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ABSTRACT 

The design of CAD tools for nanofabrics involves new challenges 
not encountered with conventional CMOS technology. In this 
paper, we describe the design of a prototyping CAD tool targeting 
design automation of applications on a wide range of nanofabrics.  
Our proposal is based on a variety of models that capture as well as 
isolate the differences between the fabrics. This tool supports the 
design flow from behavioral description to final layout. It integrates 
fault-tolerant techniques and fabric-related density transformations 
with more conventional design automation techniques. After an 
overview of common requirements, physical models, and 
associated techniques, a case study in the context of NASIC fabrics 
is used to illustrate some of the concepts.  

1. INTRODUCTION 
As an alternative to CMOS based designs, novel nanofabrics are 
being proposed based on a combination of lithographic processes 
and bottom-up self-assembly based manufacturing. These fabrics 
include NanoPLA [2], CMOL [7], FPNI [10], and NASIC[12] - to 
name a few. They are based on a variety of devices such as FETs, 
spin-based devices, diodes, and molecular switches. Furthermore, 
all these architectures would include some support in CMOS: some 
like FPNI would move the entire logic into CMOS, others, like 
NASIC, would only provide the control circuitry in CMOS. Other 
differences include fault handling: some proposals would use 
reconfigurable approaches, while others would rely on built-in 
techniques based on redundancy, voting, error correction, and/or 
unique fabric structures.  The architectures proposed range from 
general purpose processors, to programmable logic arrays similar 
to FPGAs, and to more specialized devices such as cellular arrays 
and cellular neural networks. 

In order to implement an application on a nanofabric, 
specific tools are already proposed by the respective research 
groups [2][8]. It is clear that CAD tools are necessary to be able to 
design and evaluate the capabilities of larger-scale systems. As the 
underlying technologies are still evolving according to advances in 
devices, manufacturing, and fabric structures, CAD tools for 
nanofabrics should be ideally generic enough to integrate added 
features or to enable new paradigms.  

This paper proposes a prototyping CAD tool that 
considers a nanofabric specified through a variety of models to 
allow optimizations on generic data structures. Through a 
computational model, an architectural model, a technological 
model and a fault model all key aspects of a particular fabric can be 
captured. The proposed models interact with the behavioral tools 
and the physical tools to produce an abstract layout of the design 
from high-level description. Parts that are mapped to nanoscale are 
separated from parts that use conventional CMOS technology. 

Through this design process, a particular attention is 
given to fault tolerance techniques. Fault management is one of the 
key differences between CMOS and nanoscale design automations.   
To date, this tool utilizes redundancy-based techniques, error-
correction circuits, and defect map information for reconfigurable 

fabrics to achieve reliable computation. Our objective is to enable  
future extensions as it would be impossible to start with all 
optimizations and fault management techniques in place in the first 
version. Much of this is still cutting edge research. 

In summary, this paper makes the following key 
contributions: (1) it discusses the overall architecture of a generic 
CAD prototyping tool for nanoscale designs; (2) it introduces 
nanofabric related models to allow fairly generic processing in the 
presence of very different assumptions. Our objective is to create a 
tool that could be used by most research groups in this field. The 
paper is organized as follows. Section 2 gives an overview of the 
general organization of the proposed CAD tool and the following 
sections discuss the different contributions. Each section gives an 
illustration based on  NASIC Fabric. 

2. A PROTOTYPING TOOL BASED ON NANOFABRIC 
SPECIFICATION 

The prototyping tool presented here is named NanoMadeo. It is 
based on four specific  models that specify the nanofabrics. These 
models provide some abstractions of the nanofabrics concerning 
their computation paradigm (computational model), their structural 
organization (structural model) and technological constraints 
(technological model), including their fault-tolerance ability (fault 
model). These models interact with behavioral transformations, 
structural transformations and physical tools, needed to design and 
to implement an application onto the nanofabric support. The 
general flow of this tool is presented in figure 1 and the specific 
models are detailed in the following sections. 

