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Computation of 2-groups of narrow

logarithmic divisor classes of number

fields

Jean-François Jaulent, Sebastian Pauli,

Michael E. Pohst & Florence Soriano–Gafiuk,

Abstract. We present an algorithm for computing the 2-group C̃ℓ
res

F of narrow
logarithmic divisor classes of degree 0 for number fields F . As an application, we
compute in some cases the 2-rank of the wild kernel WK2(F ) and the 2-rank of its
subgroup K

∞
2 (F ) := ∩n≥1K

n

2 (F ) of infinite height elements in K2(F ).

Résumé. Nous présentons un algorithme de calcul du 2-groupe des classes logarith-

miques de degré nul au sens restreint C̃ℓ
res

F pour tout corps de nombres F . Nous en

déduisons sous certaines hypothèses les 2-rangs du noyau sauvage WK2(F ) ainsi que

du sous-groupe K
∞
2 (F ) := ∩n≥1K

n

2 (F ) des éléments de hauteur infinie dans K2(F ).

1 Introduction

In [8] J.-F. Jaulent pointed out that the wild kernel WK2(F ) of a number
field F can also be studied via logarithmic class groups, the arithmetic of which
he therefore developed in [9].

More precisely, if F contains a primitive 2ℓ-th root of unity, the ℓ-rank of

WK2(F ) coincides with the ℓ-rank of the logarithmic class group C̃ℓF . So an

algorithm for computing C̃ℓF for Galois extensions F was developed first in [4]
and later generalized and improved for arbitrary number field in [3].

In case the prime ℓ is odd and the field F does not contain a primitive ℓ-
th root of unity one considers the cyclotomic extension F ′ := F (ζℓ), uses the
isomorphism

µℓ ⊗ C̃ℓF ′ ≃ WK2(F
′)/WK2(F

′)ℓ ,

and gets back to F via the so-called transfer (see [11] and [16]). The algorithmic
aspect of this is treated in [14].

In case ℓ = 2, whenever the condition ζ2ℓ ∈ F is not fulfilled, the relationship
between logarithmic classes and exotic symbols is more intricate. For instance,
when the number field F has a real embedding, F. Soriano-Gafiuk observed in
[15] that one may then define a narrow version of the logarithmic class group
by analogy with the classical ideal class groups; and she used this in [16] for
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approximating the wild kernel more closely. But, unexpectedly, the 2-rank of

this restricted logarithmic class group C̃ℓ res
F sometimes differs from the 2-rank

of the group WK2(F ). Moreover, in this case the wild kernel WK2(F ) may differ
from its subgroup K∞

2 (F ) := ∩n≥1K
n
2 (F ) of infinite height elements in K2(F ).

This was observed by J. Tate and then made more explicit by K. Hutchinson
(cf [6, 7]).

That last difficulty was finally solved in [12],where the authors constructed a
positive class group ad hoc Cℓ pos

F which has the same 2-rank as the wild kernel
WK2(F ). Nevertheless, in case the set PEF of dyadic exceptional primes of the
number field F is empty, that group Cℓ pos

F appears as a factor of the full narrow
logarithmic class group Cℓ res

F (without any assumption on the degree), so one
may still use narrow logarithmic classes in order to compute the 2-rank of the
wild kernel.

In the present paper we use the results from [3] on (ordinary) logarithmic

class groups and develop an algorithm for computing the narrow groups C̃ℓ res
F

in arbitrary number fields F . As a consequence, this algorithm calculates the 2-
rank of the wild kernel WK2(F ) whenever the field F has no dyadic exceptional
places.

The computation of the 2-rank of WK2(F ) in the remaining case (PEF 6= ∅)
will be solved in a forthcoming article where we compute the finite positive

classgroup Cℓ pos
F and its subgroup C̃ℓ pos

F of positive classes of degree 0.

2 The group of narrow logarithmic classes C̃ℓ
res
F

In this preliminary section we recall the definition and the main properties
of the arithmetic of restricted (or narrow) logarithmic classes. We refer to [9]
and [16] for a more detailed account.

Throughout this paper the prime number ℓ equals 2 and F is a number field
of degree n = r + 2c with r real places, c complex places and d dyadic places.

According to [8], for every finite place p of F there exists a 2-adic p-valuation
ṽp which is related to the wild p-symbol in case the cyclotomic Z2-extension of
Fp contains i. The degree degF p of the place p is a 2-adic integer such that the
image of RF := Z2 ⊗Z F× under the map Log | |p is the Z2-module degF p Z2

(see [9]), where Log denotes the usual 2-adic logarithm and | |p is the 2-adic
absolute value at the place p.

