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Abstract-  The flexible  profile approach proposed earlier  to
create  CTM  (compact  or  reduced  order  thermal  models)  is
extended  to  cover  the  area  of  conjugate  heat  transfer.  The
flexible profile approach is a methodology that allows building a
highly  boundary  conditions  independent  CTM,  with  any
desired  degree  of  accuracy,  that  may  adequately  replace
detailed 3D models for the whole spectrum of applications in
which  the  modeled  object  may  be  used.  The  extension  to
conjugate problems radically solves the problem of interfacing
two  different  domains.  Each  domain,  fluid  or  solid,  can  be
“compacted”  independently creating  two  CTM  that  can  be
joined together to produce reliable results for any arbitrary set
of external boundary conditions. 

I. PROBLEMS ASSOCIATED WITH THE HEAT TRANSFER
COEFFICIENT

Conjugate  heat  transfer  is  a  classical  problem  in  heat
transfer in which coupling between two heat transfer modes
(convection and conduction) is observed. This phenomenon
was raised to the level of a “problem” because of the non
adapted use of the concept of heat transfer coefficient h and
associated correlations to this case. 

In  fact,  at  the  boundaries  of  a  fluid  undergoing  forced
convection, heat transfer boundary conditions are in reality
never  as  ideal  as  those  used  to  obtain  correlations,  i.e.
uniform temperature  or  uniform heat  flux.  The  concept  of
heat  transfer  coefficient  h represents  a  compact  thermal
model, although of the lowest possible order. It reduces (or
compacts) the complicated 3D problem to a simplified form
containing only one parameter (or one degree of freedom): a
single  resistance.  Advantages  of  simplicity  are  evident.
Disadvantages are rarely acknowledged. The most important
one  being  that  this  simple  model  can  never  be  Boundary
Conditions  Independent (BCI).  Indeed,  we usually say the
“uniform heat flux  h,” or the “uniform temperature  h” etc.
One should never use a non BCI model in situations other
than those for which it was extracted, which is unfortunately
rarely respected in engineering practice, simply because no
other solution is offered. It would of course be impractical to
produce dozens of correlations for  h for the same geometry
but with different forms of boundary conditions.  The case of
conjugate  heat  transfer  is  a  flagrant  manifestation  of  the
problem: Even if we had a whole set of correlations for h for
all  possible  forms  of  boundary  conditions  (uniform,  non-
uniform, imposed temperature, imposed flux …), we would
have problems selecting the appropriate  element in this set

because  the  actual  temperature  and  heat  flux  profiles  are
unknown. The only plausible solution to that problem is to
replace  the  heat  transfer  coefficient  h by  another  BCI
representation of the heat transfer problem. This constitutes
the main objective of this work.

Compact  thermal  model  (CTM)  that  model  conduction
problems associated with heat transfer in electronic industry
is a subject that has received considerable attention [1-4] and
is thus sufficiently mature. It has long been recognized in this
area  that  the  “equivalent”  thermal  resistance  of  a  domain
undergoing heat transfer by conduction is a strong function
of temperature and/or heat flux profiles at its boundaries [5].
The BCI concept has first been introduced in this field [6].
Of course no CTM can be 100% BCI, but care in creating it
would let it be as close to BCI as possible. 

Concerning  dependence  of  the  thermal  resistance  on
imposed profiles, the situation for convection is even worse:
the genesis and development of the thermal boundary layer is
a strong function of these profiles. Conjugate heat transfer
problems are the worst of all simply because profiles are far
from  being  uniform  as  well  as  being  unknown.  Another
approach was also proposed by solving (or measuring) the
coupled problem in order to derive correlations taking into
consideration  properties  of  both  media.  This  leads  to  an
intractable problem because of the huge number of possible
combinations of convective and conductive domains.

All this is  also linked with the well known fact that  the
concept  of  heat  transfer  coefficient  does  not  adequately
model  multiple  heat  source  problems [7].  If  multiple  heat
sources were installed on domain boundaries, with the ability
to operate independently, any form of boundary conditions
profiles can be created. They cannot be all modeled by one
and the same correlation. The use of a “local” heat transfer
coefficient does not help, simply because the development of
the thermal boundary layer is not a local phenomenon. 

