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A general method to deduce the diagonal representation for a generic matrix valued quantum
Hamiltonian is proposed. This method can be applied to any kind of quantum system which has an
energy band spectrum. In particular it would be useful for the study of relativistic Dirac particles
in strong external fields as well as for Bloch electrons in solids. In this approach the diagonal energy
operator and the dynamical operators which depend on Berry phase terms can be expanded in
power series in the planck constant. The connection with previous less general approaches is also
presented. As an example, the case of a Dirac electron in an external electric field is considered.

PACS numbers:

I. INTRODUCTION

The physical content of quantum systems is most often best revealed in the representation where the Hamilto-
nian is diagonal. The paradigmic example is provided by the Foldy-Wouthuysen (FW) representation of the Dirac
Hamiltonian for relativistic particles interacting with an external electromagnetic field. In this representation the
positive and negative energy states are separately represented and the non-relativistic Pauli-Hamiltonian is obtained
[1]. Actually even if several exact FW transformations have been found for some definite classes of potentials [2][3][4],
the diagonalization (block-diagonalization for Dirac Hamiltonian) is a difficult mathematical problem requiring some
approximations, essentially a perturbation expansion in weak fields. To overcome this limitation we have recently pro-
posed a new method based on a formal expansion in powers of the Planck constant h̄ which is not restricted to Dirac
Hamiltonians (and thus very different from the FW method) but also applicable to a large class of quantum systems:
as an example we carried out the diagonalization for the Hamiltonian of a spinless electron in magnetic Bloch bands
[5][6]. It is worth mentioning that recently a variant of the FW transformation valid for strong fields and based also on
an expansion in h̄ of the Dirac Hamiltonian was presented [7]. The main advantage of the diagonalization procedure
of [5] is that it embraces several different physical systems ranging from Bloch electrons in solid to Dirac particles
interacting with any type of external fields (for instance in ref. [8] electrons and photons in a static gravitational field
were considered). Another interesting feature of this approach is that it reveals the fundamental role played by Berry
curvatures since it results in an effective diagonal Hamiltonian with Berry phase corrections as well as noncommuta-
tive (Berry connections dependent) coordinates and momentum operators. The resulting generic equations of motion
are also corrected by Berry curvatures terms. One other advantage of an expansion in h̄, apart the fact that it is
valid for strong fields, is that the semiclassical limit of the relativistic quantum mechanics is readily obtained. Since
semiclassical methods play a very important role in solid state physics too, in studying the dynamics of electrons to
account for the various properties of metals, semiconductors and insulators, it is clear that a diagonalization method
valid for a generic Hamiltonian is of a great interest.

In what follows we present an alternative method for the diagonalization of a generic matrix valued Hamiltonian
which leads to a particulary compact and elegant exact diagonal energy operator. The philosophy behind this
approach consists in a mapping of the initial quantum system to a classical one which can be diagonalized and then
to return to the full quantum system. This method requires the introduction of some new mathematical objects like
non-commuting operators which evolve with the planck constant promoted as a running variable. This construction
forces to define a differential calculus on a non-commutative space which shows some similarities with the stochastic
calculus. It is not our goal in this paper to deepens the mathematical aspect of our approach which might look
sometimes formal but also shows to be very elegant and powerful. To check the validity of this new approach we show
that the energy found in this paper is solution of the differential equation (with respect to h̄) which is the base of the
method presented in [5]. In the lack of exact solution for this differential equation, we resorted to a recursive method
resulting in a series expansion in h̄ of the solution. On the contrary the approach developed here allows us to find the
exact solution of the differential equation of [5]. The derivation of the expansion of this solution into a power series
in h̄ appears to be much more simpler than in [5]. In particular we could derive a general expression for the diagonal
Hamiltonian representation of any matrix valued Hamiltonian to the second order in h̄. As a physical illustration of
this result we derive the full relativistic energy of a spin 1/2 particle in an external electric field to the second order
in h̄. This allows us to recover the Darwin term when the non-relativistic limit is considered.
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II. PRELIMINARIES:

A. Differential calculus on noncommutative space

Consider a quantum mechanical system whose state space is a tensor product L2
(
R3
)
⊗ V with V some internal

space. In other words, the Hamiltonian can be written as a matrix H (P,R) of size dim V whose elements are operators
depending on a couple of canonical operators

[
Ri, P i

]
= ih̄, the archetype example being the Dirac Hamiltonian with

V = C4. Our goal is to derive the formal diagonal representation of this matrix valued quantum Hamiltonian. For
that purpose we start with some definitions and notations.

1. Running coordinate and momentum operators

To begin with, we introduce a space of non commuting infinitesimal operators dX i
α ≡

{
dRi

α, dP i
α

}
i = 1, 2, 3

indexed by a continuous parameter α, that satisfy the following infinitesimal Heisenberg algebra with a reversed sign
:

[
dRi

α, dP j
α′

]
= −idαδα,α′δij and

[
dRi

α, dRj
α′

]
=
[
dP i

α, dP j
α′

]
= 0. (1)

Then, we define a set of running coordinate and momentum operators by witting the following formal sums :

Ri
α = Ri −

∫ h̄

α

dRi
λ, and P i

α = P i −
∫ h̄

α

dP i
λ (2)

with the choice of convention : dRi
α = Ri

α −Ri
α−dα and dP i

α = P i
α −P i

α−dα. For α = h̄ we recover the usual canonical

operators Ri ≡ Ri
h̄and P i ≡ P i

h̄ which evidently satisfy the canonical Heisenberg algebra
[
Ri, P i

]
= ih̄, whereas the

running operators satisfy
[
Ri

α, P j
α

]
= iαδij and

[
Ri

α, Rj
α

]
=
[
P i

α, P j
α

]
= 0. (3)

(Note that in this paper we will never consider the algebra of the operators Ri
α and P j

α′ for α 6= α′, which from the
definition Eq. 2 is clearly not a Heisenberg one).

The variables dXα have to be understood as fictitious variables that make the link between quantized operators
(α = h̄) and classical variables (α = 0). As will be explicit later on, their role is to transport our quantum system
to a formal classical one, and then back from the formal classical one to the initial quantized system. By writing
dXα =

√
dα/h̄X̂α with X̂α a normalized canonical operator we see that the infinitesimal quantities dXα are actually

of order
√

dα. However, having this in mind, we will never use the X̂α notation and always work with the dXα.