 
2.1 Computational Model 
CAD tool for emerging nanofabric is intended to handle use both 
traditional CMOS and nanoscale technologies. The distribution of 
functionality between the two depends on the nanoscale capabilities, 
the trade-off between area and performance and the reliability of 
the underlying nanoscale technology. 
 For instance, the nanoscale parts of the system can be 
used solely for computation in order to gain orders of magnitude 
improvements in density and performance compared to CMOS 
technology [11]. However, this may have some drawbacks like the 
need for signal restoration when using nanowire diodes or the 
inversion problem with Single Electron Transistor (SET) 
technology. The solution can be to add logic in nanotechnology 
(FET logic for signal restoration) or some dedicated CMOS 
logic/cells (for inverter functionality). 

Nanoscale technology could also be utilized for 
interconnects only to speed-up communication that can be 
problematic in deep submicron technology. NanoMadeo must 
handle both of these extremes in order to be useful as a prototyping 
tool for new nanotechnology designs. 

The computational model specifies the role of the nano or 
CMOS segment in computation and interconnect. This division of 
labor is a new requirement with hybrid fabrics, which all early 
nanoscale computation devices are likely to be.  
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2.2 Architectural Model 
The architectural model contains information about the building 
components and topological structure of the fabric. These 

components correspond to nanoscale or CMOS elements necessary 
to build the architecture on the fabric. These can be classified into 
basic devices, pre-composed blocks and wires as shown in figure 2. 
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The architectural model also contains information about the types 
of tiles specific to fabric: nanoBlocks for NanoPLA [2], tiles of 
basic cells for CMOL [7], hypercells for FPNI [10] and tiles for 
NASIC[12]. The model describes the topological organization of 
the nano and micro components, including their hierarchical 
structure in 
tiles.

 
Figure 2. Building components used in architectural model 

2.3 Technological Model 
The technological model contains more information on the physical 
constraints based on the underlying technology and useful for the 
place-and-route routines. Nanoscale systems often do not allow 
arbitrary routing and placement, complicating their design as 
compared to CMOS designs. For example, a placement constraint 
related to the fabric might be the doping constraints in the NASIC 
fabric that limits each type of transistor to one dimension: 
horizontal or vertical. 

Constraints on routing are particularly important in the 
case of reconfigurable fabrics where connections are limited to 
certain routes. The costs for these routes also give guidance to the 
routing procedures for choosing the best routes. Another constraint 
may be defects present in a particular chip in the case of a 
reconfigurable fabric. These present additional routing and 
placement constraints in configuring around the defects[11]. 

2.4 Fault Model 
As nanoscale computational fabrics are commonly based on 
bottom-up manufacturing processes, reliability of this new kind of 
circuit is imperfect. Information on the expected faults is provided 
through the fault model, including what types of faults are expected, 
their distribution, and their probability. 

Fault types include: permanent defects due to the 
manufacturing process such as stuck-on or off transistors or broken 
nanowires; transient faults due to internal noise, particle impacts, or 
electromagnetic interference; and process variation, including 
doping, channel length, wire thickness, and others. For each 
possible fault in a given technology, the rate and distribution 
(uniform/clustering [11]) is included in the fault model. 
2.5 Example: NASIC Fabric Description 
The models described above are illustrated through some emerging 
nanoscale fabrics in table I. Special focus is given on NASIC fabric 
for  deeper explanations as case study. 

NASIC [19][20][21] is a hybrid system based around 
tiles of nanowires and FETs with CMOS providing support and 
some control circuitry. The tiles are made up of crossed nanowires 
with FETs at the intersections, forming cascaded PLA-like 
structures. In each tile (or supertile), there is one couple(or several 
couples) of  planes of transistors, one with the channels running 
horizontally and one with the channels running vertically. Thus, 
each tile implements two basic logic functions and can implement 
any logic function using two-level logic. 

