
HAL Id: hal-00202507
https://hal.science/hal-00202507v1

Submitted on 7 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building CAD Prototyping Tool for Emerging Nanoscale
Fabrics

Catherine Dezan, Loic Lagadec, Michael Leuchtenburg, Teng Wang, Pritish
Narayanan, Andras Moritz

To cite this version:
Catherine Dezan, Loic Lagadec, Michael Leuchtenburg, Teng Wang, Pritish Narayanan, et al.. Build-
ing CAD Prototyping Tool for Emerging Nanoscale Fabrics. ENS 2007, Dec 2007, Paris, France.
pp.25-30. �hal-00202507�

https://hal.science/hal-00202507v1
https://hal.archives-ouvertes.fr

BUILDING CAD PROTOTYPING TOOL FOR EMERGING NANOSCALE FABRICS
Catherine Dezan, Loic Lagadec

Université de Bretagne Occidentale, France
LESTER A&S, CNRS

{Catherine.Dezan,Loic.Lagadec}@univ-brest.fr

Michael Leuchtenburg, Teng Wang,
Pritish Narayanan, Andras Moritz

University of Massachusetts at Amherst
Electrical and Computer Engineering

{mleuchte, pnarayanan, twang, andras}@ecs.umass.edu

ABSTRACT

The design of CAD tools for nanofabrics involves new challenges
not encountered with conventional CMOS technology. In this
paper, we describe the design of a prototyping CAD tool targeting
design automation of applications on a wide range of nanofabrics.
Our proposal is based on a variety of models that capture as well as
isolate the differences between the fabrics. This tool supports the
design flow from behavioral description to final layout. It integrates
fault-tolerant techniques and fabric-related density transformations
with more conventional design automation techniques. After an
overview of common requirements, physical models, and
associated techniques, a case study in the context of NASIC fabrics
is used to illustrate some of the concepts.

1. INTRODUCTION
As an alternative to CMOS based designs, novel nanofabrics are
being proposed based on a combination of lithographic processes
and bottom-up self-assembly based manufacturing. These fabrics
include NanoPLA [2], CMOL [7], FPNI [10], and NASIC[12] - to
name a few. They are based on a variety of devices such as FETs,
spin-based devices, diodes, and molecular switches. Furthermore,
all these architectures would include some support in CMOS: some
like FPNI would move the entire logic into CMOS, others, like
NASIC, would only provide the control circuitry in CMOS. Other
differences include fault handling: some proposals would use
reconfigurable approaches, while others would rely on built-in
techniques based on redundancy, voting, error correction, and/or
unique fabric structures. The architectures proposed range from
general purpose processors, to programmable logic arrays similar
to FPGAs, and to more specialized devices such as cellular arrays
and cellular neural networks.

In order to implement an application on a nanofabric,
specific tools are already proposed by the respective research
groups [2][8]. It is clear that CAD tools are necessary to be able to
design and evaluate the capabilities of larger-scale systems. As the
underlying technologies are still evolving according to advances in
devices, manufacturing, and fabric structures, CAD tools for
nanofabrics should be ideally generic enough to integrate added
features or to enable new paradigms.

This paper proposes a prototyping CAD tool that
considers a nanofabric specified through a variety of models to
allow optimizations on generic data structures. Through a
computational model, an architectural model, a technological
model and a fault model all key aspects of a particular fabric can be
captured. The proposed models interact with the behavioral tools
and the physical tools to produce an abstract layout of the design
from high-level description. Parts that are mapped to nanoscale are
separated from parts that use conventional CMOS technology.

Through this design process, a particular attention is
given to fault tolerance techniques. Fault management is one of the
key differences between CMOS and nanoscale design automations.
To date, this tool utilizes redundancy-based techniques, error-
correction circuits, and defect map information for reconfigurable

fabrics to achieve reliable computation. Our objective is to enable
future extensions as it would be impossible to start with all
optimizations and fault management techniques in place in the first
version. Much of this is still cutting edge research.