2. Differential algebra

For the sequel, we need to define the differential dF (Xα, α) of an arbitrary function F (Xα, α) where X i
α ≡{

Ri
α, P i

α

}
. For this purpose, we consider the operators Ri −

∫ h̄

α
dRi

λ, and P i
α = P i −

∫ h̄

α
dP i

λ as acting on a space

W =
(
V ⊗ L2

(
R3
))

⊗
(
⊗α<h̄L2

(
R3
)
α

)
which is the tensor product of V and an infinite number of copies of L2

(
R3
)
.

The tensor product V ⊗ L2
(
R3
)

and the space L2
(
R3
)
α

refer respectively to the spaces on which the canonical

operators
(
Ri, P i

)
and the differential operators dX i

α act.

By considering the function F (Xα, α) as a series expansion in symmetrized products of the kind 1
2 (Rn

αPm
α + Pm

α Rn
α)

with n and m the degrees of the monomials, we can write the differential dF (Xα, α) ≡ F (Xα, α)−F (Xα−dα, α − dα)
(note that this unusual definition fits with our convention for the dX i

α) as :

dF (Xα, α) = ∇Ri
FdRi

α + ∇Pi
FdP i

α − 1

2

(
∇Ri

∇Rj
F
)
dRi

αdRj
α − 1

2

(
∇Pi

∇Pj
F
)
dP i

αdP j
α

−1

2
(∇Ri

∇P iF )
(
dRi

αdP j
α + dP j

αdRi
α

)
− i

2
Asym (∇Ri

∇P iF ) dα +
∂F

∂α
dα + terms of order 3, (4)

all expression in the R.H.S. being evaluated at (Xα, α). We kept terms of order square in dX i
α since they are of order

dα and thus contribute to the differential, whereas higher orders can safely be disregarded as negligible when we do
the summation over α.
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The operation Asym already introduced in [5] acts on symmetrical functions and has the following meaning :
Asym

{
1
2A (R)B (P) + 1

2B (P)A (R)
}

= 1
2 [B (P) , A (R)] . In Eq. (4) it is obtained by picking the coefficient of[

dRi
α, dP j

α

]
in the second order expansion of dF (Xα, α) in terms of dRi

αdP j
α +dP j

αdRi
α and dRi

αdP j
α−dP j

αdRi
α = idα.

Note that the appearance of a second order term proportional to dα in Eq. (4) is very reminiscent of the stochastic
calculus. This analogy suggests us to call this term the bracket of F and we therefore introduce the notation

〈F (Xα, α)〉 ≡ − i

2
Asym (∇Ri

∇P iF (Xα, α)) . (5)

This definition implies two remarks :
First, the bracket can be defined even if the function F (Xα, α) has not been put in a symmetric form. Indeed by

developing dF (Xα, α) to the second order, the terms proportional to dRi
αdP j

α can always be uniquely written as a
sum of terms of the type dRi

αdP j
α + dP j

αdRi
α and dRi

αdP j
α − dP j

αdRi
α = idα. Picking the idα term yields then the

bracket. However, and this is the second remark, the bracket thus defined is different from the one computed in the
symmetric form of the function. This is not astonishing at all. Actually passing from a symmetric to a non symmetric
form introduces some explicit terms in α which changes also the term ∂αFdα in the differential. As a consequence,
neither the partial derivative with respect to α, nor the bracket are invariant by a change of form. But, what is
invariant is the sum ∂αF + 〈F 〉. This is the consequence of the fact that in the series expansion the variables dX i

α,
dX i

αdXj
α, dα, are independent, and as a consequence the coefficients of the expansion are unique.

Formula Eq. (4) for the differential allows us to write formally :

F (Xh̄, h̄) − F (X0, 0) =

∫ h̄

0

dF (Xα, α) (6)

The integral has to be understood as being computed downward as seen in the definition of (Rα,Pα) : the starting
point is at h̄ and the differentials are pointed downward. For example ∇Rα

F.dRα = −∇Rα
F (Xα, α) (Rα−dα − Rα).

However, this equation has to be taken with some care. Actually the sum over the terms proportional to dXα being
a sum of terms of magnitude

√
dα, it converges only if the sum is discretized, and this will be implicitly assumed in

this paper. Defining properly the continuous limit is out of the scope of this paper.
For later convenience we still more compactify our notations by writing :

dF (Xα, α) =

6∑

i=1

∇Xi
α
F (Xα, α) dX i

α − 1

4

6∑

i,j=1

∇Xi
α
∇

X
j
α
F (Xα, α)

(
dX i

αdXj
α + dX i

αdXj
α

)

+

(
∂F (Xα, α)

∂α
+ 〈F (Xα, α)〉

)
dα (7)

with i,j = 1..6. We also assume that X i
α ≡ Ri

α for i = 1, 2, 3 and X i
α ≡ P i

α for i = 4, 5, 6. In fact, as we will show in
the next sections the quantity that really matters for us in Eq. (7) is the term proportional to dα. For later use we
now give the bracket formula Eq. (5) for a product of two symmetric functions (the product is not put in a symmetric
form, only the functions are individually symmetric). Using the same rules as before (see also ref. [5]) one obtains
the following expression

< F (Xα)G (Xα) >= 〈F (Xα)〉G (Xα) + F (Xα) 〈G (Xα)〉 − i

2
(∇Pi

F (Xα) ∇Ri
G (Xα) − ∇Ri

F (Xα)∇Pi
G (Xα)) .

(8)
Before going to the diagonalization procedure we still need to defined an expectation operator in the next section.

B. Expectation operator

Having now a differential set up, we define a conditional expectation operator E (.) by the following set of formula
:

E (dα) = dα and E (F (Xh̄, h̄)) = F (Xh̄, h̄) (9)

which corresponds to the conditional part of the expectation as the starting point is fixed. We set also

E
(

n∏

i=1

dRαi

)
= E

(
n∏

i=1

dPαi

)
= 0, E

(
n∏

i=1

(
dX i

αi
dXj

αi
+ dXj

αi
dX i

αi

)
)

= 0 (10)
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and

E




n∏

i=1

p∏

j=1

dX i
αi

dXj
αj


 = 0 for αi 6= αj (11)

The role of this operator is to pick up the initial term in a series of independent operators depending on∏n

i=1

∏p

j=1 dX i
αi

dXj
αj

, that is the term depending only on the physical operators Ri ≡ Ri
h̄and P i ≡ P i

h̄. This
can include contributions proportional to dα which can thus be integrated.