II. INABILITY OF RESISTIVE NETWORKS TO A
CONVECTIVE DOMAIN

In an earlier work [8], it was argued that resistive networks
are  by  nature  fully  symmetric,  in  the  following  sense:  A
source acting on node i will produce an effect on node j that
is  exactly  the  same  as  the  effect  that  would  have  been
produced at node i if the source was placed at node j. This is
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perfectly  valid  for  conduction  heat  transfer,  because  it  is
governed  by  a  differential  equation  (3.1a)  containing  a
symmetrical operator. Convection is precisely the case where
this  statement is  not  true!  A source placed up-stream will
produce  an  effect  on  down  stream side  that  is  orders  of
magnitude  higher  than  the  effect  that  would  have  been
produced up-stream by the same source placed down stream.
This well known fact stems from the non-symmetrical nature
of  the  differential  operator  that  appears  in  the  energy
equation describing convection (4.1b). Above argument is a
killing one for any attempt to model a domain undergoing
convection  by a  resistive  network.  In  order  to  put  it  in  a
visual form, imagine a micro-channel with fluid entering at a
low temperature Tin, leaving at a higher temperature Tout and
exchanging heat with a wall that is maintained at a uniform
temperature Twall, which is the highest temperature. There are
obviously 3 nodes in this model  in,  out and  wall. A fourth
one may be also defined,  with which we can associate the
average  fluid  bulk  temperature  Tbulk.  In  addition  to  the
temperature associated with each node, we have to associate
an  “energy flux”:  qin,  qout and  qwall.  The  first  two contain
mainly (but  not exclusively) an enthalpy flux, the last one
only  contain  heat  crossing  the  wall.  The  reason  why we
consider energy fluxes, and not only heat fluxes, is because
heat  entering walls  in  this  problem leaves  in  the  form of
enthalpy.  The  role  of  the  CTM is  precisely to  model  the
relation  between  all  these  energies  and  corresponding
temperatures  as  a  black  box.  We  need  not  defining  an
independent  energy  flux  associated  with  the  bulk  node,
unless heat was generated in the bulk, which is  a case we
preclude  for  simplicity.  How can  we  build  the  CTM?  In
Figure 1, all nodes are shown, together with real directions of
energy fluxes. A single resistance that is simply the inverse
of  h is also shown. Can we connect  in/out nodes with other
nodes, using resistors? Certainly not, because such resistors
would imply heat transfer from out to  in through the  bulk!
Any attempt to “solve” this issue using only resistors would
simply fail because resistors are not valid building blocks for
convective  problems.  In  case  the  convection  problem was
linear, the only possible way to model T/q relations is a non-
symmetric  matrix  (contrary  to  the  conductive  case  which
results in a symmetric matrix). 

Figure 1. Inability of a resistive network to model a
convective domain

III. THE FLEXIBLE PROFILE TECHNOLOGY

The flexible profile approach has been recently introduced
[9] to model heat transfer by conduction under the effect of
any type,  form or value of boundary conditions.  This is  a
fundamentally new approach that performs much better than
the  classical  “equivalent  thermal  resistance(s)”  one.  The
main philosophy is simple:
A. Construct a set of basic profiles that may serve as a basis

to generate any profile. It has been proven that this set is
composed of relatively few elements, of the order of 1 to
5 per direction for each “node” (i.e. heat exchange port).

B. Obtain analytically the response of the system to each
element of the set, in the form of a matrix of influence
coefficients,  which  is  a  generalization  of  the  thermal
resistance network. This is the new Compact Thermal
Model (CTM).

C. Use the above obtained CTM to predict system response
for any given profile, by decomposing this profile over
the basis constructed in step A. The more elements in
the basis the better  would be the representation of the
imposed  boundary  conditions.  This  is  the  only
approximation  involved.  The  error  is  perfectly
controllable  by  selecting  any  adequate  number  of
elements in the basis constructed in step A.

