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Abstract- This paper will deal with the modeling-problem of 

combining thermal subsystems (e.g. a semiconductor module or 
package with a cooling radiator) making use of reduced models. 
The subsystem models consist of a set of Foster-type thermal 
equivalent circuits, which are only behavioral models. A fast al-
gorithm is presented for transforming the Foster-type circuits 
in Cauer-circuits which have physical behavior and therefore 
allow for the construction of the thermal model of the complete 
system. Then the set of Cauer-circuits for the complete system 
is transformed back into Foster-circuits to give a simple 
mathematical representation and applicability. The transfor-
mation algorithms are derived in concise form by use of recur-
sive relations. The method is exemplified by modeling and 
measurements on a single chip IGBT package mounted on a 
closed water cooled radiator. The thermal impedance of the 
complete system is constructed from the impedances of the sub-
systems, IGBT-package and radiator, and also the impedance 
of the package can be inferred from the measured impedance of 
the complete system.    

I.     INTRODUCTION 
For the calculation of hot spot temperatures or temperature 

fields in electronic systems with rapidly varying chip heat 
source strength usually reduced models are used.  Numerous 
compact static [1-5] and transient [6-10] thermal models have 
been established for a rapid calculation of temperatures. The 
notion of “compact” thermal model usually implies boundary 
condition independence (BCI) [1, 2], i.e. the model is valid for 
all (or nearly all) reasonable temperatures, heat flows and also 
heat transfer coefficients applied to the thermal contact areas. 
An advantage of the model presented in [11, 12] is its ease of 
parameter determination by simple linear least square fit to 
measured or simulated heating curves (thermal impedances). 
The model was extended in [12] to include the effects of vary-
ing surface or ambient temperature and varying heat flows at 
the thermal contact areas. However, it is not possible to use 
arbitrary heat transfer coefficients α as external bound.c. pa-
rameters independently of the model parameters. Thus new 
model parameters have to be determined, when α changes. On 
the other hand the compact models of [1, 2, 4, 5] deal with 
small packages with small thermal contact areas in comparison 
to the multi chip module of Fig. 1, which is mounted on a 
cooling radiator. Such modules always have a large tempera-
ture variation along the bottom side of the module base plate 
depending on the different heating cases. Thus the module can 
hardly be approximated thermally by a compact model which 
is independent of  α.  

Most of the reduced models, also [11, 12], apply to systems 
with negligible nonlinearities, e.g. the material parameters are 
supposed to be temperature independent just as is α. Methods 
for reducing nonlinear systems are presented e.g. in [13, 14]. 

This paper will deal with the modeling-problem of combin-
ing thermal subsystems, e.g. combining a power semiconduc-
tor module with a cooling radiator, making use of the reduced 
models of [11, 12]. Heat transfer coefficients α in this context 
can also be modeled as thermal subsystem (layer of thermal 
resistance).   

II.    THERMAL MODEL 

The model in [11, 12] characterizes the thermal set-up by a 
set of M ≤ 20 effective time constants ti which are logarithmi-
cally distributed, typically between Min(ti) = 10-4 s and Max(ti) 
= 1000 s (depending on system and heat source size), and be-
sides this are chosen freely. The model equation for the tem-
perature field T(x, t) reads:  
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where sl(t) denotes a heat source term which can be either the 
dissipated power pl(t) of a chip l, l =1, .., L or an applied aver-
age ambient temperature Ta,c(t) at a thermal contact area c = 1, 
.., C or a thermal heat flux Jk(t) at a thermal contact k = 1, .., J. 
The matrices Mi l(x) represent the model parameters for a cho-
sen set of locations x, usually the hot spots of the system in the 
chip centers. The Mi l(x) values are obtained by linear least 
square fits to unit step responses of FEM-simulated or meas-

Fig. 1: FEM-simulation of steady state temperature (°K) distribution 
for 1700V IGBT and diode module mounted on cooling radiator. 
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ured T(x, t) for individual sl(t).   
Using the expression (1) for single source unit-step heating 

with sl(t) = Θ(t) and sm(t) = 0 for all  m ≠ l the temperature 
field in case of homogeneous starting temperature T(x,0) = 0 
takes the more customary appearance of a thermal impedance 
(heating curve for unit power):  
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with Ri(x) = ti Mi l (x).  zthl (x,t) denotes the unit step response 
of the system for heating only e.g. chip l with unit strength of 
power or one thermal contact area with a unit step in ambient 
temperature or one thermal contact with a unit heat flux step. 
zthl(x,t) thus is the generalized thermal impedance for fixed 
position x. It can serve to calculate T(x,t) for arbitrary time 
evolution sl(t) by convolution of sl(t) with the time derivative 
żthl (x,t)  [15, 16], which can also be directly inferred from (1). 
Having simultaneously several sources sl(t) ≠ 0 the individual 
contributions to the temperature field are superposed accord-
ing to (1). 

