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We study the suppression of nonlinear interactions in resonant macroscopic quantum devices in
the case of the solid-state ring laser gyroscope. These nonlinear interactions are tuned by vibrating
the gain medium along the cavity axis. Beat note occurrence under rotation provides a precise
measurement of the strength of nonlinear interactions, which turn out to vanish for some discrete
values of the amplitude of vibration. Our theoretical description, in very good agreement with
the measured data, suggests the use of a higher vibration frequency to achieve quasi-ideal rotation
sensing over a broad range of rotation speeds. We finally underline the analogy between this device
and some other macroscopic quantum rotation sensors, such as ring-shaped superfluid configura-
tions, where nonlinear interactions could be tuned for example by the use of magnetically-induced
Feschbach resonance.

PACS numbers: 42.65.Sf, 42.62.Eh, 06.30.Gv, 42.55.Rz

The use of macroscopic quantum effects for rotation
sensing in ring-shaped configurations has been exten-
sively studied in the case of both optical systems [1, 2, 3]
and superfluids [4, 5], either liquid helium [6, 7] or Bose-
Einstein condensed gases [8, 9, 10, 11, 12]. As pointed
out in [13, 14], nonlinear interactions play a crucial role
in the dynamics of such devices, as they can hinder or
affect their ability to sense rotation, even when coun-
teracted by other coupling sources. Consequently, the
possibility of tuning or even suppressing nonlinear inter-
actions is of great importance for using these devices as
rotation sensors.

Several systems offer the possibility of controlling the
strength of their nonlinearities. For example, in the
case of gas ring laser gyroscopes, one can considerably
lower mode competition by tuning the cavity out of res-
onance with the atoms at rest, resulting in the quasi-
suppression of nonlinear interactions [1]. In the case of
atomic systems, it is also possible to tune and even sup-
press nonlinear interactions, by using Feshbach resonance
[15, 16, 17]. As regards solid-state ring lasers, we have
recently demonstrated [14] the possibility of stable rota-
tion sensing thanks to the circumvention of mode com-
petition by the use of an additional stabilizing coupling.
However, nonlinear interactions are still present in this
configuration, and can even be quantitatively observed
[14, 18].

In this Letter, we report the experimental and theo-
retical study of a novel technique intended to tune and
suppress nonlinear interactions in a solid-state ring laser
gyroscope, similarly to the case of scattering length con-
trol in an atomic system. This is achieved by vibrating
the gain crystal along the optical axis of the laser cav-
ity, considering the fact that nonlinear interactions in a
solid-state ring laser result mainly from mutual coupling

between the counterpropagating modes induced by the
population inversion grating established in the amplify-
ing medium [3, 14]. Using the quantitative information
on the strength of the nonlinear interactions provided
by the beat note between the counterpropagating laser
beams [14], we demonstrate experimentally the possibil-
ity of suppressing these interactions for some discrete val-
ues of the amplitude of the crystal movement. We even-
tually derive, in the limit of high vibration frequencies,
a very simple condition for rotation sensing and point
out the similarity with the equivalent condition for a
toroidal Bose-Einstein condensed gas, resulting from the
toy model of [13] where the effects of scattering length
tuning described in [15] are included.

The solid-state ring laser gyroscope can be described
semiclassically, assuming one single identical mode in
each direction of propagation (something which is guar-
anteed by the attenuation of spatial hole burning effects
thanks to the gain crystal movement [19]), one single
identical state of polarization and plane wave approxi-
mation. The electrical field inside the cavity can then be
written as follows :

E(x, t) = Re

{

2
∑

p=1

Ẽp(t)e
i(ωct+µpkx)

}

,

where µp = (−1)p and where ωc and k are respectively
the angular and spatial average frequencies of the laser,
whose longitudinal axe is associated with the x coordi-
nate. In the absence of crystal vibration, the equations
of evolution for the slowly-varying amplitudes Ẽ1,2 and
for the population inversion density N have the following
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expression [3, 14] :

dẼ1,2

dt
= −

γ1,2

2
Ẽ1,2 + i

m̃1,2

2
Ẽ2,1 + iµ1,2

Ω

2
Ẽ1,2 (1)