From these results we can then see that the expectation of Eq. (7) gives

E (dF (Xα, α)) = E
((

∂F (Xα, α)

∂α
+ 〈F (Xα, α)〉

)
dα

)
(12)

For later use we will need to relate E (F (Xα, α)) to a function F (Xα′, α) at a constant α. Given our previous
definitions Eq. (7), one has

F (Xα−dα, α)−F (Xα, α) = −
6∑

i=1

∇Xi
α
F (Xα, α) dX i

α+
1

4

6∑

i,j=1

∇
X

j
α
∇Xi

α
F (Xα, α)

(
dX i

αdXj
α + dX i

αdXj
α

)
−〈F (Xα, α)〉 dα

(13)
The absence of the ∂/∂α term implies that this expression really depends on the choice of the symmetrization of the
function F (Xα, α). As a consequence considering the expectation, one has :

E (F (Xα−dα, α)) = E
(

F (Xα, α) +
i

2
Asym (∇Ri

∇Pi
F (Xα, α)) dα

)

= E ((1 − 〈.〉 dα)F (Xα, α)) (14)

where 〈.〉 is the bracket operator defined in Eq. (5). The above differential equation can be easily integrated to get
the required relation

E (F (Xα2
, α2)) = E (exp ((α2 − α1) 〈.〉)F (Xα1

, α2)) (15)

valid for α1 > α2. We can now exploit the mathematical construction developed in this section to consider the formal
diagonalization of a generic matrix valued quantum Hamiltonian.

III. THE DIAGONALIZATION PROCEDURE

We now consider a generic matrix valued quantum Hamiltonian H (R,P) where R and P are the usual canonical
coordinate and momentum operators satisfying the canonical Heisenberg algebra. Our goal is the find an unitary
transformation U such that UHU+ is a diagonal matrix valued operator ε (R,P) (block diagonal for the Dirac
Hamiltonian). This is in general an excessively difficult mathematical problem. For this reason we consider this
problem by dividing it in several steps.

A. The Hamiltonian

First we introduce the unitary matrix Uα (Xα) ≡ U (Xα, α) which diagonalizes the Hamiltonian H (Xα) where the
canonical variables Xh̄ ≡ X have been replaced by the running ones Xα, so that we can write

Uα (Xα)H (Xα)U+
α (Xα) = εα (Xα) (16)

Note that following [5] we choose to put Uα (Xα) and H (Xα) in a symmetric form. With the help of the previous
identities Eqs. (6) (9) (10), we can compute εh̄ (Xh̄) ≡ ε (X). Indeed as ε (X) = E (ε (X)) we can write

ε (X) = E
(

ε0 (X0) +

∫ h̄

0

dεα1
(Xα1

)

)
. (17)
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Clearly ε0 (X0) corresponds to the diagonal representation of the original Hamiltonian H(X) where the canonical
operators X have been replaced by the classical variables X0. In practice, it is usually quite easy to diagonalize the
Hamiltonian when the operators are commuting. This is the essence of the method. Starting with classical variables
we can recursively introduce more and more ”quantification” through the running parameter α until we get the full
quantum Hamiltonian. This procedure is now described in the following.

The quantity E (dεα1
) = E

((
∂

∂α1

+ 〈.〉
)

εα1
(Xα1

)
)

can be straightforwardly computed by using the rule previously

given for the bracket of a product Eq. (8). Indeed we find

(
∂

∂α1
+ 〈.〉

)
εα1

(Xα1
) = ∂α1

Uα1
U+

α1
εα1

+ εα1
Uα1

∂α1
U+

α1
+ Uα1

∂

∂α1
H (Xα1

)U+
α1

+ 〈Uα1
〉U+

α1
εα1

+ Uα1
〈H (Xα1

)〉U+
α1

+ εα1
Uα1

〈
U+

α1

〉

− i

2

(
∇Pi

Uα1
∇Ri

H (Xα1
) U+

α1
−∇Ri

Uα1
∇Pi

H (Xα1
)U+

α1

)

− i

2

(
Uα1

∇Pi
H (Xα1

)∇Ri
U+

α1
− Uα1

∇Ri
H (Xα1

)∇Pi
U+

α1

)

− i

2

(
∇Pi

Uα1
H (Xα1

)∇Ri
U+

α1
−∇Ri

Uα1
H (Xα1

)∇Pi
U+

α1

)
(18)

We note that by construction dεα1
is a diagonal matrix so that we obviously have the following identities

(
∂

∂α1
+ 〈.〉

)
εα1

(Xα1
) = P+ (R.H.S. of Eq. 18) (19)

0 = P− (R.H.S. of Eq. 18) (20)

where P+ and P− are the projection on the diagonal and off the diagonal respectively. As in [5] we now in-
troduce the notations ARl

α1
= iUα1

(Xα1
)∇Pi

U+
α1

(Xα1
) and APl

α1
= −iUα1

(Xα1
)∇Ri

U+
α1

(Xα1
) as well as Bα1

=
(Asym [∇Rk

∇Pl
Uα1

(Xα1
)])U+

α1
(Xα1

) so that Eq. (19) can be written

(
∂

∂α1
+ 〈.〉

)
εα1

(Xα1
) = P+

(
∂α1

Uα1
U+

α1
εα1

+ εα1
Uα1

∂α1
U+

α1
+ Uα1

∂

∂α1
H (Xα1

)U+
α1

)

+P+

{
1

2
ARl

α1
∇Rl

εα1
+ ∇Rl

εα1
ARl

α1
+ APl

α1
∇Pl

εα1
+ ∇Pl

εα1
APl

α1

}

+
i

2
P+

{
APl

α1
εα1

ARl
α1

−ARl
α1

εα1
APl

α1
+ εα1

[
ARl

α1
,APl

α1

]
+
[
ARl

α1
,APl

α1

]
εα1

}

+
i

2
P+

{
−Uα1

Asym {∇Pl
∇Rl

H (Xα1
)}U+

α1
−
[
Bα1

εα1
− εα1

B+
α1

]}
. (21)