Eq. (2) is represented by the Foster thermal circuit of Fig. 2 
with Ri Ci = ti , thus Ci = ti /Ri. Since (1) and (2) are valid mod-
els for general 3D systems (with negligible nonlinearities) the 
circuit of Fig. 2 can also represent 3D systems. Superposition 
of several heat sources can be represented by a series connec-
tion of circuits of Fig. 2 [11] together with their individual 
heat sources (pseudo-current sources).  

When two or more thermal systems are combined, it is not 
straightforward to derive the thermal model of the combined 
system from the known thermal models of the individual sys-
tems. A typical task in practice is to mount a semiconductor 
module or single chip package on a cooling radiator and to 
provide the thermal model for the complete system. The model 
for the combined system is not obtained by series connection 
of the Foster-circuit junction-case for the package and the Fos-
ter-circuit case-ambient for the radiator, because the Foster-
circuit is only a behavioral description of the subsystems but 
no true physical description. This is easily recognized by the 
fact that heat propagation through the Foster circuit is instan-
taneous, i.e. the heat flow entering at the left hand (source 
side) leaves at the same moment with equal strength at the 
right hand side by current continuity and would flow into the 
series connected radiator circuit. In reality it needs some time 
for the package to warm up until heat flow into the radiator 
occurs.  

The Cauer-circuit shown in Fig.3 can account for this delay 
and provides a much more physical description of the heat 
flow path and it can describe the same thermal impedances 

zth(t) as the Foster-circuits in case of constant right hand side 
temperature. The Cauer-circuit is closely related to the concept 
of “structure function” [17].  The Cauer-circuits being physi-
cal models can be series connected to form Cauer ladders for 
the total system. When connecting the Cauer-circuits, they ac-
tually form two-ports contrary to the one-port Foster-circuits 
[8], Fig.9. However, the mathematical representation of the 
Cauer form is much more complicated than the Foster eq. (2) 
and it is more difficult to determine the Cauer network pa-
rameters ri , ci by fit. For this reason the thermal impedances 
in module data sheets are provided by Foster-parameters, 
which are of little use for combined systems. 

The method suggested in this work proceeds in three steps: 
First the (case-) interface between the two subsystems (e.g. 
module and radiator) is subdivided into several thermal con-
tact areas, so that the temperature at each contact area is ap-
proximately homogeneous. This will be necessary for large 
modules as in Fig. 1. The thermal subsystems are described by 
Foster-models of the form (1), (2). In a second step for each 
thermal contact area the corresponding Foster-circuits in sub-
system 1 and 2 are transformed in Cauer ladders and con-
nected at the thermal contacts. The result is a parallel connec-
tion of Cauer-ladders between junction (module chip heat 
source) and ambient (bottom of radiator or cooling fluid with 
constant ambient temperature).  The parallel Cauer ladders are 
combined in the Laplace-domain by straightforward algebra to 
form one thermal impedance, which is transformed in a third 
step to a Foster-circuit junction-ambient by partial-fraction-
decomposition (section III). The Foster circuits thus obtained 
characterize the combined system thermally by simple mathe-
matics of the type of  (2). 

III.  TRANSFORMATION OF EQUIVALENT THERMAL CIRCUITS 
The Foster-Cauer circuits are treated in works on network 

synthesis [18]. In the following a concise derivation for the 
Foster - Cauer transformation and vice versa will be presented, 
which leads to fast algorithms so that a large number of trans-
formations can be performed, sufficient for the description of 
whole temperature fields. The Foster-circuit of Fig. 2 can be 
created recursively (or iteratively) by the prescription ex-
pressed in Fig.4. Zthn(t) is the one-port impedance of the cir-
cuit with n thermal resistors and capacitors R1 , .. , Rn , C1 , .. , 
Cn . The initial impedance Zth0(t) in Fig. 4 and 5 is zero, i.e. 
Zth0 has zero resistance (direct connection). Generally, the ef-
fect of a one-port impedance with constant reference tempera-
ture T0 on the right hand side and temperature Tn(t) on the left 
hand side where a time dependent “current”-source Pn(t) is ap-
plied, can be represented for the initial condition Tn(t = 0) = T0  

Fig. 3: Cauer type thermal equivalent circuit. When omitting the 
dashed line, the circuit forms a two-port for connection to another sub-

system Cauer-circuit. 
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Fig. 2: Foster type thermal equivalent circuit with applied heat power 
as “current”-source. 
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by the convolution integral: 
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Zthn(t) as used here is the “impulse”-response (δ-response) and 
equal to the time-derivative of the unit-step response zth(t) of 
(2). The impedance of a simple thermal resistor R without ca-
pacitance is in this notation Zth(t) = δ(t) R .   

