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We study the suppression of nonlinear interactions in resonant macroscopic quantum devices in the case of the solid-state ring laser gyroscope. These nonlinear interactions are tuned by vibrating the gain medium along the cavity axis. Beat note occurrence under rotation provides a precise measurement of the strength of nonlinear interactions, which turn out to vanish for some discrete values of the amplitude of vibration. Our theoretical description, in very good agreement with the measured data, suggests the use of a higher vibration frequency to achieve quasi-ideal rotation sensing over a broad range of rotation speeds. We finally underline the analogy between this device and some other macroscopic quantum rotation sensors, such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned for example by the use of magnetically-induced Feschbach resonance.

The use of macroscopic quantum effects for rotation sensing in ring-shaped configurations has been extensively studied in the case of both optical systems [START_REF] Aronowitz | Laser Applications[END_REF][START_REF] Khandokhin | [END_REF]3] and superfluids [4,5], either liquid helium [6,7] or Bose-Einstein condensed gases [8,9,10,11,12]. As pointed out in [13,14], nonlinear interactions play a crucial role in the dynamics of such devices, as they can hinder or affect their ability to sense rotation, even when counteracted by other coupling sources. Consequently, the possibility of tuning or even suppressing nonlinear interactions is of great importance for using these devices as rotation sensors.

Several systems offer the possibility of controlling the strength of their nonlinearities. For example, in the case of gas ring laser gyroscopes, one can considerably lower mode competition by tuning the cavity out of resonance with the atoms at rest, resulting in the quasisuppression of nonlinear interactions [START_REF] Aronowitz | Laser Applications[END_REF]. In the case of atomic systems, it is also possible to tune and even suppress nonlinear interactions, by using Feshbach resonance [15,16,17]. As regards solid-state ring lasers, we have recently demonstrated [14] the possibility of stable rotation sensing thanks to the circumvention of mode competition by the use of an additional stabilizing coupling. However, nonlinear interactions are still present in this configuration, and can even be quantitatively observed [14,18].

In this Letter, we report the experimental and theoretical study of a novel technique intended to tune and suppress nonlinear interactions in a solid-state ring laser gyroscope, similarly to the case of scattering length control in an atomic system. This is achieved by vibrating the gain crystal along the optical axis of the laser cavity, considering the fact that nonlinear interactions in a solid-state ring laser result mainly from mutual coupling between the counterpropagating modes induced by the population inversion grating established in the amplifying medium [3,14]. Using the quantitative information on the strength of the nonlinear interactions provided by the beat note between the counterpropagating laser beams [14], we demonstrate experimentally the possibility of suppressing these interactions for some discrete values of the amplitude of the crystal movement. We eventually derive, in the limit of high vibration frequencies, a very simple condition for rotation sensing and point out the similarity with the equivalent condition for a toroidal Bose-Einstein condensed gas, resulting from the toy model of [13] where the effects of scattering length tuning described in [15] are included.

The solid-state ring laser gyroscope can be described semiclassically, assuming one single identical mode in each direction of propagation (something which is guaranteed by the attenuation of spatial hole burning effects thanks to the gain crystal movement [19]), one single identical state of polarization and plane wave approximation. The electrical field inside the cavity can then be written as follows :

E(x, t) = Re 2 p=1 Ẽp (t)e i(ωct+µpkx) ,
where µ p = (-1) p and where ω c and k are respectively the angular and spatial average frequencies of the laser, whose longitudinal axe is associated with the x coordinate. In the absence of crystal vibration, the equations of evolution for the slowly-varying amplitudes Ẽ1,2 and for the population inversion density N have the following expression [3,14] :

d Ẽ1,2 dt = - γ 1,2 2 Ẽ1,2 + i m1,2 2 Ẽ2,1 + iµ 1,2 Ω 2 Ẽ1,2 (1) 
+ σ 2T Ẽ1,2 L 0 N dx + Ẽ2,1 L 0 N e -2iµ1,2kx dx , ∂N ∂t = W th (1 + η) - N T 1 - aN E(x, t) 2 T 1 , (2) 
where γ 1,2 are the intensity losses per time unit for each mode, m1,2 are the backscattering coefficients, Ω is the difference between the eigenfrequencies of the counterpropagating modes (including the effect of rotation, see further), σ is the laser cross section, T is the cavity round-trip time, η is the relative excess of pumping power above the threshold value W th , T 1 is the lifetime of the population inversion and a is the saturation parameter.