This action is of affine type in εα1
(Xα1

) and will be denoted

(
∂

∂α1
+ 〈.〉

)
εα1

(Xα1
) = Oα1

.εα1
(Xα1

) (22)

with Oα1
given by the r.h.s. expression of Eq. (21). Now similarly to Eq. (17) we can write :

εα1
(Xα1

) = ε0 (X0) +

∫ α1

0

dεα2
(Xα2

) = ε0 (X0) +

∫ α1

0

d
(
U (Xα2

)H (Xα2
)U+ (Xα2

)
)

(23)

which can be inserted in the expectation Eq. (17) to get the full quantum diagonal representation ε (X) ≡ εh̄ (Xh̄) as
:

εh̄ (Xh̄) = E
(

ε0 (X0) +

∫ h̄

0

dεα1
(Xα1

)

)
(24)

= E
(

ε0 (X0) +

∫ h̄

0

Oα1
.

[
ε0 (X0) +

∫ α1

0

dU (Xα2
)H (Xα2

)U+ (Xα2
) dα2

]
dα1

)
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Now remark that since α2 < α1, the terms ∇Xα1
εα1

(Xα1
) dXα1

and ∇
X

j
α1

∇Xi
α1

εα1
(Xα1

)
(
dX i

α1
dXj

α1
+ dX i

α1
dXj

α1

)

in dε (Xα1
) do not recombine with anything to give a product of the type dRα1

dPα1
that would induce a dα1 contri-

bution. They will thus cancel in the expectation. As a consequence, Eq. (24) can be written:

εh̄ (Xh̄) = E
(

ε0 (X0) +

∫ h̄

0

Oα1
.

[
ε0 (X0) +

∫ α1

0

Oα2
.εα2

(Xα2
) dα2

]
dα1

)

Repeating the procedure one can then show by iteration that :

εh̄ (Xh̄) = E
(∫ h̄

0

[
∞∑

n=0

∫

0<αn<...<α1<α

Oα1
...Oαn

dα1...dαn

]
ε0 (X0)

)
(25)

At this point, an important comment has to be made. The operator Oαi
have been designed to depend on Xαi

. We
can use the connection operation defined in Eq. (15) to put the series appearing in the previous formula Eq. (25) at
the same point. Once again, since 0 < αn < ... < α1, we can write, inside the expectation :

[∫

0<αn<...<α1<h̄

Oα1
...Oαn

dα1...dαn

]
ε0 (X0)

=

[∫

0<αn<...<α1<h̄

e(α1−h̄)〈.〉Oα1
...e(αn−1−αn−2)〈.〉Oαn−1

e(αn−αn−1)〈.〉Oαn
e−αn〈.〉

]
ε0 (Xh̄)

We thus deduce that (with the notation X ≡ Xh̄):

ε (X) ≡ εh̄ (Xh̄) = E
([

exp (−h̄ 〈.〉) T exp

[∫

0<α<h̄

exp (α 〈.〉) Oα exp (−α 〈.〉) dα

]]
ε0 (X)

)
(26)

which is compact expression for the diagonal Hamiltonian ε (R,P) in terms of the ”classical” diagonal Hamiltonian
ε0 (R,P) in which the classical variables R0,P0 have been now replaced by the quantum ones R, P. Here T is the
usual notation for the ”time ordered product”. Eq. (26) is the required expression and constitutes the main result of
this paper.

Clearly the practical application of Eq. (26) requires the knowledge of the transformation matrices Uα which enter
into the definition of the operators Oα.

B. The transformation matrix U

Note first that there is a certain arbitrariness in the choice of the unitary matrix Uα (X) as explained in [5] which
reflects a kind of gauge invariance. Actually, multiplying the transformation matrix Uα (X) on the right by a diagonal
unitary matrix yields an other diagonalization, equivalent to the previous one. In particular it allows to choose n
conditions for the diagonal entries of Uα (X) (n × n being the size of Uα (X)). An explicit choice will be done below
to simplify our expressions.

To find the transformation matrix U we use the same approach as for the diagonalization of the Hamiltonian, by
writing :

Uh̄ (Xh̄) = E
(

U (X0) +

∫ h̄

0

dUα (Xα)

)
(27)

= E
(∫ h̄

0

(
∂

∂α
+ 〈.〉

)
Uα (Xα) dα

)
(28)

we can find (∂α + 〈.〉)Uα (Xα) by using again the diagonalization process leading to Eq. (18). Indeed we have
(

∂

∂α
+ 〈.〉

)
εα (Xα) =

((
∂

∂α
+ 〈.〉

)
Uα

)
U+

α εα + εαUα

(
∂

∂α
+ 〈.〉

)
U+

α + Uα

((
∂

∂α
+ 〈.〉

)
H (Xα)

)
U+

α

− i

2

(
∇Pi

Uα∇Ri
H (Xα)U+

α −∇Ri
Uα∇Pi

H (Xα)U+
α

)

− i

2

(
Uα∇Pi

H (Xα)∇Ri
U+

α − Uα∇Ri
H (Xα)∇Pi

U+
α

)

− i

2

(
∇Pi

UαH (Xα)∇Ri
U+

α −∇Ri
UαH (Xα)∇Pi

U+
α

)
(29)
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In addition we have from the unitarity condition UαU+
α = 1 the relation (∂α + 〈.〉) (UαU+

α ) = 0 which reads :

0 =

((
∂

∂α
+ 〈.〉

)
Uα

)
U+

α + Uα

(
∂

∂α
+ 〈.〉

)
U+

α − i

2

(
∇Pi

Uα∇Ri
U+

α −∇Ri
Uα∇Pi

U+
α

)
(30)

Mixing the two equations Eqs. (29) (30), we obtain that Eq. (29) after projection on the non diagonal part becomes
the equality

P−

[((
∂

∂α
+ 〈.〉

)
Uα

)
U+

α , εα

]
= −P−

(
Uα

((
∂

∂α
+ 〈.〉

)
H (Xα)

)
U+

α

)

− i

2
εαP−

(
∇Pi

Uα∇Ri
U+

α −∇Ri
Uα∇Pi

U+
α

)

