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Note on singular Clairaut-Liouville metrics

Singular Clairaut-Liouville metrics. Let R be a meromorphic function such that (i) R and R are positive on [0, 1[, (ii) X = 1 is a pole of finite order. Typically,

with nonnegative a n for n = 0, p -1, and positive a p (p is the order). Let G denote the function XR • sin 2 , that is

G(ϕ) = R(sin 2 ϕ) sin 2 ϕ.
Clearly, G has the equatorial symmetry G(π -ϕ) = G(ϕ). Proof. Readily, (ad

k F 2 )F 1 = (1/ √ G) (k) ∂/∂θ. Now, around ϕ = π/2, 1 √ G = O(θ(X)),
with θ = (1 -X) p/2 • sin 2 , and

θ (k) = O((1 -X) (p-k)/2 • sin 2 )
around π/2 again. So θ (p) (π/2) = 0 and the distribution generated by F 1 and F 2 verifies the Hörmander condition on the compact manifold S 2 .

Remark 1. The finiteness assumption is crucial herebefore: for R = exp(1/(1 -X) 2 ) which has an infinite order pole at X = 1, one can check that (1/ √ G) (k) is zero at ϕ = π/2 for any order of differentiation k, so that the Lie algebra generated by F 1 and F 2 is R ∂/∂ϕ which has not full dimension.

The associated metric on S 2 g = G(ϕ)dθ 2 + dϕ 2 is called a singular Clairaut-Liouville metric.

Discrete symmetry group. We denote Γ = 1/G the inverse of G, well defined then on ]0, π/2[. We restrict to the level set H = 1/2 of the Hamiltonian associated to the metric,

H = 1 2 (Γ(ϕ)p 2 θ + p 2 ϕ ),
and so parameterize extremals by arc length. Consider the extremal departing from ϕ 0 = 0 (π) (not a pole), θ 0 being normalized to 0 (cyclic variable) and defined by a positive p θ (the degenerate case p θ = 0 corresponding to meridians-which are the only extremals passing through the poles) and nonnegative

p ϕ 0 = 1 -Γ(ϕ 0 )p 2 θ .
Along the extremal, φ first vanishes when ϕ = π -G -1 (p 2 θ ), the reciprocal function of G being well defined because of assumption (ii) and since

G = (R + XR ) • sin 2 • 2 sin cos. As neither G nor Γ vanish at G -1 (p 2 θ ) ∈]0, π/2[, 1 -Γ(ϕ)p 2 θ = O((π -G -1 (p 2 θ )) -ϕ)
in the neighbourhood of π -G -1 (p 2 θ ), and the following integral is well-defined:

t 1 (p θ , ϕ 0 ) = π-G -1 (p 2 θ ) ϕ0 dϕ 1 -Γ(ϕ)p 2 θ • Lemma 1.
The axial symmetry with respect to θ 1 = θ(t 1 ) leaves the extremal invariant.

Proof. Set θ = 2θ 1 -θ(2t 1 -t), pθ = p θ , φ = ϕ(2t 1 -t), pϕ = -p ϕ (2t 1 -t),
and check that new curve is still an extremal, passing through the same point of the cotangent bundle at t 1 since p ϕ (t 1 ) = 0.

Necessarily, π -G -1 (p 2 θ ) ≥ π -ϕ 0 , so there also exists t 2 ≤ t 1 such that ϕ(t 2 ) = π -ϕ 0 . Using the previous axial symmetry, we deduce the existence of t 3 = 2t 1 -t 2 ≥ t 2 such that, again, ϕ(t 3 ) = π -ϕ 0 . Using now the equatorial symmetry of G (and Γ = 1/G), the following is clear.

Lemma 2. The central symmetry with respect to (θ(t 3 /2), ϕ(t 3 /2)) defines another extremal with same initial condition.

Finally denote t 4 the point such that ϕ(t 4 ) = π/2 ≤ π -ϕ 0 , and remark that the central symmetry with respect to (θ(t 4 ), ϕ(t 4 )) leaves the extremal invariant. Since the axial symmetry with respect to θ = 0 obviously defines another extremal with same initial condition, we conclude that the four-order group generated by one axial symmetry with respect to θ (denoted s 1 ) and one central symmetry (denoted s 2 ) acts on extremals with same initial condition, and also on extremals themselves (thus defining innner symmetries).

Proposition 2. The Klein group acts on the set of extremals issuing from the same point, as well as on every extremal.

An extremal is said to be a pseudo-equator whenever φ(0) = p ϕ (0) is equal to zero. Proposition 3. Every extremal which is not a meridian is a pseudo-equator.

Proof. For p θ positive and p ϕ 0 nonnegative (the other cases are deduced by symmetry), there exists φ0 = G -1 (p 2 θ ) such that, up to a time shift, the extremal is the pseudo-equator with initial condition φ0 .