In the NASIC fabric, each nanotile is surrounded by 
microwires which provide power and control signals. The control 
signals implement typically various styles of a dynamic control 
scheme. This use of dynamic logic puts a synchronization 
constraint on the synthesis of applications onto NASICs, which 
NanoMadeo must manage. CMOS also provides support for 
modular redundancy schemes, encoding/decoding of inputs and 
outputs for the entire system (not between tiles), and control signal 
generation. The distribution of role between CMOS and nano layer 
is driven by the computational model of the NASIC fabric and 
explicit two main points: one is the computation organization of the 
nanogrid in two level logic in order to be mapped later into PLA 
structures (information related to synthesis), the other is related to 
the control aimed to be mapped at CMOS level. 

TABLE I 
Main Features of Some Hybrid Nanofabrics Related to Models 

Fabrics 
Models  

NanoPLA CMOL FPNI NASIC 

Computational 
Nano 
CMOS  

 
Computation, 
interconnect 
limited to I/O 

 
Computation, interconnect 
Specific Computation(Inv) 

 
Interconnect only 
Computation 

 
Computation, interconnect 
Control 

Architectural 
Devices  
Structure 

 
FET, Diode  
2D-grid 

 
Molecular switch, SET  
3D-grid 

 
CMOS  
3D-grid  

 
FET 
2D-grid 

Techno 
placement  
routing  

 
 
Connection restricted 

 
 
Connection restricted 

 
 
Connection restricted 

 
Doping constraints 

Fault  Permanent Permanent Permanent Transient, permanent 

 

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4     27   



The architectural model of the NASIC fabric points out the 
building components used (here: FET, nanowire, mircowire) and 
explicit the structural organization in tiles based on topological 
rules on building components.  Building components may be 
assembled in a predefined way (for instance for the nano and 
microwires, if the number of nanotiles are supposed to fixed) or in 
an adaptive way related to the application (placement of FETs on 
the PLA structure). In the latter case, these topological rules are 
active during the place-and-route phase. 

The technological model provides the physical constraint 
of the NASIC fabric essentially due to the doping constraints of the 
two types of transistors  that can be used (N-FET, P-FET). This 
constraints introduce some complexity in the placement routines 
inside one tile. The mapping onto different tiles partially replaces 
the doping constraints by I/O constraints between tiles. 

The fault model takes into account two types of faults: 
permanent and transient fault.  Distribution and rate of these types 
of faults have an impact on the reliability of the implementation. 
The fault tolerant transformations have different capabilities in 
masking errors that can be evaluated using a yield simulator [12]. 
This point is more detailed in section 4. 

3. APPLICATION SPECIFICATION AND BEHAVIORAL 
TRANSFORMATIONS 

The behavioral description of an application is written in an object-
oriented language (Smalltalk) that is similar to the traditional 
description used in Madeo [17]. The compilation procedure 
produces Directed Acyclic Graphs (DAGs), which are the 
intermediate representation (IR) used by NanoMadeo. This model 
is largely unchanged between architectures, allowing the same 
behavioral description to be used in comparing designs. 

3.1 Behavioral Transformations 
These transformations include nano/CMOS pre-partitioning taking 
into account the computational model: computation and 
interconnect tasks will be assigned to CMOS or nanoscale parts . 

Fault-tolerance techniques may be applied at  this level 
and correspond to three kinds of transformations: a) transformation 
introducing voters like TMR in order to duplicate portion of codes  
and to vote between copies, b) transformation introducing different 
data encoding based on redundant codes (RNS codes, Error-
correcting codes, expressed at this level like data types, c) 
transformation changing the physical support: the computation can 
be realized by the CMOS part to be more reliable. 
3.2 Illustration: Wisp0 application 
WISP-0[20] is a stream processor, built on NASIC, that 
implements a streaming processor architecture with 5-stage 
pipeline: fetch, decode, register file, execute, and write back. It is a 
multi-tile design with 5 nanotiles. A key feature is that intermediate 
values during execution are often stored on the nanowires directly 
without explicit latches using a three-phase dynamic control. Other 
key aspects relate to its fault-masking strategy and density 
optimizations. 