+
σ

2T

(

Ẽ1,2

∫ L

0

Ndx + Ẽ2,1

∫ L

0

Ne−2iµ1,2kxdx

)

,

∂N

∂t
= Wth(1 + η) −

N

T1
−

aNE(x, t)2

T1
, (2)

where γ1,2 are the intensity losses per time unit for each
mode, m̃1,2 are the backscattering coefficients, Ω is the
difference between the eigenfrequencies of the counter-
propagating modes (including the effect of rotation, see
further), σ is the laser cross section, T is the cavity
round-trip time, η is the relative excess of pumping power
above the threshold value Wth, T1 is the lifetime of the
population inversion and a is the saturation parameter.
Throughout this paper we shall neglect dispersion effects,
considering the fact that the Nd-YAG gain width is much
larger than the laser cavity free spectral range. The
backscattering coefficients, which depend on spatial in-
homogeneities of the propagation medium [20], have the
following expression [18] :

m̃1,2 = −
ωc

ε̄cT

∮ L

0

[

ε(x) −
iκ(x)

ωc

]

e−2iµ1,2kxdx , (3)

where ε(x) and κ(x) are respectively the dielectric con-
stant and the fictitious conductivity along the cavity
perimeter in the framework of an ohmic losses model
[21], where c is the speed of light in vacuum and where ε̄
stands for the spatial average of ε. In order to counteract
mode competition effects and ensure beat regime opera-
tion under rotation, an additional stabilizing coupling as
described in [14] is introduced, resulting in losses of the
following form :

γ1,2 = γ − µ1,2Ka(|Ẽ1|
2 − |Ẽ2|

2) , (4)

where γ = κ̄/ε̄ is the average loss coefficient and where
K > 0 represents the strength of the stabilizing coupling.

We assume the following sinusoidal law to account for
the gain crystal vibration :

xc(t) =
xm

2
sin(2πfmt) , (5)

where xc(t) is the coordinate, in the frame of the laser
cavity, of a given reference point attached to the crystal,
and where xm and fm are respectively the amplitude and
the frequency of the vibration movement. The popula-
tion inversion density function in the frame of the vibrat-
ing crystal Nc(x, t) is ruled by the following equation :

∂Nc

∂t
= Wth(1 + η) −

Nc

T1
−

aNcE(x + xc(t), t)
2

T1
, (6)

VIBRATING DEVICE YAG

Polarizing mirror

Laser Diode 

Nd-YAG

θ�

2
2

2
1 EE −

Beat 
note

Figure 1: Scheme of our experimental setup. The diode-
pumped vibrating Nd-YAG crystal is placed inside a 22-cm
ring cavity on a turntable. Losses of the form (4) are created
by a feedback loop acting on a Faraday rotator (an additional
YAG crystal inside a solenoid), in combination with a polariz-
ing mirror and a slight non-planarity of the cavity (not drawn
here). Two photodiodes are used for generating the error sig-
nal of the feedback loop. A third photodiode measures the
frequency of the beat note between the counterpropagating
modes.

where E(x, t) refers to the electric field in the cavity (non-
vibrating) frame. Moreover, Nc(x, t) can be deduced
from its equivalent in the cavity frame N(x, t) by the
identity Nc(x, t) = N(x + xc(t), t), resulting in the fol-
lowing expressions :



















∫ L

0

N(x, t)dx =

∫ L

0

Nc(x, t)dx ,

∫ L

0

N(x, t)e2ikxdx = e2ikxc(t)

∫ L

0

Nc(x, t)e2ikxdx .