+
i

2
P−

(
∇Pi

Uα∇Ri
H (Xα) U+

α −∇Ri
Uα∇Pi

H (Xα)U+
α

)

+
i

2
P−

(
Uα∇Pi

H (Xα)∇Ri
U+

α − Uα∇Ri
H (Xα)∇Pi

U+
α

)

+
i

2
P−

(
∇Pi

UαH (Xα)∇Ri
U+

α −∇Ri
UαH (Xα)∇Pi

U+
α

)
(31)

Both conditions Eqs. (30) (31) can be solved for (∂α + 〈.〉)Uα. Actually, decomposing [(∂α + 〈.〉)Uα] U+
α = hr + ahr

in hermitian hr and anti-hermitian ahr part, Eq. (31) reads

P− [hr + ahr, εα] = M (Uα) (32)

where M (Uα) is the r.h.s of Eq. (31). We can now use a particular choice of gauge. We fix our diagonalization
process by setting P+ (ahr) = 0. Practically it corresponds to multiply Uα on the right by a unitary diagonal matrix
Dα (which has n degree of freedom) such that : P+

((
∂

∂α
+ 〈.〉

)
UαDα

)
D+

α U+
α is hermitian. This gives n conditions

that determine Dα.
Now, from Eq. (32) and given our gauge choice for Uα, we deduce that P− (ahr) = ahr and [ahr, εα] =

1
2 (M (Uα) + M+(Uα)). Then we can formally write ahr under the form

ahr = Ñ (α) .Uα (33)

where we have defined :

Ñ (α) .Uα =
1

2

(
[., εα]

−1
) (

M (Uα) + M+(Uα)
)

(34)

and the inverse of the commutator operation [, εα] has the following meaning

[
[., εα]

−1
.M, εα

]
= [., εα]

−1
. [M, εα] = M for [M, εα] 6= 0

[., εα]
−1

.M = 0 if [M, εα] = 0

To complete the determination of Uα we still need to deduce hr which is readily obtained from the unitarity condition
Eq. (30) as:

hr = − i

4

(
∇Pi

Uα∇Ri
U+

α −∇Ri
Uα∇Pi

U+
α

)
(35)

Gathering the results Eqs.(34) (35) allows us to introduce the operator Nα operating on Uα in the following manner
Nα.Uα = (hr + ahr) Uα, so that we can write

[(
∂

∂α
+ 〈.〉

)
Uα

]
= Nα.Uα

with Nα given explicitly by the following expression

Nα.Uα =
1

2

(
[., εα]

−1
) (

M (Uα) + M+(Uα)
)
Uα +

i

4

(
∇Pi

Uα∇Ri
U+

α −∇Ri
Uα∇Pi

U+
α

)
Uα

As for the energy diagonalization, this expression can be rewritten in terms of physical quantities



8

Nα.Uα = − [., εα]−1 .

[
P−

{
1

2
ARl

α ∇Rl
εα + ∇Rl

εαARl
α + APl

α ∇Pl
εα + ∇Pl

εαAPl
α

}

+
i

4
P−

{[
εα,ARl

α

]
APl

α −
[
εα,APl

α

]
ARl

α

}
+ H.C.

]
− i

4
P−

{[
ARl

α ,APl
α

]
Uα

}
(36)

where H.C. stands for the hermitic conjugate of the right hand side and εα (Xα) is computed recursively as explained
before.

As for ε (X), we can therefore write for U (X) ≡ Uh̄ (Xh̄) :

U (X) = E
([

exp (−h̄ 〈.〉) T exp

[∫

0<α<h̄

exp (α 〈.〉)Nα exp (−α 〈.〉) dα

]]
U0 (X)

)
(37)

This expression has a very similar structure as the solution for the energy Eq. (26) except that the operator Oα has
to be replaced by Nα.

Note that given the solution derived for Uα we can now rewrite the operator Oα in an simpler form. Indeed starting
again from

Oα =

(
∂

∂α
+ 〈.〉

)
εα (Xα) = P+

[((
∂

∂α
+ 〈.〉

)
Uα

)
U+

α εα + εαUα

(
∂

∂α
+ 〈.〉

)
U+

α + Uα

((
∂

∂α
+ 〈.〉

)
H (Xα)

)
U+

α

]

− i

2
P+

(
∇Pi

Uα∇Ri
H (Xα)U+

α −∇Ri
Uα∇Pi

H (Xα)U+
α

)

− i

2
P+

(
Uα∇Pi

H (Xα)∇Ri
U+

α − Uα∇Ri
H (Xα)∇Pi

U+
α

)

− i

2
P+

(
∇Pi

UαH (Xα)∇Ri
U+

α −∇Ri
UαH (Xα)∇Pi

U+
α

)
(38)

using the unitarity condition for Uα yields :

Oαεα (Xα) = P+

[[((
∂

∂α
+ 〈.〉

)
Uα

)
U+

α , εα

]
+ Uα

((
∂

∂α
+ 〈.〉

)
H (Xα)

)
U+

α

]

+
i

2
εαP+

(
∇Pi

Uα∇Ri
U+

α −∇Ri
Uα∇Pi

U+
α

)

− i

2
P+

(
∇Pi

Uα∇Ri
H (Xα)U+

α −∇Ri
Uα∇Pi

H (Xα)U+
α

)

− i

2
P+

(
Uα∇Pi

H (Xα)∇Ri
U+

α − Uα∇Ri
H (Xα)∇Pi

U+
α

)

− i

2
P+

(
∇Pi

UαH (Xα)∇Ri
U+

α −∇Ri
UαH (Xα)∇Pi

U+
α

)
(39)

Now, using our gauge condition which states that the antihermitian part of P+

((
∂

∂α
+ 〈.〉

)
Uα

)
U+

α is null, as well as
the fact that εα (Xα) is assumed to be an hermitian operator, we are led to the expression :

2Oαεα (Xα) = P+

[
Uα

((
∂

∂α
+ 〈.〉

)
H (Xα)

)
U+

α

]

+
i

2
εαP+

(
∇Pi

Uα∇Ri
U+

α −∇Ri
Uα∇Pi

U+
α

)
(40)

− i

2
P+

(
∇Pi

Uα∇Ri
H (Xα)U+

α −∇Ri
Uα∇Pi

H (Xα)U+
α

)

− i

2
P+

(
Uα∇Pi

H (Xα)∇Ri
U+

α − Uα∇Ri
H (Xα)∇Pi

U+
α

)

− i

2
P+

(
∇Pi

UαH (Xα)∇Ri
U+

α −∇Ri
UαH (Xα)∇Pi

U+
α

)
+ H.C. (41)

This can be rewritten in terms of physical operators :

Oαεα1
(Xα1

) = P+

{
1

2
ARl

α1
∇Rl

εα1
+ ∇Rl

εα1
ARl

α1
+ APl

α1
∇Pl

εα1
+ ∇Pl

εα1
APl

α1

}

+
i

4

{
P+

{[
εα,ARl

α

]
APl

α −
[
εα,APl

α

]
ARl

α

}
+ H.C.