Corollary 1. On every extremal, the ϕ coordinate is periodic with period

T (p θ ) = 4 π/2 G -1 (p 2 θ ) dϕ 1 -Γ(ϕ)p 2 θ ,
and θ(t + T ) = θ(t) ± ∆θ (the sign depending on the sign of p θ ) with

∆θ(p θ ) = 4 π/2 G -1 (p 2 θ ) Γ(ϕ)p θ dϕ 1 -Γ(ϕ)p 2 θ • Proof.
According to the previous analysis, it is enough to check the result on pseudo-equators. But then, t 1 = t 2 = t 3 = 2t 4 , so setting T = 2t 1 and using the axial symmetry with respect to θ 1 gives the result since ϕ(T ) = ϕ(0), p ϕ (T ) = -p ϕ (0) = 0 = p ϕ (0). Hence θ = Γ(ϕ)p θ is also periodic which concludes the proof.

Remark 2. Since G defines a one-to-one (strictly increasing) mapping between ]0, π/2[ and R * + , we can as before consider that extremals are not parameterized by their Clairaut constant, p θ , but rather by their initial condition ϕ 0 = G -1 (p 2 θ ) as pseudo-equators. Then,

T (ϕ 0 ) = 4 π/2 ϕ0 dϕ 1 -Γ(ϕ)/Γ(ϕ 0 ) , and 
∆θ(ϕ 0 ) = 4 π/2 ϕ0 Γ(ϕ)dϕ Γ(ϕ 0 ) -Γ(ϕ) •
These relations actually cover the case of meridians ϕ 0 = 0 (i.e. p θ = 0) for which T = 2π and ∆θ = 2π (two instantaneous rotations of angle π when crossing poles at t = π and t = 2π). Both T and ∆θ vanish when ϕ 0 = π/2 since extremals accumulate at the initial point as will be clear using the following local model.

Quasi-homogeneous local model. Setting x = π/2 -ϕ and y = θ, a local model at ϕ = π/2 is

ds 2 = dx 2 + dy 2
x 2p where p is the order of the pole. The equatorial symmetry of G is approximated by 1/(-x) 2p = 1/x 2p , so the discrete symmetry group is preserved. One gets [START_REF] Bonnard | One-parameter family of Clairaut-Liouville metrics[END_REF] x = 1

p √ λ q(t p √ λ), y = 1 ( p √ λ) p+1 r(t p √ λ),
for extremals departing from the origin, where q and r are hypergeometric functions depending on p, and denoting λ = p y > 0. The conjugate locus is the set of first critical values of the exponential mapping on H = 1/2, exp t (λ) = exp (0,0),t (λ) = (x(t, λ), y(t, λ)), so that, because of quasi-homogeneity, conjugate times are t 1c (λ) = s p / p √ λ where s p is a root of qr -(p + 1)q r = 0.

Accordingly, the conjugate locus is described as follows [START_REF] Bonnard | One-parameter family of Clairaut-Liouville metrics[END_REF].

Lemma 3. The conjugate locus at the origin of ds 2 = dx 2 + dy 2 /x 2p is the set y = ±C p x p+1 minus the origin where

C p = 1 p + 1 q 2p (s p ) 1 -q 2p (s p ) •
Cut and conjugate loci. Proof. First assume ϕ 0 = π/2. If the cut point is not a conjugate point, the exponential mapping is a diffeomorphism in the neighbourhood of the time, t l , and adjoint vector that generate the cut point. Since the metric is complete by Proposition 1, there exist minimizing extremals γ n joining the initial point to γ(t l + 1/n), n ≥ 1, where γ is the curve in the state space defining the cut point, γ(t l ). As ϕ 0 = π/2, the set {p = (p θ , p ϕ ) | H(0, ϕ 0 , p) = 1/2} is compact, and one can extract a converging subsequence of the (p n ) n generating the extremals γ n , and thus get the standard contradiction [START_REF] Sakai | Riemannian Geometry[END_REF].

When ϕ 0 = π/2, though {p | H = 1/2} = R × {p ϕ = ±1}
is not bounded anymore, (p θ n ) n still has to be bounded otherwise there would exist a subsequence such that |p θ n | → ∞, and γ n (t l + 1/n) would tend to (0, π/2) (as is clear from an estimation of T and ∆θ when p θ → ∞), the initial point, not to the cut point γ(t l ). The sequence being thus bounded, we can conclude as before.

We introduce the new assumption on the metric that (iii) ∆θ is strictly decreasing.

Theorem 1. The cut locus of any point is simple and antipodal. More precisely, the cut locus of a pole is reduced to the opposite pole, is equal to the equator minus the point itself when ϕ 0 = π/2, to a proper closed subarc of the antipodal parallel otherwise.

Proof. The case of poles is obvious since the only extremals through them are meridians.