The backscattering coefficients (3) acquire in the pres-
ence of the crystal vibration the following time-dependent
form :

m̃1,2(t) = m̃ c
1,2e

−2iµ1,2kxc(t) + m̃ m
1,2 , (7)

where m̃ c
1,2 and m̃ m

1,2, which are time-independent, ac-
count for the backscattering due respectively to the crys-
tal at rest and to any other diffusion source inside the
laser cavity (including the mirrors). As regards the dif-
ference Ω between the eigenfrequencies of the counter-
propagating modes, it results from the combined effects
of the rotation (Sagnac effect [22]) and of the crystal
movement in the cavity frame (Fresnel-Fizeau drag ef-
fect [23]), resulting in the following expression :

Ω

2π
=

4A

λL
θ̇ −

2ẋc(t)l(n
2 − 1)

λL
, (8)

where A is the area enclosed by the ring cavity, λ =
2πc/ωc is the emission wavelength, θ̇ is the angular ve-
locity of the cavity around its axis, and l and n are respec-
tively the length and the refractive index of the crystal
(dispersion terms are shown to be negligible in this case).
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The dynamics of the solid-state ring laser gyroscope
with a vibrating gain medium is eventually ruled, in the
framework of our theoretical description, by the following
equations :

dẼ1,2

dt
= −

γ1,2

2
Ẽ1,2 + i

m̃1,2

2
Ẽ2,1 + iµ1,2

Ω

2
Ẽ1,2 (9)

+
σ

2T

(

Ẽ1,2

∫ L

0

Ncdx + Ẽ2,1e
2ikxc

∫ L

0

Nce
−2iµ1,2kxdx

)

,

where γ1,2, xc, Nc, m̃1,2 and Ω obey respectively equa-
tions (4), (5), (6), (7) and (8). It comes out from this
analysis that the solid-state ring laser benefits, as a rota-
tion sensor, from the crystal vibration in three separate
and complementary ways :

• the contrast of the population inversion grating,
which is responsible for nonlinear coupling, is re-
duced on both conditions that the amplitude of the
movement is of the same order of magnitude than
the step of the optical grating (typically a fraction
of µm) and that the period of the movement 1/fm

is significantly larger than the population inversion
response time T1; the atomic dipoles are then no
longer confined into a nodal or an antinodal area
– see eq. (6) –, and become sensitive to the time-
average value of the electric field, which can be in-
dependent of their position on the crystal (at least
when the laser is not rotating) provided the condi-
tion J0(kxm) = 0 is obeyed [24], J0 referring to the
zero-order Bessel’s function);

• the light backscattered on the gain crystal from
one mode into the other can be shifted out of res-
onance by the Doppler effect resulting from the
crystal movement in the cavity frame; this phe-
nomenon, which induces a decrease of the corre-
sponding coupling strength, has previously been re-
ported in the case of vibrating mirrors [25, 26]; in
our model, it arises from the time-dependent phase
factor exp(2ikxc) in front of the coupling coeffi-
cients m̃ c

1,2 and
∫

Ncdx in equations (7) and (9);

• the frequency non-reciprocity between the counter-
propagating modes due to the Fresnel-Fizeau drag-
ging effect – eq. (8) – has a similar role as the me-
chanical dithering typically used for circumventing
the lock-in problem in the case of usual gas ring
laser gyroscopes [27].

The solid-state ring laser setup we used in our exper-
iment is sketched on Fig. 1. Thanks to the additional
stabilizing coupling (4), a beat note signal is observed
above a critical rotation speed, whose frequency is plot-
ted on Fig. 2. It can be seen on this figure that the
difference between the ideal Sagnac line and the experi-
mental beat frequency, which is a direct measurement of
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Figure 2: Experimental beat frequency as a function of the
rotation speed. White and black circles refer respectively to
the situations where the crystal is at rest and where the crys-
tal is vibrating with a frequency fm ≃ 40 kHz and an am-
plitude xm ≃ 0.74 µm. The insert shows a magnification
around θ̇1 – see eq. (10) –, together with theoretical predic-
tions resulting from numerical simulations with the following
measured [18] parameters : γ = 15.34 106 s−1, η = 0.21,
|m̃ c

1,2| = 1.5 104 s−1, |m̃ m

1,2| = 8.5 104 s−1, arg(m̃ c

1 /m̃ c

2 ) =
arg(m̃ m

1 /m̃ m

2 ) = π/17, K = 107 s−1. Integration step is
0.1 µs, average values are computed between 8 and 10 ms.