}
+ P+

[
Uα

((
∂

∂α
+ 〈.〉

)
H (Xα)

)
U+

α

]
(42)
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Let us remark, that in most of the physical applications (in particular for Dirac and Bloch electrons) the term(
∂

∂α
+ 〈.〉

)
H (Xα) will cancel.

C. The full system H and U

We can now write the solution of our diagonalization procedure for a general matrix valued Hamiltonian through
an unitary transformation U as the solution of the following system of differential equations

ε (X) = E
([

exp (−h̄ 〈.〉) T exp

[∫

0<α<h̄

exp (α 〈.〉)Oα exp (−α 〈.〉) dα

]]
ε0 (X)

)
(43)

U (X) = E
([

exp (−h̄ 〈.〉) T exp

[∫

0<α<h̄

exp (α 〈.〉)Nα exp (−α 〈.〉) dα

]]
U0 (X)

)
(44)

where Oα and Nα are given respectively by Eqs.(42) and (36). The only pre-requirement is that the diagonal form
at α = 0, ε0 (R0,P0) is known, i.e., when R and P are considered as classical commuting variables (which means
that U0 (X0) is known). Of course these equations do not allow to find directly ε (X), U (X) since those quantities
are involved on the R.H.S. of these relations. However, they allow us to produce the solutions for ε (X) and U (X)
recursively in a series expansion in h̄. As it will appear clearly later on, having both ε (X) and U (X) at order n in h̄,
and reinserting in the exponential of Eqs. (43) (44) allows us to find ε (X) and U (X) at order n + 1 in h̄. But before
solving recursively the set of equations Eqs.(43) (44), we first compare the present approach with the one developed
in article [5]

IV. LINK WITH THE DIFFERENTIAL EQUATION OF REF. [5]

In [5] we developed a different less general approach which led to the differential equation

d

dα
εα (Xα) =

[
∂αUα (Xα)U+

α (Xα) , εα (Xα)
]
+

{
1

2
ARl

α ∇Rl
εα + ∇Rl

εαARl
α + APl

α ∇Pl
εα + ∇Pl

εαAPl
α

}

+
i

2

{[
εα,ARl

α

]
APl

α −
[
εα,APl

α

]
ARl

α −
[
εα,
[
ARl

α ,APl
α

]]}

+
i

2

{
Asym {∇Pl

∇Rl
εα} − UαAsym {∇Pl

∇Rl
H (Xα)}U+

α −
[
Bαεα − εαB+

α

]}
(45)

which was coupled to the evolution of the transformation matrix Uα (Xα) as a function of α [5] :

0 = ∂αUα(Xα)U+
α (Xα)+Uα(Xα)∂αU+

α
(Xα) − i

2

(
Bα − B+

α

)
− i

2

[
ARl

α ,APl
α

]
(46)

where Bα = (Asym [∇Rl∇Pl
Uα (Xα)]) U+

α (Xα).With these two equations Eqs. (45) and (46) at hand, the diagonal-
ization process can be performed. Actually, since all quantities are matrix valued and since εα (Xα) is by definition
a diagonal matrix, we can separate the energy equation Eq. (45) in a diagonal and a off-diagonal part such that we
are led to the following two equations

d

dα
εα (Xα) = P+[R.H.S. of Eq. 45] (47)

0 = P−[R.H.S. of Eq. 45] (48)

In [5] it was claimed that those three Eqs. (46) (47) (48) allow us to determine recursively in powers of α the energy
of the quantum system in question. Actually, the integration over α of Eq. (47) gives εα (Xα) at order n in α when
knowing all quantities at order n − 1. By the same token, Eqs. (48) and (46) (whose meaning is that Uα (Xα) is
unitary at each order in α) involve ∂αUα (Xα), and allow to recover Uα (Xα) at order n by integration over α. As a
consequence, the diagonalization process is perfectly controlled order by order in the series expansion in α. In [5] we
also provided two physical examples at the order h̄2.

Now we want to show that our solution Eq. (26) satisfies the differential equation Eq. (45). Indeed, from Eq. (17)
we can write
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∂

∂h̄
ε (Xh̄) = E

([
exp (−h̄ 〈.〉) T exp

[∫

0<α1<h̄

exp (α1 〈.〉)Oα1
exp (−α1 〈.〉) dα1

]]
ε0 (Xh̄)

)

= 〈.〉 εh̄ (Xh̄)

+E
(

e−h̄〈.〉
∑

n

[∫

0<αn<...<α2<h̄

eh̄〈.〉Oh̄...e−(αn−2−αn−1)〈.〉Oαn−1
e−(αn−1−αn)〈.〉Oαn

e−αn〈.〉

]
ε0 (Xh̄)

)

= −〈.〉 εh̄ (Xh̄)

+Oh̄E
(
∑

n

[∫

0<αn<...<α2<h̄

e−(h̄−α2)〈.〉Oα2
...e−(αn−2−αn−1)〈.〉Oαn−1

e−(αn−1−αn)〈.〉Oαn
e−αn〈.〉

]
ε0 (Xh̄)

)

= −〈.〉 εh̄ (Xh̄)

+Oh̄Ee−h̄〈.〉

(
∑

n

[∫

0<αn<...<α2<h̄

eα2〈.〉Oα2
...e−(αn−2−αn−1)〈.〉Oαn−1

e−(αn−1−αn)〈.〉Oαn
e−αn〈.〉

]
ε0 (Xh̄)

)

= −〈.〉 εh̄ (Xh̄) + Oh̄εh̄ (Xh̄) (49)

We have given previously the expression for Oh̄εh̄ (Yh̄). Using that 〈.〉 εh̄ (Xh̄) = − i
2Asym {∇Pl

∇Rl
εα (Xα)} and Eq.