The construction of the 2-adic logarithmic valuations ṽp yields:

∀α ∈ RF := Z2 ⊗Z F× :
∑

p∈Pl 0
F

ṽp(α) degF p = 0 , (1)

where Pl 0
F is the set of finite places of the number field F . Setting

d̃ivF (α) :=
∑

p∈Pl 0
F

ṽp(α) p

with values in DℓF :=
⊕

p∈Pl 0
F

Z2 p, we obtain by Z2-linearity:

degF (d̃ivF (α)) = 0 . (2)
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We then define the subgroup of logarithmic divisors of degree 0 by:

D̃ℓF :=
{
a =

∑
p∈Pl 0

F
app ∈ DℓF | degF a :=

∑
p∈Pl 0

F
ap degF p = 0

}
;

and the group of principal logarithmic divisors as the image of RF by d̃ivF :

P̃ℓF :=
{
d̃ivF (α) | α ∈ RF

}
.

Because of (2), P̃ℓF is a subgroup of D̃ℓF . And by the so-called extended Gross
conjecture the factor group

C̃ℓF := D̃ℓF /P̃ℓF

is a finite group, the 2-group of logarithmic divisor classes (of degree 0) of the
field F introduced in [9].

Now let PRF := {p1, . . . , pr} be the (non empty) set of real places of the
field F and F+ be the subgroup of all totally positive elements in F×, i.e. the
kernel of the sign map

sign∞
F : F× → {±1}r

which maps x ∈ F onto the vector of the signs of the real conjugates of x. For

P̃ℓ+
F := {d̃ivF (α) | α ∈ R+

F := Z2 ⊗Z F+}
the factor group

C̃ℓ res
F := D̃ℓF /P̃ℓ+

F

is the 2-group of narrow (or restricted) logarithmic divisor classes (of degree 0)
introduced in [15]; and it is also finite under the extended Gross conjecture.

In order to make it more suitable for actual computations, we may define it
in a slighty different way by introducing real signed divisors of degree 0:

Definition 1. With the notations above, the 2-group of real signed logarithmic
divisors (of degree 0) is the direct sum:

D̃ℓ res
F := D̃ℓF ⊕ {±1}r;

and the subgroup of principal real signed logarithmic divisors is the image:

P̃ℓ res
F := {(d̃ivF (α), sign∞

F (α)) | α ∈ RF }
of RF := Z2 ⊗Z F× under the (d̃ivF , sign∞

F ) map. The factor group:

C̃ℓ res
F := D̃ℓ res

F /P̃ℓ res
F

is the 2-group of narrow logarithmic divisor classes (of degree 0).

Because of the weak approximation theorem, every class in C̃ℓ res
F can be

represented by a pair (a,1) where the vector 1 has all entries 1. So the canonical

map a 7→ (a,1) induces a morphism from D̃ℓF onto C̃ℓ res
F , the kernel of which

is P̃ℓ+
F . We conclude as expected:

C̃ℓ res
F = D̃ℓ res

F /P̃ℓ res
F ≃ D̃ℓF /P̃ℓ+

F .

We are now in a situation to present an algorithm for computing narrow
logarithmic classes. It uses our previous results of [3] on (ordinary) logarithmic
classes and mimics the classical feature concerning narrow and ordinary ideal
classes. We note that this algorithm is a bit more intricate in the logarithmic
context since the logarithmic units are not algebraic numbers and are therefore
not exactely known from a numerical point of view.
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3 The algorithm for computing C̃ℓ
res
F

We assume in this section that the number field F has at least one real place

and that the logarithmic 2-class group C̃ℓF is isomorphic to the sum

C̃ℓF ≃
ν⊕

j=1

Z/2nj Z

subject to 1 ≤ n1 ≤ ... ≤ nν . Let aj (1 ≤ j ≤ ν) be fixed representatives
of the ν generating divisor classes (of degree 0). We let (ǫi)i=1,...,r denote the
canonical basis of the multiplicative F2-space {±1}r.

Thus any real signed divisor (a, ǫ) in D̃ℓ res
F can be uniquely written:

(a, ǫ) =




ν∑

j=1

ajaj + d̃ivF (α),

r∏

i=1

ǫbi

i sign∞
F (α)




with suitable integers aj ∈ Z, bi ∈ {0, 1} and α ∈ RF .

Then the (aj ,1)j=1,...,ν together with the (0, ǫi)i=1,...,r are a finite set of

generators of the narrow class group C̃ℓres
F . And we just need to detect the

relations among those.

From the description of the logarithmic class group C̃ℓF above we get:

2nj aj = d̃ivF (αj),

with αj ∈ RF for j = 1, . . . , ν. So we can define coefficients cν+i,j in {0, 1} by:

sign∞
F (αj) = ((−1)cν+1,j , . . . , (−1)cν+r,j)

Consequently, a first set of relations is given by the columns of the following

matrix A ∈ Z
(ν+r)×ν

2 :

A =




2n1 0 · · · 0 0
0 2n2 · · · 0 0
.. . · · · . .
.. . · · · . .
0 0 · · · 2nν−1 0
0 0 · · · 0 2nν

−− −− −−− −− −−

ci,j




.

