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Optimum spin-squeezing in Bose-Einstein condensates with particle losses
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The problem of spin squeezing with a bimodal condensate in presence of particle losses is solved
analytically by the Monte Carlo wavefunction method. We find the largest obtainable spin squeezing
as a function of the one-body loss rate, the two-body and three-body rate constants, and the s-wave
scattering length.

PACS numbers:

Spin squeezed states, first introduced in [1], general-
ize to spin operators the idea of squeezing developed in
quantum optics. In atomic systems effective spins are
collective variables that can be defined in terms of two
different internal states of the atoms [2] or two orthogo-
nal bosonic modes [3]. States with a large coherence be-
tween the two modes, that is with a large mean value of
the spin component in the equatorial plane of the Bloch
sphere, can still differ by their spin fluctuations. For an
uncorrelated ensemble of atoms, the quantum noise is
evenly distributed among the spin components orthog-
onal to the mean spin. However quantum correlations
can redistribute this noise and reduce the variance of one
spin quadrature with respect to the uncorrelated case,
achieving spin squeezing. Besides applications in quan-
tum communication and quantum information [6], these
multi-particle entangled states have practical interest in
atom interferometry, and high precision spectroscopy [4]
where they could be used to beat the standard quantum
limit already reached in atomic clocks [5].

Different techniques to create spin squeezed states in
atomic systems have been proposed and successfully real-
ized experimentally including transfer of squeezing from
light to matter [7] and quantum non demolition mea-
surements of the atomic state [8]. To go further, it was
shown that coherent interactions between cold atoms in
a bimodal Bose-Einstein condensates [3], can in principle
provide a huge amount of entanglement and spin squeez-
ing. It is thus important to determine the ultimate lim-
itations imposed by decoherence to the maximum spin
squeezing that can be obtained by this method. Several
forms of decoherence may be present in the experiment.
In a different context, the effect of a dephasing perturba-
tion to the spin correlations has recently been studied in
[9]. In this work we deal with particle losses, an unavoid-
able source of decoherence in cold atom systems, due in
particular to collisions of condensed atoms with the hot
background gas, and to three-body collisions followed by
a molecule formation.

As shown in [3], bimodal Bose-Einstein condensates re-
alize the one-axis twisting model proposed in [1] to cre-
ate spin squeezing. This exactly solvable model predicts
that a normalized variance of a spin component in the

orthogonal plane as small as N−2/3 (N being the num-
ber of particles in the system) can be obtained in a time
which tends to zero in the N → ∞ limit. This may give
the impression that decoherence will have a negligible ef-
fect in the large N limit so that there should be no limit
in the amount of squeezing one can reach. We will show
that this naive prediction is qualitatively correct for one-
body losses (whose rate is independent of N) but it is
wrong for two and three-body losses. In particular we
find a very simple analytical expression of the maximum
squeezing one can get in presence of one, two and three-
body losses for a given scattering length once the trap
frequency, the atom number, the interaction time and
the spin quadrature are optimized.

We consider two spatially separated symmetric con-
densates a and b prepared in an initial state with N par-
ticles and a well defined relative phase [10]

|φ〉 ≡ 1√
N !

(

eiφa† + e−iφb†√
2

)N

|0〉 . (1)

We assume that φ = 0 initially, correspondingly, the x
component of the collective spin Sx = (a†b + b†a)/2 has
a mean value 〈Sx〉 = N/2. Here we assume that no exci-
tation is created during the preparation process and we
neglect all the other modes than the condensate modes
a and b. When expanded over Fock states |Na, Nb〉, the
state (1) shows binomial coefficients which, for large N ,
are peaked around the average number of particles in a
and b, N̄a = N̄b = N/2. We can use this fact to quadra-
tize the Hamiltonian of the system around N̄a and N̄b:

H0 =
~χ

4
(a†a− b†b)2 (2)

where χ = (∂Na
µa)N̄a

/~ and µa = µb is the chemical
potential for each condensate.