(46) one gets directly that (ε (R,P) − ε0 (R,P)) is a solution of the differential (45).

V. DYNAMICAL OPERATORS AND COMMUTATION ALGEBRA

In this section we will see that new non-commuting position and momentum operators which have contributions
from Berry connections emerge naturally during the diagonalization and are more suitably to correspond to physical
operators (for the physical discussion of this point see [8][6][5][9]).

From Eq.(18) one sees that the operator Oα = (∂α + 〈.〉) acting on ε0 (Xα) can be decomposed as a sum of a
”translation” operator T and a ”magnetisation” M operator (this terminology is explained in [5])

Oαε0 (Xα) = (Tα + Mα) ε0 (Xα) . (50)

where the ”magnetisation” operator acts as

Mε0 (Xα) =
i

2
P+

{[
εα,ARl

α

]
APl

α −
[
εα,APl

α

]
ARl

α

}
+ P+

[
Uα

((
∂

∂α
+ 〈.〉

)
H (Xα)

)
U+

α

]
(51)

and

Tαε0 (Xα) =
1

2
P+

{
ARl

α ∇Rl
ε0 + ∇Rl

ε0ARl
α + APl

α ∇Pl
ε0 + ∇Pl

ε0APl
α

}

It is very interesting to observe that the quantity T exp
[∫

0<α<h̄
Tαdα

]
ε0 (X) can be written in a compact form. Indeed

let A
R

α = P+

[
AR

α

]
and A

P

α = P+

[
AP

α

]
, with the following definitions for the ”non-projected” Berry connections

AR

α = i [Uα∇PU+
α ] and AP

α = −i [Uα∇RU+
α ], we can introduce the following transformation

T exp

[∫

0<α<h̄

Tαdα

]
ε0 (X) = ε0 (x) (52)

with x = (r,p) and r and p are new coordinate and momentum operators corrected by Berry connections terms in
the following way :

r = R+

∫

0<α<h̄

A
R

α dα≡ R+AR

p = P+

∫

0<α<h̄

A
P

α dα≡ P+AP (53)

justifying the name translation operator (the identity can be checked by noting that both quantity satisfy the same
differential equation ∂

∂h̄
X = Th̄X).
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Note that at the lowest order we have :

r = R + h̄A
R

0

p = P + h̄A
P

0 (54)

where A
R

0 and A
P

0 are the usual ”semiclassical Berry connections” defined previously [5].
From equations Eq. (53) we readily deduce the following non trivial algebra

[ri, rj ] = ih̄2Θrr
ij = ih̄2

(
∇Pi

ARj
−∇Pj

ARi

)
+ h̄2

[
ARj

,ARi

]

[pi, pj ] = ih̄2Θpp
ij = −ih̄2

(
∇Ri

APj
−∇Rj

APi

)
+ h̄2

[
APi

,APj

]

[pi, rj ] = −ih̄δij + ih̄2Θpr
ij = −ih̄δij − ih̄2

(
∇Ri

ARj
+ ∇Pj

APi

)
+ h̄2

[
APi

,ARj

]
(55)

where the terms Θij are the definitions of Berry curvatures. Of course these non trivial commutation relations also give
new contributions to the equations of motion and thus lead to new phenomena [5][6][8]. The commutation relations
are valid to any order in h̄, but in practice we can compute them as well as the energy ε (X) in a series expansion in
h̄. Relations Eqs. (51) (52) will be very helpful when writing the explicit expression of ε (X) in a series expansion in
h̄ in the following section.

VI. SERIES EXPANSION IN h̄

The exact expression Eq. (26), can now be expanded in a series expansion in h̄. Note that we will always identify
εh̄ (Rh̄,Ph̄) with ε (R,P).

A. First order in h̄

At the first order we obviously get the following expression :

ε (X) = ε0 (X) +

∫ h̄

0

Oαdαε0 (X)

= ε0 (X) + h̄

(
∂

∂α
+ 〈.〉

)
ε0 (X)

= ε0 (x) +
i

2
P+

{[
ε0 (X) ,ARl

0

]
APl

0 −
[
ε0 (X) ,APl

0

]
ARl

0

}
(56)

One then recover the formula first derived in ref. [5] where x = (r,p) are given by the expression Eq. (53).
As previously mentioned we only need to have U0 (Y) and thus the zeroth order Berry phases to get the energy

expansion at the first order. Now with the first order expansion for the diagonalization matrix :

U (X) = U0 (X) +

∫ h̄

0

NαdαU0 (X) ≡ U0 (X) + h̄U1 (X)

=

(
1 − h̄ [., ε0]

−1
.

[
P−

{
1

2
ARl

0 ∇Rl
ε0 (X) + ∇Rl

ε0 (X)ARl

0 + APl

0 ∇Pl
ε0 (X) + ∇Pl

ε0 (X)APl

0

}

− i

2

{[
ε0 (X) ,ARl

0

]
APl

0 −
[
ε0 (X) ,APl

0

]
ARl

0

}]
− i

4

[
ARl

0 ,APl

0

])
U0 (X) (57)

the (non-diagonal) Berry connections at this approximation are given by :

AR = i
[
Uh̄∇PU+

h̄

]
= AR

0 + ih̄
[
U0∇PU+

1

]
+ h̄U1 (X)U+

0 (X)AR

0 ≡ AR

0 + h̄AR

1

AP = −i
[
Uh̄∇RU+

h̄

]
= AP

0 + ih̄
[
U0∇RU+

1

]
+ h̄U1 (X)U+

0 (X)AP

0 ≡ AP

0 + h̄AP

1 (58)



12

B. Second order

To the second order, expanding the compact form of the energy operator leads to :