Throughout this paper we shall neglect dispersion effects, considering the fact that the Nd-YAG gain width is much larger than the laser cavity free spectral range. The backscattering coefficients, which depend on spatial inhomogeneities of the propagation medium [20], have the following expression [18] :

m1,2 = - ω c εcT L 0 ε(x) - iκ(x) ω c e -2iµ1,2kx dx , (3) 
where ε(x) and κ(x) are respectively the dielectric constant and the fictitious conductivity along the cavity perimeter in the framework of an ohmic losses model [START_REF] Siegman | Lasers[END_REF], where c is the speed of light in vacuum and where ε stands for the spatial average of ε. In order to counteract mode competition effects and ensure beat regime operation under rotation, an additional stabilizing coupling as described in [14] is introduced, resulting in losses of the following form :

γ 1,2 = γ -µ 1,2 Ka(| Ẽ1 | 2 -| Ẽ2 | 2 ) , (4) 
where γ = κ/ε is the average loss coefficient and where K > 0 represents the strength of the stabilizing coupling. We assume the following sinusoidal law to account for the gain crystal vibration :

x c (t) = x m 2 sin(2πf m t) , (5) 
where x c (t) is the coordinate, in the frame of the laser cavity, of a given reference point attached to the crystal, and where x m and f m are respectively the amplitude and the frequency of the vibration movement. The population inversion density function in the frame of the vibrating crystal N c (x, t) is ruled by the following equation : 

∂N c ∂t = W th (1 + η) - N c T 1 - aN c E(x + x c (t), t) 2 T 1 , (6) 
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Figure 1: Scheme of our experimental setup. The diodepumped vibrating Nd-YAG crystal is placed inside a 22-cm ring cavity on a turntable. Losses of the form (4) are created by a feedback loop acting on a Faraday rotator (an additional YAG crystal inside a solenoid), in combination with a polarizing mirror and a slight non-planarity of the cavity (not drawn here). Two photodiodes are used for generating the error signal of the feedback loop. A third photodiode measures the frequency of the beat note between the counterpropagating modes.

where E(x, t) refers to the electric field in the cavity (nonvibrating) frame. Moreover, N c (x, t) can be deduced from its equivalent in the cavity frame N (x, t) by the identity N c (x, t) = N (x + x c (t), t), resulting in the following expressions :

         L 0 N (x, t)dx = L 0 N c (x, t)dx , L 0 N (x, t)e 2ikx dx = e 2ikxc(t) L 0 N c (x, t)e 2ikx dx .
The backscattering coefficients (3) acquire in the presence of the crystal vibration the following time-dependent form :

m1,2 (t) = m c 1,2 e -2iµ1,2kxc(t) + m m 1,2 , (7) 
where m c 1,2 and m m 1,2 , which are time-independent, account for the backscattering due respectively to the crystal at rest and to any other diffusion source inside the laser cavity (including the mirrors). As regards the difference Ω between the eigenfrequencies of the counterpropagating modes, it results from the combined effects of the rotation (Sagnac effect [START_REF] Sagnac | [END_REF]) and of the crystal movement in the cavity frame (Fresnel-Fizeau drag effect [23]), resulting in the following expression :

Ω 2π = 4A λL θ - 2 ẋc (t)l(n 2 -1) λL , ( 8 
)
where A is the area enclosed by the ring cavity, λ = 2πc/ω c is the emission wavelength, θ is the angular velocity of the cavity around its axis, and l and n are respectively the length and the refractive index of the crystal (dispersion terms are shown to be negligible in this case).