In presence of particle losses, the evolution is ruled by a
master equation for the density operator ρ of the system.
In the interaction picture with respect to H0, with one,
two and three-body losses, we have:

dρ̃

dt
=

3
∑

m=1

∑

ǫ=a,b

γ(m)

[

cmǫ ρ̃c
†m
ǫ − 1

2
{c†mǫ cmǫ , ρ̃}

]

(3)
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where ρ̃ = eiH0t/~ρe−iH0t/~, ca = eiH0t/~ae−iH0t/~, and
similarly for b, γ(m) = K(m)

∫

d3r|φ(r)|2m , where K(m)

is the m-body rate constant and φ(r) is the condensate
wavefunction in one of the two modes. In the Monte
Carlo wavefunctions approach [11] we define an effective

Hamiltonian Heff and the jump operators S
(m)
ǫ

Heff = −
3
∑

m=1

∑

ǫ=a,b

i~

2
γ(m)c†mǫ cmǫ ; (4)

S
(m)
ǫ =

√

γ(m)cmǫ . (5)

We assume that a small fraction of particles will be lost
during the evolution so that we can consider χ and γ(m)

(m = 2, 3) as constant parameters of the model. The
state evolution in a single quantum trajectory is a se-
quence of random quantum jumps at times tj and non-
unitary Hamiltonian evolutions of duration τj :

|ψ(t)〉= e−iHeff(t−tk)/~S(mk)
ǫk

(tk)e−iHeffτk/~S(mk−1)
ǫk−1

(tk−1)

. . . S(m1)
ǫ1 (t1)e

−iHeffτ1/~|ψ(0)〉 . (6)

The expectation value of any observable Ô is obtained
by averaging over all possible stochastic realizations, that
is all kinds, times and number of quantum jumps, each
trajectory being weighted by its probability [11]

〈Ô〉 =
∑

k

∫

0<t1<t2<···tk<t

dt1dt2 · · ·dtk
∑

{ǫj ,mj}

〈ψ(t)|Ô|ψ(t)〉 . (7)

We want to calculate spin squeezing. In the considered
symmetric case with zero initial relative phase, the mean
spin remains aligned to the x axis 〈Sx〉 = 〈b†a〉, and the
spin squeezing is quantified by the parameter [3, 4]

ξ2 = min
θ

〈N̂〉∆S2
θ

〈Sx〉2
, (8)

where Sθ = (cos θ)Sy + (sin θ)Sz , Sy = (a†b − b†a)/(2i),

Sz = (a†a − b†b)/2 and N̂ = a†a + b†b. The non corre-
lated limit yields ξ2 = 1, while ξ2 < 1 is the mark of an
entangled state [3, 6]. In all our analytic treatments, it
turns out that ∆S2

z = 〈N̂〉/4. This allows to express ξ2

in a simple way:

ξ2 =
〈a†a〉
〈b†a〉2

(

〈a†a〉 +A−
√

A2 +B2
)

, (9)

with

A =
1

2
Re
(

〈b†a†ab− b†b†aa〉
)

(10)

B = 2 Im
(

〈b†b†ba〉
)

. (11)

With one-body losses only, the problem is exactly solv-
able. Following a similar procedure as in [12], we get

ξ2(t) =
1 + 1

4 (N − 1)e−γt[Ã−
√

Ã2 + B̃2]
[

γ2 + χ[γ sin(χt) + χ cos(χt)]e−γt

γ2 + χ2

]2N−2
(12)

with γ ≡ γ(1) and

Ã=1 −
[

γ2 + 2χ[γ sin(2χt) + 2χ cos(2χt)]e−γt

γ2 + 4χ2

]N−2

B̃=4 sinχt

[

γ2 + χ[γ sin(χt) + χ cos(χt)]e−γt

γ2 + χ2

]N−2

.

The key points are that (i) Heff is proportional to N̂ so
it does not affect the state, and (ii) a phase state |φ〉 is
changed into a phase state with one particle less after a
quantum jump, ca,b|φ〉 ∝ |φ ∓ χt/2〉 where t is the time
of the jump, the relative phase between the two modes
simply picking up a random shift ∓χt/2 which reduces
the squeezing.

When two and three-body losses are taken into ac-
count, an analytical result can still be obtained by using
a constant loss rate approximation [12]

Heff ≃ −
3
∑

m=1

∑

ǫ=a,b

i~

2
γ(m)N̄m

ǫ ≡ − i~
2
λ . (13)

We verified by simulation (see Fig.1) that this is valid for
the regime we consider, where a small fraction of particles
is lost at the time at which the best squeezing is achieved.
In this approximation, the mean number of particles at
time t is

〈N̂〉 = N [ 1−
∑

m

Γ(m)t ] ; Γ(m) ≡ (N/2)m−1mγ(m) (14)

where Γ(m)t is the fraction of lost particles due tom-body
losses. Spin squeezing is calculated from (9) with

〈b†a〉 =
e−λt

2
cosN−1(χt)ÑF1 (15)

A =
e−λt

8
Ñ(Ñ − 1)

[

F0 − F2 cosN−2(2χt)
]

(16)