In summary, this paper makes the following key
contributions: (1) it discusses the overall architecture of a generic
CAD prototyping tool for nanoscale designs; (2) it introduces
nanofabric related models to allow fairly generic processing in the
presence of very different assumptions. Our objective is to create a
tool that could be used by most research groups in this field. The
paper is organized as follows. Section 2 gives an overview of the
general organization of the proposed CAD tool and the following
sections discuss the different contributions. Each section gives an
illustration based on NASIC Fabric.

2. A PROTOTYPING TOOL BASED ON NANOFABRIC
SPECIFICATION

The prototyping tool presented here is named NanoMadeo. It is
based on four specific models that specify the nanofabrics. These
models provide some abstractions of the nanofabrics concerning
their computation paradigm (computational model), their structural
organization (structural model) and technological constraints
(technological model), including their fault-tolerance ability (fault
model). These models interact with behavioral transformations,
structural transformations and physical tools, needed to design and
to implement an application onto the nanofabric support. The
general flow of this tool is presented in figure 1 and the specific
models are detailed in the following sections.

2.1 Computational Model
CAD tool for emerging nanofabric is intended to handle use both
traditional CMOS and nanoscale technologies. The distribution of
functionality between the two depends on the nanoscale capabilities,
the trade-off between area and performance and the reliability of
the underlying nanoscale technology.
 For instance, the nanoscale parts of the system can be
used solely for computation in order to gain orders of magnitude
improvements in density and performance compared to CMOS
technology [11]. However, this may have some drawbacks like the
need for signal restoration when using nanowire diodes or the
inversion problem with Single Electron Transistor (SET)
technology. The solution can be to add logic in nanotechnology
(FET logic for signal restoration) or some dedicated CMOS
logic/cells (for inverter functionality).

Nanoscale technology could also be utilized for
interconnects only to speed-up communication that can be
problematic in deep submicron technology. NanoMadeo must
handle both of these extremes in order to be useful as a prototyping
tool for new nanotechnology designs.

The computational model specifies the role of the nano or
CMOS segment in computation and interconnect. This division of
labor is a new requirement with hybrid fabrics, which all early
nanoscale computation devices are likely to be.

ENS’07 Paris, France, 3-4 December 2007

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 25

2.2 Architectural Model
The architectural model contains information about the building
components and topological structure of the fabric. These

components correspond to nanoscale or CMOS elements necessary
to build the architecture on the fabric. These can be classified into
basic devices, pre-composed blocks and wires as shown in figure 2.

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 26

The architectural model also contains information about the types
of tiles specific to fabric: nanoBlocks for NanoPLA [2], tiles of
basic cells for CMOL [7], hypercells for FPNI [10] and tiles for
NASIC[12]. The model describes the topological organization of
the nano and micro components, including their hierarchical
structure in
tiles.

Figure 2. Building components used in architectural model

2.3 Technological Model
The technological model contains more information on the physical
constraints based on the underlying technology and useful for the
place-and-route routines. Nanoscale systems often do not allow
arbitrary routing and placement, complicating their design as
compared to CMOS designs. For example, a placement constraint
related to the fabric might be the doping constraints in the NASIC
fabric that limits each type of transistor to one dimension:
horizontal or vertical.

Constraints on routing are particularly important in the
case of reconfigurable fabrics where connections are limited to
certain routes. The costs for these routes also give guidance to the
routing procedures for choosing the best routes. Another constraint
may be defects present in a particular chip in the case of a
reconfigurable fabric. These present additional routing and
placement constraints in configuring around the defects[11].

2.4 Fault Model
As nanoscale computational fabrics are commonly based on
bottom-up manufacturing processes, reliability of this new kind of
circuit is imperfect. Information on the expected faults is provided
through the fault model, including what types of faults are expected,
their distribution, and their probability.

Fault types include: permanent defects due to the
manufacturing process such as stuck-on or off transistors or broken
nanowires; transient faults due to internal noise, particle impacts, or
electromagnetic interference; and process variation, including
doping, channel length, wire thickness, and others. For each
possible fault in a given technology, the rate and distribution
(uniform/clustering [11]) is included in the fault model.
2.5 Example: NASIC Fabric Description
The models described above are illustrated through some emerging
nanoscale fabrics in table I. Special focus is given on NASIC fabric
for deeper explanations as case study.