Now, the ν elements αj are only given up to logarithmic units. Hence, we

must additionally consider the sign-function on the 2-group ẼF of logarithmic
units of F (see [8]). More precisely, in case

ẼF = {±1}× < ε̃1, ..., ε̃r+c > , (3)
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we define exponents bi,j via

sign∞
F (ε̃j) =

r∏

i=1

ǫ
bi,j

i (4)

and we have, of course:

sign∞
F (−1) =

r∏

i=1

ǫi .

From a computational point of view things are a bit more complicated. We
just know that

ẼF = {x ∈ RF | ∀p : ṽp(x) = 0} (5)

is a subgroup of the 2-group of 2-units E ′
F . If we assume that there are exactly

d places p1, ..., pd containing 2 in F , we have, say,

E ′
F = {±1} × 〈ε1, ..., εr+c+d−1〉 .

In the same way that in [3], for the calculation of ẼF we fix a precision e for our
2-adic approximations by requiring for elements ε of E ′

F the relation

ṽpi
(ε) ≡ 0 mod 2e (1 ≤ i ≤ d) .

We obtain a system of generators of ẼF by computing the nullspace of the
matrix

M =




| 2e · · · 0
ṽpi

(εj) | · · · · ·
| 0 · · · 2e




with r + c + 2d − 1 columns and d rows. We assume that the nullspace is
generated by the columns of the matrix

M ′ =




C

− − −

D




where C has r + c + d− 1 and D exactly d rows. It suffices to consider C. Each
column (n1, ..., nr+c+d−1)

tr of the matrix C corresponds to a unit

r+c+d−1∏

i=1

εni

i ∈ ẼFR2e

F

so that we can choose

ε̃ :=

r+c+d−1∏

i=1

εni

i

as an approximation for a logarithmic unit. This procedure yields k ≥ r + c
logarithmic units. Of course, by the generalized Gross conjecture we would have
exactly r + c such units.
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If the integer k which we get in our calculations is not much larger than r+c
then we will proceed with the k generating elements of ẼF obtained. Otherwise,
we reduce the number of generators by computing a basis of the submodule of
Zr+c+d−1 which is the span of the columns of C. Hence, from now on we may
assume that we have determined exactly r + c generators ε̃1, ..., ε̃r+c of ẼF .

To conclude, with the notations of (4) the columns of the following matrix

R ∈ Z
(ν+r)×(ν+2r+c+1)
2 generate all relations for the (aj , 1) and the (0, ǫj):

R =




2n1 | 0 · · · 0 | 0 · · · 0 0
. . . |

...
... |

...
...

...
2nν | 0 · · · 0 | 0 · · · 0 0

−− −− −−− | −− −− −− | −− −− −− −−
| 2 | b1,1 · · · b1,r+c 1

ci,j | . . . |
...

...
...

| 2 | bν,1 · · · bν,r+c 1




4 Applications in K-Theory

We adopt the notations and definitions in this section from [12]. In particular
i denotes a primitive fourth root of unity; and we say that the number field F
is exceptional when i is not contained in the cyclotomic Z2-extension F c of F ,
i.e. whenever the cyclotomic extension F c[i]/F is not procyclic.

We say that a non-complex place p of a number field F is signed whenever
the local field Fp does not contain the fourth root of unity i. These are the
places which do not decompose in the extension F [i]/F . For such a place p,
there exists a non trivial sign-map

signp : F×
p → {±1},

given by the Artin reciprocity map F×
p → Gal(Fp[i]/Fp) of class field theory.

We say that a non-complex place p of F is logarithmically signed if and only
if one has i 6∈ F c

p . These are the places which do not decompose in F c[i]/F c.
So the finite set PLSF of logarithmic signed places of the field F only contains:

(i) the subset PRF of infinite real places and

(ii) the subset PEF of exceptional dyadic places, i.e. the set of logarithmic
signed places above the prime 2.

We say that a non-complex place p of F is logarithmically primitive if and
only if p does not decompose in the first step E/F of the cyclotomic Z2-extension
F c/F . Finally we say that an exceptional number field F is primitive whenever
there exists an exceptional dyadic place which is logarithmically primitive.

Naturally, the task arises to determine logarithmically signed places, i.e.
those non complex places of F for which i is not contained in F c

p :
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Proposition 2. Let Ep be the first quadratic extension of Fp in the tower of
field extension from Fp to F c

p . Then i ∈ F c
p holds precisely for i ∈ Ep.

Proof. Since F c
p/Fp is a Z2-extension, it contains exactly one quadratic extension

Ep of Fp. So we immediately obtain:

i ∈ F c
p ⇔ Fp(i) ⊆ Ep ⇔ i ∈ Ep .