The circuit of Fig. 4 leads to the following equation system 
for T0=0 and ZthFn(t) denoting the Foster-type impedances: 
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This determines ZthFn(t) when Pn(t) and ZthFn-1(t) are known. 
The integro-differential equation system is transformed into an 
algebraic system by applying the Laplace-transformation 
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with s = i ω. Under the linear operation L  the convolution in-
tegrals are transformed in simple products Pn(s) Zthn(s) in s-
space and time derivates transform to products with s: 
L{dT(t)/dt} = s T(s). The Laplace-transformed equation sys-
tem for Fig.4 reads: 
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From this:   
 

        Tn(s)/Pn(s) =ZthFn(s) = 1/(s Cn  + 1/Rn) + ZthFn-1(s)  
 

and the ZthFn(s) can be calculated very simply recursively to 
yield the well known form [19]: 
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The Cauer-circuit of Fig. 3 is generated by the recursive pre-

scription of Fig.5, which is expressed analytically: 
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and Laplace transformed reads: 
 

)()()(,/))()(()( 111 sTscsPsPrsTsTsP nnnnnnnn +=−= −−−  
 

)()()(,)()()( 111 sZthCsPsTsZthCsPsT nnnnnn −−− ==  
 
From this the recursive definition of the Cauer impedances 
ZthCn(s) results: 
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Eq. (5) leads to a continued fraction representation of 

ZthCn(s) which can also be written as rational function in s, 
pn(s)/qn(s), with polynomial degree of pn(s) smaller by one 
than that of polynomial qn(s). An efficient algorithm for a fast 
calculation of the pn(s), qn(s) can easily be derived.  

The Cauer-impedance ZthCn(s) = pn(s)/qn(s) can be trans-
formed into the Foster-form (4) by decomposition of the ra-
tional function in partial fractions. At first the zeroes sk = −1/tk 
= −1/(Rk Ck) of  qn(s) = 0 have to be determined, which can be 
done symbolically up to n ≤ 4 degree and numerically without 
limitation in n. The coefficients in (4) can be shown to be 1/Ck 
= p(sk) /q’(sk). Thus the Foster Rk , Ck  are obtained from the 
Cauer rk , ck . The symbolic calculation of the Foster Rk, Ck 
(limited to n ≤ 4) gives rise to extremely lengthy, unwieldy 
expressions that will not be reproduced in this paper, however 
the numerical evaluation is done very quickly and precisely.  

The inverse transformation of the Foster-circuit into the 
Cauer-circuit makes use of the recurrence relation (5) in the 
form:   

                1/ZthCn(s) = s cn +1/(rn + ZthCn−1(s))                (6) 
 
Equating the Foster-impedance (4) written as rational function 
ZthFn(s) = pn(s)/qn(s) for n =N with the Cauer ZthCn(s), the ra-
tional function 1/ZthCn(s) = qn(s)/pn(s) is decomposed by the 
standard Euklid’s algorithm into a polynomial linear in s and a 
rational function   remn(s)/pn(s)  as remainder: 
 

      1/ZthCn(s) = qn(s)/pn(s) = s c’n + kn + remn(s)/pn(s) 
   

The polynomial degree(remn) < degree(pn). Comparing this 
expression with (6),  c’n has to be identified with  cn   and  kn + 
remn(s)/pn(s) with  1/(rn + ZthCn−1(s)). Making use of the iden-
tity 
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we have:  
 

             pn(s) / (kn pn(s) + remn(s)) = rn + ZthCn−1(s) .  

Fig. 4: Prescription for recursive generation of Foster-circuit of Fig.2 

Cn

Rn

Zthn-1

Pn(t) Tn Tn-1
Pn-1

Zthn = Cn

Rn

Zthn-1

Pn(t) Tn Tn-1
Pn-1

Zthn =

Fig. 5: Prescription for recursive generation of Cauer-circuit of Fig.3 
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Using Euklid’s decomposition for the rational function on the 
left hand side and setting   ZthCn−1(s) = pn−1(s) / qn−1(s)   the 
following relations are obtained: 
  

rn = 1/kn ,  qn−1(s) = kn pn(s)+ remn(s),  pn−1(s) = −remn(s)/kn . 
 