The dynamics of the solid-state ring laser gyroscope with a vibrating gain medium is eventually ruled, in the framework of our theoretical description, by the following equations :

d Ẽ1,2 dt = - γ 1,2 2 Ẽ1,2 + i m1,2 2 Ẽ2,1 + iµ 1,2 Ω 2 Ẽ1,2 (9) 
+ σ 2T Ẽ1,2 L 0 N c dx + Ẽ2,1 e 2ikxc L 0 N c e -2iµ1,2kx dx ,
where γ 1,2 , x c , N c , m1,2 and Ω obey respectively equations (4), ( 5), ( 6), ( 7) and (8). It comes out from this analysis that the solid-state ring laser benefits, as a rotation sensor, from the crystal vibration in three separate and complementary ways :

• the contrast of the population inversion grating, which is responsible for nonlinear coupling, is reduced on both conditions that the amplitude of the movement is of the same order of magnitude than the step of the optical grating (typically a fraction of µm) and that the period of the movement 1/f m is significantly larger than the population inversion response time T 1 ; the atomic dipoles are then no longer confined into a nodal or an antinodal area -see eq. ( 6) -, and become sensitive to the timeaverage value of the electric field, which can be independent of their position on the crystal (at least when the laser is not rotating) provided the condition J 0 (kx m ) = 0 is obeyed [24], J 0 referring to the zero-order Bessel's function);

• the light backscattered on the gain crystal from one mode into the other can be shifted out of resonance by the Doppler effect resulting from the crystal movement in the cavity frame; this phenomenon, which induces a decrease of the corresponding coupling strength, has previously been reported in the case of vibrating mirrors [START_REF] Patterson | Proc. SPIE[END_REF][START_REF] Lai | [END_REF]; in our model, it arises from the time-dependent phase factor exp(2ikx c ) in front of the coupling coefficients m c 1,2 and N c dx in equations ( 7) and ( 9);

• the frequency non-reciprocity between the counterpropagating modes due to the Fresnel-Fizeau dragging effect -eq. ( 8) -has a similar role as the mechanical dithering typically used for circumventing the lock-in problem in the case of usual gas ring laser gyroscopes [27].

The solid-state ring laser setup we used in our experiment is sketched on Fig. 1. Thanks to the additional stabilizing coupling (4), a beat note signal is observed above a critical rotation speed, whose frequency is plotted on Fig. 2. It can be seen on this figure that the difference between the ideal Sagnac line and the experimental beat frequency, which is a direct measurement of The insert shows a magnification around θ1 -see eq. ( 10) -, together with theoretical predictions resulting from numerical simulations with the following measured [18] parameters : γ = 15.34 10

6 s -1 , η = 0.21, | m c 1,2 | = 1.5 10 4 s -1 , | m m 1,2 | = 8.5 10 4 s -1 , arg( m c 1 / m c 2 ) = arg( m m 1 / m m 2 ) = π/17, K = 10 7 s -1 .
Integration step is 0.1 µs, average values are computed between 8 and 10 ms.

the nonlinear interactions [14], is considerably reduced in the zone ranging from 10 to 40 deg/s. Some nonlinearities are observed around the discrete values θ ≃ 55 deg/s and θ ≃ 165 deg/s, in agreement with our theoretical model. As a matter of fact, analytical calculations starting from equation ( 9) reveal the existence of disrupted zones centered on discrete values of the rotation speed θq obeying the following equation : 4A λL θq = qf m where q is an integer ,

the size of each disrupted zone being proportional to J q (kx m ). With our experimental parameters, the first critical velocity corresponds to θ1 = 55.5 deg/s, the zones observed on Fig. 2 corresponding to the cases q = 1 and q = 3. The numerical simulations shown on the insert of this figure are in good agreement with our analytical and experimental data. Such a phenomenon of disrupted zones has been reported previously in the case of gas ring laser gyroscopes with mechanical dithering. It is sometimes designed as 'Shapiro steps' [27], in reference to an equivalent effect in the field of Josephson junctions [28].

