still at the same time scale. This is in contrast to the situation
where one is not aware of the nonlinearity. In that case some
peaks are even shifted, as indicated with (*) in Fig. 9.

The overall shape of the spectrum is predicted reasonably
well by the result for spherical spreading. By applying (13) to
(15) and going back to linear time scale, we find:

R(τ) =
Rth

π

√

1/s0τ

1 + 1/s0τ
(17)

This function is also represented in Fig. 9 (dotted line).

E. Structure function
The differential structure function is shown in Fig. 10.
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Fig. 10. Differential structure function.

We remind this function is strongly related to the heat flow
profile. The alteration of the temperature distribution inside
the resistor, caused by the nonlinearity, can be expected to
have almost no influence on the way the heat spreads into
the substrate. It is therefore not surprising that the structure
functions for α = 0.0043 and α = 0 are nearly coinciding (see
Fig. 10). When one is however not aware of the nonlinearity,
the DSF is deviating, due to the underestimation of the thermal
impedance.
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For a 1-D spherical heat flow, the structure function can be
calculated analytically:

DSF =
dC∑

dR∑

(

R∑

)

=
Cv

4π2k3

1
(

Rth − R∑

)4
(18)

This analytical model, also presented in Fig. 10, is very
comparable to our results for R∑ > 60 K/W. This means
that sufficiently far away from the resistor the heat spreads
almost radially in the substrate, as could be expected. The
actual heat source is obviously a rectangle instead of half a
sphere, explaining the less accurate fit close to the substrate
surface (small R∑).

F. Heating vs. cooling
As a final illustration of the nonlinear behaviour we will

dedicate some words on the cooling curve. Upon heating, the
electrothermal coupling causes a continuous mutual influence
between the power, current and temperature distributions.
During cooling however the power is switched off, hence the
coupling disappears. Apart from the different initial temper-
ature distribution the resistor cools down just like a linear
one. As a consequence, heating and cooling curves are not
complementary when dealing with a temperature dependent
resistor. This is clearly illustrated in Fig. 11: the summation
of the two curves no longer gives rise to a constant value.
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Fig. 11. Heating vs. cooling (α = 0.0043).

VI. CONCLUSIONS

We have presented a semi-analytical method that allows
electrothermal simulation of integrated resistors. The studied
example clearly illustrated non-linear effects. The calculated
step response was further processed to obtain an extensive
dynamic thermal characterisation. A key point to remember is
that certain characteristics reveal more information than others:
in some cases it was simply not possible to distinguish the
resistor from a linear one. Finally the importance of being
aware of potential non-linear behaviour should be stressed:
assumption of a constant power application clearly leads to an
incorrect characterisation of the device.
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