The detailed model taking into consideration only classical
conduction effects (i.e. no quantum effects) at steady state is
governed by:

    rr vqT     r   (3.1a)

sTT
D


 ; sqT
N



n ; (3.1b)

where  T is  the  temperature  field,  qv is  a  volumetric  heat
generation  term,   is  the  thermal  conductivity,  r is  the
coordinate,  qs is the heat flux density entering the surface.
The  latter  can  be  expressed  as  any  linear  or  non-linear
function of T, allowing thus Robin type boundary conditions:

qs = h (T – T) (3.1c)
(where  h is the heat  transfer  coefficient by convection)  as
well as radiation and non-linear convection. In the sequel, 
will be considered  constant in order  to  have a linear PDE
(3.1a).  This  is  not  a  limitation,  since  the case  where   is
function of  T can be easily transformed to a linear equation
using  Khirchhoff  transformation.  Note  that  boundary
conditions may still be a nonlinear function of T through h in
(3.1c). The application of the flexible profile approach will
be very briefly presented. First,  let us create  an associated
modified Green’s function G satisfying:

   '',2 rrrr  G r, r'   (3.2a)
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where  1 is  the  outside  surface  sub-domain

corresponding  to  an  arbitrarily  chosen  “reference”  node.
Using the  above  Green’s function,  as  well  as  the  Green’s
theorem, equation (3.2a) can be transformed into:

       
 N

jav
j

dqGTT 1 '1 ''',
r

rrrrr (3.3)

where Tav1 is the average temperature over node 1 and j  is
the domain of “node”  j. Using any convenient orthonormal
set  ru

i  over each node i, we can express T and q profiles
as:

   
 0u

u
i

u
iTT

i
rr r (3.4a)

   
 0u

u
i

u
iqq

i
rr r (3.4b)

Hence,  by substituting in  (3.3)  we get  after  multiplying
both  sides  by  ru

i ,  integrating  using  the  orthonormal

property of  ru
i  and truncating the series after U terms:
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This is the Flexible Profile Compact Model involving as
state variables at each node, not only one single value, but
rather the coefficients of the expansion of  T and  q profiles
over  a  given  complete  set.  Taking  a  sufficient  order  of
precision over each node, typically 0 to 4 per dimension, one
can approximate reasonably well any T or q profile with one
and  the  same  model.  It  is  worth  noting  that  classical
approaches  are  explicitly  or  implicitly  equivalent  to  the
restricted  version of  the  proposed approach  with only one
term in the series (3.4). The use of the series (3.4) as well as
the  general  equation  (3.3)  makes  the  flexible  profile
approach  a  general  framework  for  all  possible  CTM  in
conduction

IV. EXTENSION TO THE CONJUGATE PROBLEM

The concept depicted above will now be generalized to the
case  of  forced  convection,  before  extending  it  to  the
conjugate problem, both being the main contribution in this
work. We limit analysis to forced convection with a known
velocity field  v to maintain linearity. It is to be noted that
non-linearities in external boundary conditions will still  be
easily handled. Governing differential equation is now:

      rrvr vp qTcT     r   (4.1a)
Boundary  conditions  will  be  expressed  in  a  form  that

reveals energy fluxes as follows:

sTT
D


 ;   sp qTcT
N



v.nn ; (4.1b)

As before, the energy flux density  qs can take any form,
including a linear (for convection: eq. 3.1c) or nonlinear (for
radiation) relation with temperature. Physical properties are
constant. The associated modified Green function satisfies:

   '',2 rrvrr  GcG p    r,r' (4.2a)
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where  1 is the outside surface sub-domain corresponding
to an arbitrarily chosen “reference” node and B: 






   r

rnv GdcB p1 (4.2c)

In case the integral  in  the RHS of  (4.2c)  vanishes (e.g.
conduction),  the  following  condition  could  be  added  to
remove  the  arbitrary  additive  constant  when all  boundary
conditions involve derivatives:

0
1

 r
rGd (4.2d)

Using the above Green’s function, as well as the Green’s
theorem, equation (4.2a) can be transformed into:

       
 N

jmav
j

dqGTT 1 '1 ''',
r

rrrrr (4.3)

where Tav1m, defined as:

 


111 rr
rr dBTdT mav

is an “average” temperature over node 1 with the weight B.
As for q, it can be either qv if the node j was a volume source
or (n.T – cp T v.n) if node j was a surface source. 

Equation (4.3), derived in this work, plays for convective
domains, the same role as that played by (3.3) for conductive
domains. It is a general relation between energy fluxes and
temperatures  at  system  boundaries  that  was  analytically
obtained  without  any simplifying  assumption,  and  without
making use at any level of boundary conditions (4.1 b,  c).
This fully BCI model is the general framework for any CTM
to be built for convective domains. In analogy with (3.3) for
conduction,  any CTM constructed  for  convective  domains
can be viewed as an approximation to (4.3) in order to reduce
its dimensionality. The reduction will naturally entail some
loss of its BCI properties.