The dependence of the beat frequency on the amplitude of the crystal movement is shown on Fig. 3, for a fixed rotation speed (200 deg/s). This graph illustrates the good agreement between our numerical simulations and our experimental data. Moreover, this is an experimental demonstration of the direct control of the 9) with the same parameters as Fig. 2.

strength of nonlinear interactions in the solid-state ring laser. In particular, for some special amplitudes of the crystal movement, the influence of mode coupling vanishes, resulting in a beat frequency equal to the ideal Sagnac value. This study suggests the use of a higher vibration frequency of the crystal, in order to increase the value of θ1 as much as possible. When f m ≫ |Ω|/(2π), the strength of the nonlinear interactions is shown to be directly proportional to J 0 (kx m ) 2 , and the condition for rotation sensing reads :

2Kη > Ñ J 0 (kx m ) 2 , (11) 
where Ñ = γη/(1 + Ω 2 T 2 1 ) is the strength of nonlinear interactions [14], and J 0 (kx m ) 2 is the attenuation factor due to the crystal vibration. The similar condition for rotation sensing in the case of a toroidal Bose-Einstein condensate, as derived in [13], is V 0 > g (where V 0 is the asymmetry energy and g the mean (repulsive) interaction energy per particle in the s-wave state). It becomes, in the presence of Feshbach resonance induced by a magnetic field B as described in [15] :

V 0 > g 1 - ∆ B -B 0 , (12) 
where ∆ and B 0 are characteristic parameters. In this equation, g represents the nonlinear interactions, and the attenuation factor is 1 -∆/(B -B 0 ). Condition (12) shows strong similarities with condition (11). In both cases, rotation sensing is favored if nonlinear interactions are lowered, the ideal case being B = B 0 + ∆ for the toroidal Bose-Einstein condensed gas and J 0 (kx m ) = 0 for the solid-state ring laser. The parameter for the control of nonlinear interactions is the magnetic field B in the first case and the movement amplitude x m in the second case.

In conclusion, we have developed a concrete method for tuning and suppressing nonlinear interactions in the case of a solid-state ring laser, by vibrating the gain crystal along the cavity axis. Our theoretical model shows a very good agreement with the experiment. The observation of rotation sensing in the solid-state ring laser allows the direct measurement of the strength of nonlinear interactions, leading to the experimental demonstration of their fine tuning and even suppression. Furthermore, following the previous work of [14], we have underlined the analogy between our system and other ring-shaped macroscopic quantum configurations where nonlinear interactions could be tuned, for example a Bose-Einstein condensed gas with magnetically-induced Feshbach resonance. This illustrates the richness of such devices, both from applicative and fundamental perspectives.
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 2 Figure2: Experimental beat frequency as a function of the rotation speed. White and black circles refer respectively to the situations where the crystal is at rest and where the crystal is vibrating with a frequency fm ≃ 40 kHz and an amplitude xm ≃ 0.74 µm. The insert shows a magnification around θ1 -see eq. (10) -, together with theoretical predictions resulting from numerical simulations with the following measured[18] parameters : γ = 15.34 106 s -1 , η = 0.21, | m c 1,2 | = 1.5 10 4 s -1 , | m m 1,2 | = 8.5 10 4 s -1 , arg( m c 1 / m c 2 ) = arg( m m 1 / m m 2 ) = π/17, K = 10 7 s -1 .Integration step is 0.1 µs, average values are computed between 8 and 10 ms.

Figure 3 :

 3 Figure 3: Beat frequency as a function of the amplitude of the crystal movement for θ = 200 deg/s. The theoretical values (crosses) come from the numerical integration of equation (9) with the same parameters as Fig.2.
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