Consider now the situation ϕ 0 = π/2, and show that the exponential mapping is injective on the quadrant

D = ∪ p θ >0 [0, T (p θ /2)] × {p θ , 1},
that is show that subarcs of extremals defined by t ∈ [0, T (p θ )/2], positive p θ and p ϕ = +1 do not intersect. If p θ > p θ , the arc associated with p θ is strictly below the one associated with p θ . Indeed, note that on the first half of such an arc (t ∈ [0, T /4[), φ does not vanish so that the curve can be parameterized by ϕ. There,

f (ϕ, p θ ) = dθ dϕ = Γ(ϕ)p θ 1 -Γ(ϕ)p 2 θ , is an increasing function of p θ since ∂f ∂p θ = Γ(ϕ) (1 -Γ(ϕ)p 2 θ ) 3/2 > 0.
As geodesics starting from ϕ 0 = π/2 cross again the equator at ∆θ/2, assumption (iii) ensures that the aforementioned subarcs do not intersect. We conclude by remarking that the full set of extremals is obtained by considering the action of the Klein group: first, the central symmetry s 2 which generates intersections at t = T /2, then the axial symmetry s 1 with respect to θ = 0 which generates intersections at θ = π, thus not prior to the previous ones since θ(T /2) = ∆θ/2, and since ∆θ < 2π for p θ > 0 (by assumption, ∆θ is decreasing, and equal to 2π on meridians, i.e. when p θ = 0). So extremals are optimal up to t = T /2, and the corresponding point belongs to the separating line. Since the metric is complete, each point of the equator is reached by such an extremal and the separating line, hence the cut locus, is the equator minus the initial point itself. Consider finally the case when the initial point is neither a pole nor on the equator. Then, p 2 θ belongs to ]0, G(ϕ 0 )[, and extremals are again optimal up to t = T /2. Indeed, there would otherwise exist shorter extremals which would lead to the existence of shorter extremals for the initial condition ϕ 0 = π/2, too, contradicting the previous fact. The central symmetry s 2 still generates an intersection at t = T /2, and ϕ(T /2) = π -ϕ 0 so the corresponding point in the separating line belongs to the antipodal parallel of the starting point. Since ∆θ is decreasing, the extremities of the cut are obtained letting p θ tend to ± G(ϕ 0 ) (now finite, since ϕ 0 = π/2), and the subarc is closed.

To get the result on the conjugate locus, we finally assume that (iv) ∆θ is convex.

Theorem 2. The conjugate locus of a point on the equator is double-hearted (four meridional cusps), astroidal otherwise (two meridional and two equatorial cusps).

Proof. The analysis outside the equator being a direct extension of [START_REF] Bonnard | Conjugate and cut loci of a two-sphere of revolution with application to optimal control[END_REF] result, we focus on the proof for ϕ 0 = π/2. Consider an extremal defined by a positive p θ and p ϕ 0 = +1. For t in ]T /4, 3T /4[, φ = 0 and the extremal can be parameterized by ϕ according to

θ(ϕ, p θ ) = ∆θ(p θ ) 2 + π/2 ϕ f (ϕ , p θ )dϕ ,
where, as before,

f (ϕ, p θ ) = dθ dϕ = Γ(ϕ)p θ 1 -Γ(ϕ)p 2
The tangent vector along the conjugate locus is

    ϕ 1c • ∂θ ∂ϕ + ∂θ ∂p θ 0     ∂ ∂θ + ϕ 1c • ∂ ∂ϕ ,
proportional to f (ϕ 1c (p θ ), p θ )∂/∂θ + ∂/∂ϕ. On the one hand, as in the regular case discussed in [START_REF] Bonnard | Conjugate and cut loci of a two-sphere of revolution with application to optimal control[END_REF], f (ϕ 1c (p θ ), p θ ) tends to 0 when p θ → 0+, and the locus has a first meridional cusp because of the axial symmetry s 1 . On the other hand, when p θ goes to +∞, the analysis on the local model shows that, contrary to the regular case, there is a second meridional cusp at the initial point where conjugate points accumulate, and we have a heart-shaped conjugate locus. The central symmetry s 2 gives the symmetric part, hence the result.

The results directly apply to the simplest case of order one, R = 1/(1 -X), associated with the bi-entry orbit transfer. Indeed, one has ∆θ(ϕ 0 ) = 2π(1sin ϕ 0 ) (see [START_REF] Bonnard | Geodesic flow of the averaged controlled Kepler equation[END_REF], and compare with the-doubled-half period function when λ goes to ∞ in [START_REF] Bonnard | Conjugate and cut loci of a two-sphere of revolution with application to optimal control[END_REF]), that is ∆θ(p θ ) = 2π(1 -p θ / 1 + p 2 θ ), so that ∆θ = -1 (1 + p 2 θ ) 3/2 < 0, ∆θ = 3p θ (1 + p 2 θ ) 5/2 > 0.

Figure 1: Bifurcation of the conjugate locus (in blue) from an astroid-that is a quatrefoil, as seen from behind-to a double-heart when the initial condition goes to the equator. The same bifurcation occurs on the homotopy regularizing the metric described in [START_REF] Bonnard | One-parameter family of Clairaut-Liouville metrics[END_REF] when λ goes to one. The cut locus (in red) is an open arc for a point on the equator.
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