NASIC [19][20][21] is a hybrid system based around
tiles of nanowires and FETs with CMOS providing support and
some control circuitry. The tiles are made up of crossed nanowires
with FETs at the intersections, forming cascaded PLA-like
structures. In each tile (or supertile), there is one couple(or several
couples) of planes of transistors, one with the channels running
horizontally and one with the channels running vertically. Thus,
each tile implements two basic logic functions and can implement
any logic function using two-level logic.

In the NASIC fabric, each nanotile is surrounded by
microwires which provide power and control signals. The control
signals implement typically various styles of a dynamic control
scheme. This use of dynamic logic puts a synchronization
constraint on the synthesis of applications onto NASICs, which
NanoMadeo must manage. CMOS also provides support for
modular redundancy schemes, encoding/decoding of inputs and
outputs for the entire system (not between tiles), and control signal
generation. The distribution of role between CMOS and nano layer
is driven by the computational model of the NASIC fabric and
explicit two main points: one is the computation organization of the
nanogrid in two level logic in order to be mapped later into PLA
structures (information related to synthesis), the other is related to
the control aimed to be mapped at CMOS level.

TABLE I
Main Features of Some Hybrid Nanofabrics Related to Models

Fabrics
Models

NanoPLA CMOL FPNI NASIC

Computational
Nano
CMOS

Computation,
interconnect
limited to I/O

Computation, interconnect
Specific Computation(Inv)

Interconnect only
Computation

Computation, interconnect
Control

Architectural
Devices
Structure

FET, Diode
2D-grid

Molecular switch, SET
3D-grid

CMOS
3D-grid

FET
2D-grid

Techno
placement
routing

Connection restricted

Connection restricted

Connection restricted

Doping constraints

Fault Permanent Permanent Permanent Transient, permanent

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 27

The architectural model of the NASIC fabric points out the
building components used (here: FET, nanowire, mircowire) and
explicit the structural organization in tiles based on topological
rules on building components. Building components may be
assembled in a predefined way (for instance for the nano and
microwires, if the number of nanotiles are supposed to fixed) or in
an adaptive way related to the application (placement of FETs on
the PLA structure). In the latter case, these topological rules are
active during the place-and-route phase.

The technological model provides the physical constraint
of the NASIC fabric essentially due to the doping constraints of the
two types of transistors that can be used (N-FET, P-FET). This
constraints introduce some complexity in the placement routines
inside one tile. The mapping onto different tiles partially replaces
the doping constraints by I/O constraints between tiles.

The fault model takes into account two types of faults:
permanent and transient fault. Distribution and rate of these types
of faults have an impact on the reliability of the implementation.
The fault tolerant transformations have different capabilities in
masking errors that can be evaluated using a yield simulator [12].
This point is more detailed in section 4.

3. APPLICATION SPECIFICATION AND BEHAVIORAL
TRANSFORMATIONS

The behavioral description of an application is written in an object-
oriented language (Smalltalk) that is similar to the traditional
description used in Madeo [17]. The compilation procedure
produces Directed Acyclic Graphs (DAGs), which are the
intermediate representation (IR) used by NanoMadeo. This model
is largely unchanged between architectures, allowing the same
behavioral description to be used in comparing designs.

3.1 Behavioral Transformations
These transformations include nano/CMOS pre-partitioning taking
into account the computational model: computation and
interconnect tasks will be assigned to CMOS or nanoscale parts .

Fault-tolerance techniques may be applied at this level
and correspond to three kinds of transformations: a) transformation
introducing voters like TMR in order to duplicate portion of codes
and to vote between copies, b) transformation introducing different
data encoding based on redundant codes (RNS codes, Error-
correcting codes, expressed at this level like data types, c)
transformation changing the physical support: the computation can
be realized by the CMOS part to be more reliable.
3.2 Illustration: Wisp0 application
WISP-0[20] is a stream processor, built on NASIC, that
implements a streaming processor architecture with 5-stage
pipeline: fetch, decode, register file, execute, and write back. It is a
multi-tile design with 5 nanotiles. A key feature is that intermediate
values during execution are often stored on the nanowires directly
without explicit latches using a three-phase dynamic control. Other
key aspects relate to its fault-masking strategy and density
optimizations.