Thus the Cauer rn , cn are determined for n = N. The new 
ZthCn−1(s)  defined by  pn−1(s)/qn−1(s)  can be used in the same 
way as   ZthFn(s) = pn(s)/qn(s)   above, in order to determine 
the next Cauer rn−1 , cn−1. The algorithm continues until all 
Cauer r, c are computed and is terminated at p0(s) = 0. 

It should be noted that the Cauer parameters ri , ci are de-
termined unequivocally by the Foster-Cauer transformation 
indicating the physical meaning of the Cauer-circuit. On the 
other hand, the representation of the Foster impedances by the 
Ri , Ci is ambiguous, since every permutation of pairs of Ri, Ci 
in (2) or Fig.2 leads to a mathematically identical expression. 

In practice no more than 15 pairs of resistors and capacitors 
are necessary to represent a thermal impedance. In tests and 
applications one circuit representation was transformed into 
the other and then back again. In every case the original circuit 
parameters were recovered with perfect accuracy.    

IV.   APPLICATION AND DISCUSSION 
For packages of small interface size between power dissi-

pating chip and cooling radiator it is not necessary to subdi-
vide the interface in several pieces, as suggested at the end of 
section II, because the interface temperature is essentially ho-
mogeneous. We have performed thermal measurements with a 
TO-218AB package of about 2 cm2 interface area mounted on 
a closed water cooled radiator. The package is shown in Fig. 6 
and contains a single Siemens/Infineon 1200V/35A IGBT chip 
BUP 307. 

The thermal impedance junction-ambient of the complete 
set-up, denoted by ZthJA(t), is the heating curve of the chip 
for applied constant dissipated chip power of unit strength 
(unit step-response). It is measured by monitoring the cooling 
down of the IGBT from a heated steady state after turn off of 
the heat generating IGBT. The temperature of the IGBT is ob-
served by measuring the chip’s on-state voltage for a small 
impinged constant current whose heat generation during cool 
down is negligible. ZthJA(t) is obtained from the cooling 
down curve by the superposition principle of the linear 3D-

heat conduction equation [15]. This is valid under the assump-
tion that material parameters (thermal conductivity, specific 
heat) in the set-up and boundary conditions are independent of 
temperature, but also applies for the typical material parameter 
variations in a range between 300°K and 400°K. 

Fig. 7 shows the data points for ZthJA(t) inferred from the 
measured cooling  down curve. The data points are arithmetic 
averages of the original digitalized measurement signals in 
small time intervals (one point for each interval). The curve 
fitted to the data was obtained with a nonlinear fit-routine 
working according to the Levenberg-Marquardt method [20] 
to fit the model (2) with 9 pairs Ri , Ci (Ci = ti /Ri ).  Nearly the 
same fitting curve was obtained when fitting the original data 
with over 20,000 data points, with only small deviations at 
small times (below 1 ms) and temperatures where the meas-
urement is not as accurate (Fig. 8).  

The heat conduction equation leads in agreement with (3) to 
the convolution integral representation of the chip (junction) 
temperature for arbitrary chip-power dissipation profile P(t): 

              ∫ −=−
t

aJ dtthJAZPTtT
0

)()()( τττ &               (7)  

(Ta= ambient temperature; ŻthJA time derivative of  ZthJA).  
Because of the direct derivation of (7) from the heat conduc-
tion equation, its validity is restricted to a certain class of 
boundary conditions and to homogeneous starting conditions 

Fig. 7:  Thermal impedance junction-ambient ZthJA for 1200V/35A IGBT 
mounted on radiator. Dissipated power 14.73W. Curve fit with model (2) to 

data from measuring signals averaged in small time intervals. 

Fig. 6: TO-218AB  Package for 1200V / 35A Siemens/Infineon 
single chip IGBT, BUP 307 

Fig 8: Same as in Fig. 7, but curve fit to original data with over 20,000 points. 
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T(x, 0) = Ta as detailed in [15]. Also, (7) 
holds only, if the power density distribu-
tion in the chip is allowed to change its 
overall strength with time but not its spa-
tial distribution.  