the nonlinear interactions [14], is considerably reduced in
the zone ranging from 10 to 40 deg/s. Some nonlineari-
ties are observed around the discrete values θ̇ ≃ 55 deg/s
and θ̇ ≃ 165 deg/s, in agreement with our theoretical
model. As a matter of fact, analytical calculations start-
ing from equation (9) reveal the existence of disrupted
zones centered on discrete values of the rotation speed θ̇q

obeying the following equation :

4A

λL
θ̇q = qfm where q is an integer , (10)

the size of each disrupted zone being proportional to
Jq(kxm). With our experimental parameters, the first

critical velocity corresponds to θ̇1 = 55.5 deg/s, the zones
observed on Fig. 2 corresponding to the cases q = 1 and
q = 3. The numerical simulations shown on the insert
of this figure are in good agreement with our analytical
and experimental data. Such a phenomenon of disrupted
zones has been reported previously in the case of gas ring
laser gyroscopes with mechanical dithering. It is some-
times designed as ‘Shapiro steps’ [27], in reference to an
equivalent effect in the field of Josephson junctions [28].

The dependence of the beat frequency on the ampli-
tude of the crystal movement is shown on Fig. 3, for
a fixed rotation speed (200 deg/s). This graph illus-
trates the good agreement between our numerical sim-
ulations and our experimental data. Moreover, this is an
experimental demonstration of the direct control of the
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Figure 3: Beat frequency as a function of the amplitude of the
crystal movement for θ̇ = 200 deg/s. The theoretical values
(crosses) come from the numerical integration of equation (9)
with the same parameters as Fig. 2.

strength of nonlinear interactions in the solid-state ring
laser. In particular, for some special amplitudes of the
crystal movement, the influence of mode coupling van-
ishes, resulting in a beat frequency equal to the ideal
Sagnac value.

This study suggests the use of a higher vibration fre-
quency of the crystal, in order to increase the value of θ̇1

as much as possible. When fm ≫ |Ω|/(2π), the strength
of the nonlinear interactions is shown to be directly pro-
portional to J0(kxm)2, and the condition for rotation
sensing reads :

2Kη > ÑJ0(kxm)2 , (11)

where Ñ = γη/(1 + Ω2T 2
1 ) is the strength of nonlinear

interactions [14], and J0(kxm)2 is the attenuation factor
due to the crystal vibration. The similar condition for
rotation sensing in the case of a toroidal Bose-Einstein
condensate, as derived in [13], is V0 > g (where V0 is the
asymmetry energy and g the mean (repulsive) interaction
energy per particle in the s-wave state). It becomes, in
the presence of Feshbach resonance induced by a mag-
netic field B as described in [15] :

V0 > g

(

1 −
∆

B − B0

)

, (12)

where ∆ and B0 are characteristic parameters. In this
equation, g represents the nonlinear interactions, and the
attenuation factor is 1 − ∆/(B − B0). Condition (12)
shows strong similarities with condition (11). In both
cases, rotation sensing is favored if nonlinear interactions
are lowered, the ideal case being B = B0 + ∆ for the
toroidal Bose-Einstein condensed gas and J0(kxm) = 0
for the solid-state ring laser. The parameter for the con-
trol of nonlinear interactions is the magnetic field B in

the first case and the movement amplitude xm in the
second case.

In conclusion, we have developed a concrete method
for tuning and suppressing nonlinear interactions in the
case of a solid-state ring laser, by vibrating the gain crys-
tal along the cavity axis. Our theoretical model shows
a very good agreement with the experiment. The obser-
vation of rotation sensing in the solid-state ring laser al-
lows the direct measurement of the strength of nonlinear
interactions, leading to the experimental demonstration
of their fine tuning and even suppression. Furthermore,
following the previous work of [14], we have underlined
the analogy between our system and other ring-shaped
macroscopic quantum configurations where nonlinear in-
teractions could be tuned, for example a Bose-Einstein
condensed gas with magnetically-induced Feshbach reso-
nance. This illustrates the richness of such devices, both
from applicative and fundamental perspectives.
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