Figure 3. WISP-0 Block Diagram

The specification of WISP0 with NanoMadeo is
functional, including :

 A synchronization primitive
 a reflexive operator ('yourself' operator) to define feed-back
 specific types to introduce redundancy

We give in figure 4 an example of a DAG produced by
the compiler from source code defining the ALU and Register File
(RF) stages of WISP-0. In this DAG, nodes correspond to function
calls or operators that will be synthesized into logic PLA blocks.
This description implicitly describes some data synchronization,
but this information could be more explicit and could be managed
through specific behavioral transformations. No explicit
partitioning between CMOS/Nano is done at this point because
every functionality is aimed to be implemented on nano parts in the
case of NASIC fabric. Nevertheless, if some fault-tolerant parts in
CMOS are needed, this information needs to be explicit (for
instance, the generation of CMOS voter by transformation for fault-
tolerance in TMR case). Other transformations for fault-tolerance

can be applied by injecting specific data types for the inputs. These
types represent future data encodings for the input data; for
instance, in the case of NASIC fabric, BCH codes (as error
correcting codes ECC) are used to introduce built-in redundancy.

4. SYNTHESIS, STRUCTURAL TRANSFORMATIONS
AND YIELD PROJECTION

4.1 Synthesis
The resulting logic is then synthesized in the appropriate type of
logic (PLA, LUT, multi-level logic) with the appropriate building
components as defined by the computational model and
architectural model. Standard external tools such as SIS are used
for this process. This is done on a block-wise basis, with each
operation as compiled from the high-level code compiled as a
single block. Different levels of operator decomposition can be
applied, allowing the complexity of each block to be traded off
against the number of blocks.

4.2 Structural Transformations
Once the initial structural representation of the application has been
generated through synthesis, transformations at the structural level
are applied. The synthesis is based only on the type of logic and

Figure 4. DAG representing ALU and RF

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 28

may not take into account all structural requirements. An example
is the signal restoration required by NanoPLA. At this point, logic
is synthesized for the combinatorial parts such as decoders and
sequential parts such as registers or dynamic logic controls are
defined around the synthesized segments as required to support the
architecture.

Structural level fault-tolerance related transformations
are also done in this step. These include techniques like N-way
redundancy to provide additional copies of input/output signals and
of some intermediate signals (the logic minterms in a case of PLA
structures). Modular redundancy techniques are also possible at this
stage – specific structures are selected and voter circuits are
provided to implement TMR or similar schemes, but at this level, a
more detailed architecture of this kind of circuitry is provided.
4.3 Yield Projection
The structural representation of the circuit plus the fault
distribution given by the fault model can be used to make yield
projections. This is performed by an external yield simulator. A
yield simulator for PLA-based structures proposed in [6] could be
used for different kinds of 2D nanofabrics. Yield estimation can
also be done using Monte Carlo simulation [11].

If the predicted yield is not satisfactory, it is possible to
iterate, applying different kinds of fault-tolerant transformations to
different portions of the application. These iterations may continue
until an acceptable level of yield is reached.
4.4 Structural Transformations and Yield Projection for
WISP-0
In the case of NASIC fabric, NanoMadeo utilizes the external
synthesis tool SIS to perform the two-level logic synthesis of PLAs
associated to each node of the DAG. Assembly of synthesized
portions is addressed by NanoMadeo to define the complete logical
structure of the WISP-0 application. WISP-0 may use some
structural fault-tolerance techniques such as TMR and N-way
redundancy of signals. The result of synthesis is then transformed
here to implement these techniques, when they are in use.