Manufacturers data sheets for power 
devices usually contain only the thermal 
impedance of the package or module 
“junction to case” ZthJC(t) = (TJ(t) − 
Tc(t))/P, where the case temperature Tc(t) depends on the se-
lected location, e.g.  in the middle of the interface between 
module-base-plate and cooling radiator. The thermal resis-
tance of the interface (typically made up of a thermal grease) 
has to be included in the thermal impedance of the radiator. 
Sometimes in the literature Tc(t) is measured simultaneously 
with TJ(t) to obtain heating curves with constant heating. The 
ZthJC(t) inferred from the difference TJ(t) − Tc(t) is the differ-
ence of two monotonously increasing functions. However, this 
difference and the ZthJC(t) thus defined are not necessarily 
monotonously increasing. Examples for nonmonotonous 
ZthJC(t) in form of an “anomalous bump” have been observed 
in the literature [sof]. A meaningful definition of ZthJC(t) for 
thermal characterisation of the package, which is independent 
of the choice of the cooling radiator or cooling conditions, can 
only be obtained for constant case temperature Tc(t) = const. 
On the other hand, this condition is difficult to realise experi-
mentally, because an ideal cooler would be required to keep 
the interface temperature constant in time. This could be 
achieved by an active thermoelectric cooler.  

Our method proceeds in the following way and infers the 
unknown ZthJC(t) for constant case temperature from the 
measured ZthJA(t), when only the steady state case tempera-
ture (or the thermal resistance of the radiator) is known: The 
case temperature Tc is measured in steady state before the cool 
down starts by a thermocouple pressed at the package bottom 
side through a hole in the radiator. The measured ZthJA(t) is 
represented by the Foster-model (2) as described (Fig. 7). 
Then the Foster Ri , Ci are transformed in Cauer ri , ci with the 
algorithm of section III. The resulting Cauer ladder junction-
ambient is cut into two pieces junction-case and case-ambient 
along the line shown in Fig. 9, where the sum of the resistors 

counted from the right hand (ambient) side becomes larger 
than Rthradiator = (Tc – Ta) / P. The left part of the divided Cauer 
circuit is the ZthJC(t),  the Cauer circuit right from the cutting 
line forms the thermal impedance of the radiator ZthCA(t).  

It should be noted that the impedance for ZthCA(t) consists 
of a Cauer ladder as in Fig. 3 together with the corresponding 
part of the thermal resistor divided by the cutting line attached 
to the left hand node. Due to this thermal series resistor the 
impedance ZthCA(t) performs a step at t = 0 and rises at the 
beginning with infinite steepness contrary to ZthJC(t) or 
ZthJA(t) which rises linearly for t < 10-4 sec in case of a vol-
ume heat source in the chip [11]. The heat source applied to 
the cooling radiator is no volume heat source in the radiator 
but a heat flux at its surface. In this case the temperature re-
sponse to a unit step in the heat flux at the radiator surface be-
haves as √t  [22, 11]. Therefore the thermal series resistor in 
the model for ZthCA(t) describes the physics more correctly, 
than the pure Cauer-circuit of Fig. 3. The transformed Foster-
ZthCA has the same thermal series resistor as the Cauer-
circuit. 

The Cauer circuits thus obtained for ZthJC(t) and ZthCA(t) 
were transformed into Foster-circuits by use of the algorithm 
of section III. The Foster circuit elements - and also the Cauer 
elements - of ZthJC(t) provide a suitable representation for the 
thermal characterisation in manufacturers data sheets. In order 
to obtain from the Foster values the complete impedance 
ZthJA(t) of a combined system, the subsystem Foster-circuits 
have to be transformed in Cauer-circuits which are connected 
according to Fig. 9 at the interface node. After this the result-
ing Cauer-ladder junction-ambient is transformed in Foster- 
form for ease of mathematical presentation. Performing these 
steps we obtained the original Foster elements for ZthJA(t) 
(Fig. 7) with perfect accuracy.  

Fig. 9: Decomposition of Cauer-circuit for ZthJA into ZthJC and ZthCA along dashed line, where sum of 
resistors from ambient side = Rth-radiator. Also prescription for combining ZthJC and ZthCA to ZthJA. 

TCase TAmbientTJunc

module radiator

Fig. 10: ZthJC resulting from ZthJA (dashed line) of Fig. 7 according to 
the prescription of Fig. 9. 

Fig. 11: Direct addition of  the ZthJC, ZthCA constructed according to 
Fig. 9, leads to wrong prediction for ZthJA (dashed line). 
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 The result of the construction of ZthJC(t) from ZthJA(t) by 
this prescription is displayed in Fig. 10 together with the origi-
nal ZthJA(t). The difference ZthJA(t) - ZthJC(t) for large 
times is equal to the static thermal resistance of the radiator 
Rthradiator .  

The simple addition of the radiator impedance ZthCA(t) and 
of ZthJC(t) - which corresponds to a series connection of the 
Foster-circuits of the respective impedances - in order to ob-
tain ZthJA(t) gives a grossly wrong result, as can be seen from 
Fig. 11. It is indispensable, first to transform the ZthJC, 
ZthCA in Cauer-ladders and to combine the Cauer-ladders to 
obtain the correct ZthJA. 
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