B =
e−λt

2
cosN−2(χt) sin(χt)Ñ (Ñ − 1)F1 (17)

where the operator Ñ = (N − ∂α) acts on the functions

Fβ(α) = exp

[

3
∑

m=1

2γ(m)teαm sin(mβχt)

mβχt cosm(βχt)

]

, (18)

and all expressions should be evaluated in α = ln N̄a.
We want to find simple results for the best squeezing

and the best squeezing time in the large N limit. In
the absence of losses [1] the best squeezing and the best
squeezing time in units of 1/χ scale as N−2/3. We then
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set N = ε−3 and rescale the time as χt = τε2. We
expand the results (12) and (15-17) for ε ≪ 1 keeping
Γ(m)/χ constant, and we obtain in both cases

ξ2(t) ≃ 1

N2(χt)2
+

1

6
N2(χt)4 +

1

3
Γsqt , (19)

with

Γsq =
∑

m

Γ(m)
sq and Γ(m)

sq = mΓ(m) . (20)

For equal loss rates Γ(m), the larger m, the more the
squeezing is affected. Introducing the squeezing ξ20(t) in
the no-loss case, the above result can be written as

ξ2(t) = ξ20(t)

[

1 +
1

3

Γsqt

ξ20(t)

]

. (21)

This shows that (i) the fact that only a small fraction of
atoms is lost at the best squeezing time does not imply
that the correction on the squeezing due to losses is small;
(ii) the more squeezed the state is, the more sensitive
to the losses. This was expected as a larger amount of
correlation is then lost in each loss event. In presence
of losses, the best squeezing time and the corresponding
squeezing are

tbest =

[

f(C)

2

]1/3
N−2/3

χ
, (22)

ξ2(tbest)=

[

1

f(C)2/3
+
f(C)4/3

24
+
Cf(C)1/3

3

](

2

N

)2/3

(23)

f(C) =
√

C2 + 12 − C ; C =
Γsq

2χ
. (24)

In order to find optimal conditions to produce spin
squeezing in presence of losses and set the ultimate lim-
its of this technique, from now on, we assume that the
number of particles is large enough for the condensates
to be in the Thomas-Fermi regime so that

µ =
1

2
~ω̄

(

15

2

Na

a0

)2/5

, (25)

where a0 =
√

~/Mω̄ is the harmonic oscillator length,
M is the mass of a particle and ω̄ is the geometric mean
of the trap frequencies,

χ =
23/532/5

53/5

(

~

M

)−1/5

a2/5ω̄6/5N−3/5 (26)

Γ(1) = K(1) (27)

Γ(2) =
152/5

22/57π

(

~

M

)−6/5

a−3/5ω̄6/5N2/5K(2) (28)

Γ(3) =
154/5

219/57π2

(

~

M

)−12/5

a−6/5ω̄12/5N4/5K(3) . (29)

10
3

10
4

10
5

10
610

−4

10
−3

10
−2

10
−1

N

ξ2 (t
be

st
)

Without losses
One body losses
Two body losses
Three body losses

FIG. 1: Spin squeezing obtained by a minimization of ξ2

over time, as a function of the initial number of particles,
without loss of particles (solid line), with one-body losses
(dashed line), with two-body losses (dotted line), with three-
body losses (dash-dotted line) respectively. Parameters: a =

5.32nm, ω̄ = 2π × 200Hz, K(1) = 0.1s−1, K(2) = 10−21m3/s

[13], K(3) = 6 × 10−42m6/s [14]. The points with symbols
(crosses for three-body and plus for two-body losses) are re-
sults of a full numerical simulation with 400 Monte Carlo
realizations.

We first analyze the dependence of squeezing on the ini-
tial number of particles, separating for clarity one, two
and three-body losses. Fig.1 shows the best squeezing
ξ2(tbest) as a function of N when only one kind of losses
is present. Parameters correspond to 87Rb atoms in the
|F = 1,mF = −1〉 state. The curve without losses is
also shown for comparison. According to Fig.1, one-body
losses do not change qualitatively the picture without
losses and we have ξ2(tbest) ∝ N−4/15 for N → ∞. In
the same limit, with two-body losses, ξ2(tbest) is indepen-
dent of N . With three-body losses, ξ2(tbest) ∝ N4/15 for
N → ∞, implying that there is a finite optimum number
of particles for squeezing.