We have developed a yield simulator to evaluate fault
tolerance techniques in NASICs. The simulator generates random
defect maps for designs based on a defect model and runs logic
simulations on them, testing with many different possible sets of
input. By measuring what proportion of the generated defect maps
result in correct output when simulated, the yield can be estimated.
NanoMadeo can automatically call the yield simulator to evaluate
defect and fault tolerance techniques. One example of output after
several runs of the yield simulator, using different fault rates and
different fault-tolerance techniques(TMR, ECC,N-way) is shown
graphed in figure 5. This graph provides information on the
efficiency of the fault-tolerant techniques related to the fault rate

and the types of permanent defects (for instance, if the fault rate is
above 6%, the yield is better with ECC techniques considering
10% Stuck-off and 90% Stuck-on).

5. PHYSICAL DESIGN
Nanofabrics are generally organized into tiles, hypertiles or
nanoblocks that correspond to clusters of PLAs, basic cells or
hypercells. The partitioning techniques used to define such blocks
are based on clustering heuristics for PLA packing, as in
PLAmap[4], T-VPACK [15] or Singh Algorithm [9].

The parameters for clustering are the number of
elementary cells or P-terms of the PLA and the number of inputs
and outputs associated with the cluster. The placement problem
consists of placing each basic cell inside a cluster, once the clusters
are defined. This is achieved using generic optimization heuristics
like simulated annealing, using e.g., congestion costs in the case of
reconfigurable fabrics.

Routing procedures for nanofabrics can use adaptive
maze router algorithms like Pathfinder from VPR, or they can be
more specific to the fabric using, for example, custom adaptation of
shortest Steiner tree problems or other VLSI algorithms [1].
For reconfigurable fabrics, a defect map provides extra constraints
for placement and routing to configure around the defects
previously detected.

Table II gives an overview of the different algorithms
applied in physical layout tools for the NanoPLA, CMOL and
FPNI fabrics. Physical tools for nanofabrics use two kinds of
algorithms or heuristics: adaptive generic algorithms or custom
procedures. Adaptive generic algorithms include general purpose
optimization heuristics like simulated annealing or genetic
algorithms and algorithms for FPGAs like Pathfinder and PLA
clustering as the ones implemented in Madeo [18] or the VPR tool.

TABLE II
Physical Tools Published For Specific Nanofabrics

 NanoPLA [2] CMOL [8] FPNI [10]

Partitioning

PLAMAP [4] T-VPACK [15] Singh’s greedy algo [9]
Specific cost

Placement

Simulated Annealing(VPR-like) Simulated annealing(VPR-like)
Modified congestion cost function

Simulated annealing(VPR-like)

Routing NPR (custom tool)
Pathfinder based

Custom tool
RSA heuristic based [14]

maze router (PathFinder-like)
with several iterations

Figure 5. Graph of yield simulator output for WISP-0

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 29

5.1 Wisp0 layout
Based on the architectural and technological model of NASIC
fabric, an abstract layout can be produced taking into account the
doping constraints inside one tile. In figure 6, we present the
abstract layout of WISP-0 onto a nanogrid of three tiles, partially
integrating some fault-tolerant techniques. A more efficient place-
and-route algorithm without constraints on the size of the tile is
under study.

Figure 6. Abstract WISP-0 Layout from NanoMadeo

6. CONCLUSION
In order to handle next generation hybrid nano-architectures, CAD
tools will have to evolve. Highly heterogeneous multi-part fabrics
introduce new challenges which must be met to efficiently use
those new fabrics in building real applications. In this paper, we
have shown that the proposed tool, NanoMadeo, can handle many
of these challenges and can be used productively for work on
NASIC. Its generic design will make it easy to adapt it for work on
other hybrid architectures while using much of the same
functionality already implemented.

REFERENCES

[1] S. H. Gerez, Algorithms for VLSI Design Automation Hoboken, NJ:
Wiley, 1999.

[2] A. Dehon, "Nanowire-based programmable architectures", ACM
Journal on Emerging Technologies in Computing Systems, vol. 1, pp.
109-162, July 2005.