Under  the  light  of  what  has  been  advanced,  a  rational
approximation  which  keeps  any  desired  level  of  BCI
properties  of  the  resulting  CTM would  be  to  consider  its
truncated development over a complete orthonormal set (e.g.
3.4). This will give rise to:

   UuNiqRT N
j

U
v

v
j

uv
ij

u
i ,0,,11 0    (4.4a)

      rrrrrr
r r

ddGR
i j

v
j

u
i

uv
ij   


'

''', (4.4b)

The above equation is identical to (3.5), except that  T,  q
and G here are generalized entities that may reduce to their
conductive counterparts if v vanishes everywhere ( B=1):

T temperature with reference Tav1m (instead of Tav1)
q Energy flux density (instead of heat flux density)
G Green’s function satisfying (4.2) instead of (3.2)
The formulation obtained in this work goes beyond earlier

suggestion [8] due to the high analogy between CTM formats
obtained for  convective and conductive domains,  which is
quite adapted to the conjugate heat transfer problem.  
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The matrix R appearing in (4.2) would adequately replace

the single heat transfer coefficient h. It is interesting to note
that the  R matrix contains  h for the uniform heat flux case.
The inverse of R contains h for the uniform temperature case.
Hence, we can easily visualize the fact that  R gives the full
picture that a single h can not capture. The price paid by this
complication, i.e. replacing a single number by a matrix, is
largely  compensated  by  the  ability  to  model  any  type  of
boundary conditions. In fact, the CTM constructed this way,
describes  precisely  the  intrinsic  behavior  of  each  domain
(convective or conductive) subject to any external effect. 

The Green’s function  G for convective domains may not
be  easy  to  find  analytically  for  complicated  geometries.
These  geometries  can  be  partitioned  into  simpler  ones.
Hence,  G for  the  original  geometry  can  be  obtained  by
assembling G for all constituting partitions. 

The  following  transformation  proves  to  be  useful  for
incompressible flow (.v=0):

     ',', 2' rrrr rrv geG     r,r' (4.5)
where  cp. Substituting in (4.2) yields:

    '4', 22 rrvvrr  gg    r,r' (4.6)
In case the velocity field  was uniform, than (4.6)  has a

simple straightforward solution. For a complicated velocity
field, g (or G) has to be obtained numerically. 

Figure 2. Problem geometry

IV. A SIMPLE PROBLEM

The  simple  2D  channel  will  be  considered  here  with
symmetry boundary conditions at the channel mid plane, and
uniform  velocity  field.  Channel  walls  are  of  uniform
thickness  and  physical  properties.  Both  CTMs  (for  the
conductive  and the  convective  parts)  are  obtained directly
from the available analytical Greens functions. These models
are currently tested both as stand alone, as well as combined
together to model conjugate heat transfer in order to prove
the ability of the flexible profile approach to deal with such
cases.

V. CONCLUSION

A general formulation has been made of compact thermal
models for convective domains that is fully compatible with
that  of  conductive  domains.  The  traditional  heat  transfer
coefficient  is  now only a  term in an influence matrix  that
correctly models heat transfer for different kinds of boundary
conditions. 

For the case of  conjugate heat  transfer  in  particular,  we
obtain the following advantages: 
A. The  problem  becomes  totally  decoupled.  We  get  a

single  model  for  the  intrinsic  behavior  of  the
convective domain, as well as another single model for
the conductive domain. Each of them depends only on
its  own domain characteristics  and  is  independent of
the other domain. They can be joined together to get
the compound model that takes care of all interactions
by simple algebraic operations.  

B. The case of multiple heat sources is adequately treated
due  to  the  replacement  of  a  single  heat  transfer
coefficient  by the new form of the CTM, which is  a
matrix of influence coefficients. The latter aspect can
be  viewed  as  a  generalization  of  the  concept  of
“adiabatic” heat transfer coefficient.

C. Surface  temperature  gradients  are  an outcome of  the
analysis,  which will enable the estimation of  thermal
stresses.

D. Higher  precision,  as  compared  to  using the  classical
heat  transfer  coefficient,  can  be  obtained.  This
precision can be made as close as needed to that of the
detailed  FEM  model,  by  increasing  the  number  of
elements in the basis. The key point is that convergence
is very fast, hence few members are usually enough to
get results of adequate precision.
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