ε (X) = ε0 (x) +

∫ h̄

0

Oαdαε0 (X) +

∫ h̄

0

Oα1

∫ α1

0

Oα2
dα2dα1ε0 (X) + h̄ 〈ε0 (X)〉

The last contribution is simply

h̄ 〈ε0 (X)〉 =
i

2
h̄Asym {∇Pl

∇Rl
ε0 (X)}

The first contribution
∫ h̄

0
Oαdαε0 (X) can be expanded as before as:

∫ h̄

0

Oαdαε0 (X) =

∫ h̄

0

P+

{
1

2
ARl

α ∇Rl
ε0 (Xα) + ∇Rl

ε0 (Xα)ARl
α + APl

α ∇Pl
ε0 (Xα) + ∇Pl

ε0 (Xα)APl
α

}
dα

+

∫ h̄

0

i

2
P+

{[
ε0 (Xα) ,ARl

α

]
APl

α −
[
ε0 (Xα) ,APl

α

]
ARl

α −
[
ε0 (Xα) ,

[
ARl

α ,APl
α

]]

+
[
∂αUα (Xα)U+

α (Xα) , εα (Xα)
]
dα
}

where the Berry connections have to be expanded to the first order, whereas the second order contribution

∫ h̄

0

Oα1

∫ α1

0

Oα2
dα2dα1ε0 (X) − h̄ 〈ε0 (X)〉

has to be expanded to the zeroth order in the Berry connections.
Notice that due to the integration process, the squared terms in AR

0 , AP
0 as well as the first order terms in the

Berry phase AR

1 andAP

1 get a 1
2 factor. The consequence is that these contribution can be recombined to yield :

ε (X) = ε0 (x) +
i

2
P+

{[
ε0 (x) ,ARl

]
APl −

[
ε0 (x) ,APl

]
ARl −

[
ε0 (x) ,

[
ARl ,APl

]]}

−1

8
P+

{[[
ε0 (x) ,ARl

]
APl −

[
ε0 (x) ,APl

]
ARl ,ARl

]
APl −

[[
ε0 (x) ,ARl

]
APl −

[
ε0 (x) ,APl

]
ARl ,APl

]
ARl

}

+
i

2
Asym {∇Pl

∇Rl
ε0 (x)} (59)

where now :

r = R+AR = R+

∫ h̄

0

P+AR

α1
dα1 = R+h̄P+AR

0 +
h̄

2

2

P+AR

1 ≡ R+h̄A
R

0 +
h̄

2

2

A
R

1

p = P+AP = P+

∫ h̄

0

P+AP

α1
dα1 = P+h̄P+AP

0 +
h̄

2

2

P+AP

1 ≡ P+h̄A
P

0 +
h̄

2

2

A
P

1 (60)

which of course satisfy the algebra Eq. (55).
Note that in the Berry connections ARl , and APl one can safely replace the operators (R,P) by (r,p) at each order

of the expansion.

VII. PHYSICAL APPLICATION: THE DIRAC ELECTRON IN AN ELECTRIC FIELD

To illustrate our general theory we consider the case of a Dirac electron in an external electric field. We will obtain
the block diagonal Hamiltonian to the second order in h̄ and will compare with the FW transformation. Note that
contrary to the FW which is not an expansion in h̄, the method is valid for strong external fields ( actually a FW
transformation expanded into a power series in h̄ was also recently proposed [7]).

Let consider the following Dirac Hamiltonian (c = 1)

H1 = α.P + βm + V (R)
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At the first order in h̄ we just need the zero order transformation

U0 =
E + m + βαP√

2E (E + m)

where E =
√

P2 + m2. In this case we have (with Σ = 1⊗ σ)

AR
0 = U0RU−1

0 = ih̄
−βα.PP + E (E + m)βα − iEP× Σ

2E2 (E + m)

AP
0 = U i

0PU−1
0 = 0

which leads to the Berry connections (we use the block diagonal projector P+):

A
R

0 =
P × Σ

2E (E + m)

A
P

0 = 0

For the second order we need the first order unitary matrix we can be deduce directly from Eq. 57

U1 =

[(
1 +

β

2E
P−

(
AR

0

)
.∇RV

)]
U0

From U1 and using Eqs. 58 we can compute the projected Berry connections to the second order in powers of h̄ and
thus write the dynamical operators as

r = R+h̄A
R

0 +
h̄

2

2

A
R

1 = h̄
P × Σ

2E (E + m)
+

h̄2

2
β

E2
∇RV − [P.∇RV ]P

4E5

p = P

Now using expression Eq. 59 we arrive at the following expression for the diagonal representation of the energy
operator

ε = βE (r,p) − βE (r,p)Θpr
ij (r,p) + V (r)

= β
√

p2 + m2 +
h̄2

2
β∇r.

E2
∇rV − [p.∇

r
V ]p

4E5
+ V (r) (61)

This expression being fully relativistic, to compare with the usual FW [1] approach we consider the non-relativistic
limit and expand our results to second order in 1

mc
. We readily obtain the well known diagonal representation of the

positive energy (expressed in coordinates R and P ) [1] :

ε =
P2

2m
− P4

8m3c2
+

1

2m2c2

1

R

(
d

dR
V

)
L.S+

h̄2

8m2c2
∇

2V

with L = R ∧ P the angular momentum and S =h̄σ/2 the spin. Note that it is the term order h̄2 in Eq. 61 which,
in the non relativistic limit, leads to the Darwin term.

VIII. CONCLUSION

In this paper, we presented a new diagonalization method for a generic matrix valued Hamiltonian which leads to a
diagonal representation where the operator energy takes an elegant and very compact form. This approach reveals a
very rich mathematical structure very reminiscent of the stochastic calculus, and show once more the very important
role played by Berry phases in these systems. It was also found that the diagonal representation of the energy is
solution of a differential equation in h̄ presented previously in [5] and which could only be solved recursively in a series
expansion in h̄. Actually the solution presented here can also be written explicitly in a series expansion in h̄, but it
appears that the derivation of the coefficients of this expansion is now much more easier. Indeed we could give the
expression of the energy and the dynamical variables to the second order in h̄ for a generic matrix valued Hamiltonian.
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We then applied this method to the simple case of a Dirac electron in an external electric field and recover the usual
Pauli-Hamiltonian in the non relativistic limit. This approach is general and very promising. We leave for subsequent
work its application to more complicated systems in condensed matter or relativistic particle physics.
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