We now turn to a full optimization of squeezing over
ω̄ and N in the simultaneous presence of one, two and
three-body losses. To this end, we note that the square
brackets in Eq.(23) is an increasing function of C, we can
then optimize ξ2(tbest) by minimizing C with respect to
ω̄. Under the conditions K(1) 6= 0 and K(3) 6= 0, the

minimum of C, Cmin, is obtained for Γ
(3)
sq = Γ

(1)
sq yielding

ω̄opt =
219/1275/12π5/6

35/12151/3

~

M

a1/2

N1/3

(

K(1)

K(3)

)5/12

. (30)

It turns out that Cmin is proportional to N and
ξ2(tbest, ω̄

opt) is a decreasing function of N . The lower
bound for ξ2, reached for N → ∞ is then

inf
t,ω̄,N

ξ2 =

(

5
√

3

28π

M

~a

)2/3[√

21

2
(K(1)K(3)) + 2K(2)

]2/3

.

(31)
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FIG. 2: Spin squeezing ξ2(tbest) optimized with respect to ω̄
as a function of the scattering length a, when the magnetic
field is varied on the left side of the B0 = 1007.4G Feshbach
resonance of 87Rb. The inset shows the number of particles
for each point, calculated for η = 10%. We took a(B) =
abg[1−∆B/(B −B0)] with abg = 5.32nm, ∆B = 0.21G. The

three-body rate constant K(3)(B) is taken from [15].

In practice, one can choose N = Nη in order to have
ξ2 = (1+ η) inf ξ2 (e.g. η = 10%), and then calculate the
corresponding optimized frequency ω̄opt with (30). For
a suitable choice of the internal state, in an optical trap,
the two-body losses can be neglected K(2) = 0. One can
get in this case very simple formulas for the optimized
parameters and squeezing. Consider η = 10%, then

Nη ≃ 10.296

[K(1)K(3)]1/2

~a

M
, (32)

tbest ≃ 0.40

[

M

~K(1)

]2/3 [
K(3)

a2

]1/3

, (33)

ξ2 ≃ 0.514

[

MK(1)

~

]1/3 [
MK(3)

~a2

]1/3

. (34)

We now ask whether, in presence of one and three-body
losses only, we can use a Feshbach resonance to change
the scattering length and improve the squeezing, tak-
ing into account that K(3) is also affected. In Fig.2 we
plot the squeezing parameter vs the scattering length a.
Predicted values of K(3), as a function of a, are taken
from [15] for 87Rb in the state |F = 1,mF = 1〉 and
K(1) = 0.01s−1. We calculate ω̄opt and the number of
particles needed for η = 10% for each point in the curve.
The dip giving large squeezing corresponds to a strong
decrease inK(3) around 1003.5G (K(3) ≃ 2×10−44m6/s).
Close to the Feshbach resonance the squeezing gets worse
as K(3) increases (even if in the figure we do not enter
the regime K(3) ∼ ~a4/m).

Finally we consider the problem of the survival time
of a spin squeezed state in presence of one-body losses.
We imagine that the system evolves within two periods:
in the first period, which lasts a time T1, the system is
squeezed in presence of interactions (χ 6= 0), one and

three-body losses; and in the second period, which lasts
a time T2, the interaction is stopped (χ = 0), for example
by opening the trap, and the system evolves under the
influence of one-body losses. As T2 can be arbitrarily
long, we use the exact solution for the second period,
while for the first period T1, on the order of tbest, we use
a constant loss rate approximation (13). We obtain

ξ2(T2)=
1

4

〈N̂(T1)〉2
〈Sx(T1)〉2

−
[

1

4

〈N̂(T1)〉2
〈Sx(T1)〉2

− ξ2(T1)

]

e−γ(1)T2

≃ 1 −
[

1 − ξ2(T1)
]

e−γ(1)T2 . (35)

In the second line of Eq.(35) we used the fact that for
T1 ≃ tbest, 〈Sx〉 ≃ 〈N̂(T1)〉/2. This result shows that
the spin squeezing can be kept some time after the in-
teractions have been stopped. To give an example, for
87Rb parameters with bare scattering length a = 5.32nm,
K(1) = 0.01s−1, K(2) = 0, K(3) = 6 × 10−42m6/s,
in optimized conditions (32)-(34) N = 1.6 × 105 and
ω̄opt = 2π × 15.24Hz, ξ2 = 8.2 × 10−4 is reached at
T1 = tbest = 6.5×10−2s, and a large amount of squeezing
ξ2 ≃ 0.01 is still available after a time of T1 + T2 = 1s.

In conclusion, within the scheme proposed by [3] we
have found analytically the maximum spin squeezing ob-
tainable in a bimodal condensate in presence of losses,
see Eq.(31). This bound can be approached with realis-
tic atom numbers in rather weak traps. LKB is a unit of
ENS and UPMC associated to CNRS. We acknowledge
discussions with the atom chip team of Jakob Reichel. Y.
Li acknowledges support from the ENS/ECNU exchange
program.
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