 
Figure 3. WISP-0 Block Diagram 

The specification of WISP0 with NanoMadeo is 
functional,  including : 

 A synchronization primitive 
 a reflexive operator ('yourself' operator) to define feed-back 
 specific types to introduce redundancy 

We give in figure 4 an example of a DAG produced by 
the compiler from source code defining the ALU and Register File 
(RF) stages of WISP-0. In this DAG, nodes  correspond to function 
calls or operators that will be synthesized into logic PLA blocks. 
This description implicitly describes some data synchronization, 
but this information could be more explicit and could be managed 
through specific behavioral transformations. No explicit 
partitioning between CMOS/Nano is done at this point because 
every functionality is aimed to be implemented on nano parts in the 
case of  NASIC fabric. Nevertheless, if some fault-tolerant parts in 
CMOS are needed, this information needs to be explicit (for 
instance, the generation of CMOS voter by transformation for fault-
tolerance in TMR case). Other  transformations for fault-tolerance 

can be applied by injecting specific data types for the inputs. These 
types represent  future data encodings for the input data; for 
instance, in the case of NASIC fabric, BCH codes (as error 
correcting codes ECC) are used to introduce built-in redundancy. 

4. SYNTHESIS, STRUCTURAL TRANSFORMATIONS 
AND YIELD PROJECTION 

4.1 Synthesis 
The resulting logic is then synthesized in the appropriate type of 
logic (PLA, LUT, multi-level logic) with the appropriate building 
components as defined by the computational model and 
architectural model. Standard external tools such as SIS are used 
for this process. This is done on a block-wise basis, with each 
operation as compiled from the high-level code compiled as a 
single block. Different levels of operator decomposition can be 
applied, allowing the complexity of each block to be traded off 
against the number of blocks. 

4.2 Structural Transformations 
Once the initial structural representation of the application has been 
generated through synthesis, transformations at the structural level 
are applied. The synthesis is based only on the type of logic and 

 
Figure 4. DAG representing ALU and RF 
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may not take into account all structural requirements. An example 
is the signal restoration required by NanoPLA. At this point, logic 
is synthesized for the combinatorial parts such as decoders and 
sequential parts such as registers or dynamic logic controls are 
defined around the synthesized segments as required to support the 
architecture. 

Structural level fault-tolerance related transformations 
are also done in this step. These include techniques like N-way 
redundancy to provide additional copies of input/output signals and 
of some intermediate signals (the logic minterms in a case of  PLA 
structures). Modular redundancy techniques are also possible at this 
stage – specific structures are selected and voter circuits are 
provided to implement TMR or similar schemes, but at this level, a 
more detailed architecture of this kind of circuitry is provided. 
4.3 Yield Projection 
The structural representation of the circuit plus the fault 
distribution given by the fault model can be used to make yield 
projections. This is performed by an external yield simulator. A 
yield simulator for PLA-based structures proposed in [6] could be 
used for different kinds of 2D nanofabrics. Yield estimation can 
also be done using Monte Carlo simulation [11]. 

If the predicted yield is not satisfactory, it is possible to 
iterate, applying different kinds of fault-tolerant transformations to 
different portions of the application. These iterations may continue 
until an acceptable level of yield is reached. 
4.4 Structural Transformations and Yield Projection for 
WISP-0 
In the case of NASIC fabric, NanoMadeo utilizes the external 
synthesis tool SIS to perform the two-level logic synthesis of PLAs 
associated to each node of the DAG. Assembly of synthesized 
portions is addressed by NanoMadeo to define the complete logical 
structure of the WISP-0 application. WISP-0 may use some 
structural fault-tolerance techniques such as TMR and N-way 
redundancy of signals. The result of synthesis is then transformed 
here to implement these techniques, when they are in use. 