[3] A. Dehon, "Design of programmable interconnect for sublithographic
programmable logic arrays", Proceedings of the 2005 ACM/SIGDA
13th international Symposium on Field-Programmable Gate Arrays,
pp. 127-137, February 2005.

[4] D. Chen, J. Cong, M. Ercegovac and Z. Huang, "Performance-Driven
Mapping for CPLD Architectures", IEEE Transactions on Computed-
Aided Design for Integrated Circuits and Systems, vol. 22, pp. 1424-
1431, October 2003.

[5] L. McMurchie and C. Ebeling, "PathFinder: a negotiation-based
performance-driven router for FPGAs ", Proceedings of the Third
International ACM Symposium on Field-Programmable Gate Arrays,
FPGA'95, pp. 111-117, 1995.

[6] F. Angiolini, M. H. B. Jamaa, D. Atienza, L. Benini and G. D. Micheli,
"Improving the fault tolerance of nanometric PLA designs", Design,

Automation & Test in Europe Conference and Exhibition DATE 2007,
pp. 570-575, April 2007.

[7] D. B. Strukov and K. K. Likharev, "CMOL FPGA: a reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices",
Nanotechnology, vol. 16, pp. 888-900, 2005.

[8] D. B. Strukov and K. K.Likharev, "A Reconfigurable architecture for
hybrid CMOS/nanodevice circuits ". Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field-programmable
gate arrays, pp. 131-140, 2006.

[9] A. Singh and M. Marek-Sadowska, "Efficient circuit clustering for
area and power reduction in FPGAs ", Proceedings of the 2002
ACM/SIGDA tenth international symposium on Field-programmable
gate arrays, pp. 59-66, 2002.

[10] G. S. Snider and R. S. Williams, "Nano/CMOS architectures using a
field-programmable nanowire interconnect ", Nanotechnology, vol. 18,
11 pp, 2007.

[11] C. He and M. F. Jacome, "Defect-Aware High-Level Synthesis
Targeted at Reconfigurable Nanofabrics", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
pp. 817-833, May 2007.

[12] C.A. Moritz, T. Wang, P. Narayanan, M. Leuchtenburg, Y. Guo, C.
Dezan and M. Bennaser, "Fault-tolerant nanoscale processors on
semiconductor nanowire grids ", IEEE Transactions on Circuits and
Systems I Special Issue on Nanoelectronic Circuits and
Nanoarchitectures1, in press.

[13] J. Kong, "CAD for nanometer silicon design, challenges and success”,
IEEE Transaction on very large scale integration systems, vol.12, pp.
1132-1147, November 2004.

[14] S. K. Rao, P. Sadayappan, F. K. Hwang and P. W. Shor, "The
rectilinear Steiner arborescence problem", Algorithmica, vol. 7, pp.
277-288, December 1992.

[15] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs: Kluwer Academic Publishers, 1999.

[16] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, A. L. Sangiovanni-
Vincentelli, "SIS: A system for sequential circuit synthesis",
Technical Report, UCB/ERL M92/41, Dept. of EECS, Berkeley, May
1992.

[17] E. Fabiani, L. Lagadec, B. Pottier, A. Poungou and S. Yazdani,
"Abstract execution mechanisms in a synthesis framework",
Workshop on Non-Silicon Computations (NSC3), June, 2004.

[18] L. Lagadec. "Abstraction, modélisation et outils de CAO pour les
circuits intégrés reconfigurables", Ph.D. thesis, Université de Rennes1,
Rennes, France, 2000.

[19] C. A. Moritz and T. Wang, “Latching on the wire and pipelining in
nanoscale designs”, Non-Silicon Computing Workshop, NSC-3, 2004.

[20] T. Wang, M. Bennaser, Y. Guo, and C. A. Moritz, “Wire-streaming
processors on 2-D nanowire fabrics”, Nanotech 2005, Nano Science
and Technology Institute, 2005.

[21] T. Wang, M. Bennaser, Y. Guo, and C. A. Moritz, “Self-healing wire-
streaming processors on 2-d semiconductor nanowire fabrics”,
Nanotech 2006 . Nano Science and Technology Institute, 2006.

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 30