We have developed a yield simulator to evaluate fault 
tolerance techniques in NASICs. The simulator generates random 
defect maps for designs based on a defect model and runs logic 
simulations on them, testing with many different possible sets of 
input. By measuring what proportion of the generated defect maps 
result in correct output when simulated, the yield can be estimated. 
NanoMadeo can automatically call the yield simulator to evaluate 
defect and fault tolerance techniques. One example of output after 
several runs of the yield simulator, using different fault rates and 
different fault-tolerance techniques(TMR, ECC,N-way) is shown 
graphed in figure 5. This graph provides information on the 
efficiency of the fault-tolerant techniques related to the fault rate 

and the types of permanent defects (for instance, if the fault rate is 
above 6%, the yield is better with ECC techniques  considering 
10% Stuck-off and 90% Stuck-on). 

 

5. PHYSICAL DESIGN 
Nanofabrics are generally organized into tiles, hypertiles or 
nanoblocks that correspond to clusters of PLAs, basic cells or 
hypercells. The partitioning techniques used to define such blocks 
are based on clustering heuristics for PLA packing, as in 
PLAmap[4], T-VPACK [15] or Singh Algorithm [9]. 

The parameters for clustering are the number of 
elementary cells or P-terms of the PLA and the number of inputs 
and outputs associated with the cluster. The placement problem 
consists of placing each basic cell inside a cluster, once the clusters 
are defined. This is achieved using generic optimization heuristics 
like simulated annealing, using e.g., congestion costs in the case of 
reconfigurable fabrics. 

Routing procedures for nanofabrics can use adaptive 
maze router algorithms like Pathfinder from VPR, or they can be 
more specific to the fabric using, for example, custom adaptation of 
shortest Steiner tree problems or other VLSI algorithms [1]. 
For reconfigurable fabrics, a defect map provides extra constraints 
for placement and routing to configure around the defects 
previously detected. 

Table II gives an overview of the different algorithms 
applied in physical layout tools for the NanoPLA, CMOL and 
FPNI fabrics. Physical tools for nanofabrics use two kinds of 
algorithms or heuristics: adaptive generic algorithms or custom 
procedures. Adaptive generic algorithms include general purpose 
optimization heuristics like simulated annealing or genetic 
algorithms and algorithms for FPGAs like Pathfinder and PLA 
clustering as the ones implemented in Madeo [18] or the VPR tool. 

TABLE II 
Physical Tools Published For Specific Nanofabrics 

 NanoPLA [2] CMOL [8] FPNI [10] 

Partitioning  
 

PLAMAP [4] T-VPACK [15] Singh’s greedy algo [9] 
Specific cost 

Placement  
 

Simulated Annealing(VPR-like) Simulated annealing(VPR-like)  
Modified congestion cost function 

Simulated annealing(VPR-like) 

Routing NPR (custom tool) 
Pathfinder based 

Custom tool 
RSA heuristic based [14] 

maze router (PathFinder-like) 
with several iterations 

 
 

 
Figure 5. Graph of yield simulator output for WISP-0 
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5.1 Wisp0 layout 
Based on the architectural and technological model of NASIC 
fabric, an abstract layout can be produced taking into account the 
doping constraints inside one tile. In figure 6, we present the 
abstract layout of WISP-0 onto a nanogrid of three tiles, partially 
integrating some fault-tolerant techniques. A more efficient place-
and-route algorithm without constraints on  the size of the tile is 
under  study.  

Figure 6. Abstract WISP-0 Layout from NanoMadeo 

6. CONCLUSION 
In order to handle next generation hybrid nano-architectures, CAD 
tools will have to evolve. Highly heterogeneous multi-part fabrics 
introduce new challenges which must be met to efficiently use 
those new fabrics in building real applications. In this paper, we 
have shown that the proposed tool, NanoMadeo, can handle many 
of these challenges and can be used productively for work on 
NASIC. Its generic design will make it easy to adapt it for work on 
other hybrid architectures while using much of the same 
functionality already implemented. 
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