Remark. The extension Ep is Fp(αk) where k is the smallest integer such that
αk does not belong to Fp with α0 = 0 and αk+1 =

√
2 + αk.

We assume in the following that the number field F has no exceptional
dyadic place. Let us introduce the group Cℓ res

F of narrow logarithmic classes
without any assumption of degree:

Cℓ res
F = Dℓ res

F /P̃ℓ res
F .

Via the degree map, we obtain the direct decomposition:

Cℓ res
F ≃ Z2 ⊕ C̃ℓ res

F ,

where the torsion subgroup C̃ℓ res
F was yet computed in the previous section. So

the quotient of exponent 2
2Cℓ res

F := Cℓ res
F /(Cℓ res

F )2

contains both as hyperplanes the two quotients 2C̃ℓ res
F relative to C̃ℓ res

F and
2Cℓ pos

F relative to the positive class group Cℓ pos
F introduced in [12].

Since, according to [12], this later gives the 2-rank of the wild kernel WK2(F ).
we can extend the results of K. Hutchinson [6, 7] as follows:

Theorem 3. Let F be a number field which has no exceptional dyadic places.

(i) If F is not exceptional (i.e. in case i ∈ F c) the wild kernel WK2(F ) coin-
cide with the subgroup K∞

2 (F ) = ∩n≥1K
n
2 (F ) of infinite height elements

in K2(F ); the group C̃ℓ res
F of narrow logarithmic classes coincide with the

group C̃ℓF of (ordinary) logarithmic classes; and one has immediately:

rk2 WK2(F ) = rk2 K∞
2 (F ) = rk2 C̃ℓ res

F = rk2 C̃ℓF

(ii) If F is exceptional ( i.e. in case i /∈ F c) the subgroup K∞
2 (F ) has index 2

in the wild kernel WK2(F ) and one still has:

rk2 WK2(F ) = rk2 C̃ℓ res
F ≥ 1

(ii,a) In case WK2(F ) and K∞
2 (F ) have the same 2-rank, this gives:

rk2 K∞
2 (F ) = rk2 C̃ℓ res

F ≥ 1.

(ii,b) And in case K∞
2 (F ) is a direct summand in WK2(F ), one has:

rk2 K∞
2 (F ) = rk2 C̃ℓ res

F − 1.

Proof. In the non exceptional case, the number field F is not locally exceptional,
i.e. has no logarithmic signed places: PEF = PRF = ∅. In particular, narrow
logarithmic classes coincide with ordinariry logarithmic classes and the result
follows from [12].
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In the exceptional case, the number field F may have real places, so the

narrow logarithmic class group C̃ℓ res
F may differ from the ordinary logarithmic

class group. Moreover, because the assumption PEF = ∅ and accordingly to
Hutchinson [6, 7], the subgroup K∞

2 (F ) has index 2 in the wild kernel WK2(F ).

Remark. It remains to determine whether a number field F is not exceptional,
i.e. whether the cyclotomic Z2 extension F c contains the fourth root of unity i.
Of course if i ∈ F c then i is contained in the quadratic subfield E/F in F c. Now
the finite subfields of Qc are the real cyclic fields Q(s) = Q[ζ2s+2 +ζ−1

2s+2 ] and the

finite extensions of F c are of the form FQ(s). So we only need to check whether
i is contained in F [ζ2s+2 + ζ−1

2s+2 ] where s is minimal with ζ2s+2 + ζ−1
2s+2 /∈ F .

5 Examples

The methods described here are implemented in the computer algebra system
Magma [2]. Many of the fields used in the examples were results of queries to
the QaoS number field database [13, section 6].

The wild kernel WK2(F ) is contained in the tame kernel K2(OF ). Let µ(F )
be the order of the torsion subgroup of F× and for a prime p of F over p denote
by µ1(Fp) the p-Sylow subgroup of the torsion subgroup of F×

p . By coupling
Moore’s exact sequence and the localization sequence [5, section 1] one obtains
the index formula [1, equation (6)]:

(K2(OF ) : WK2(F )) =
2r

|µ(F )|
∏

p

|µ1(Fp)|,

where p runs through all finite places and r is the number of real places of F .

We apply this in the determination of the structure of WK2(F ) in the cases
where the structure of K2(OF ) is known.

Abelian groups are given as a list of the orders of their cyclic factors;

[:] denotes the index (K2(OF ) : WK2(F ));

dF denotes the discriminant for a number field F ;

CℓF denotes the class group, P the set of dyadic places;

Cℓ′F denotes the 2-part of Cl/〈P 〉;

C̃ℓF denotes the logarithmic classgroup;

Cℓres
F denotes the group of narrow logarithmic classes;

rk2 denotes the 2-rank of the wild kernel WK2;

WK2 denotes the wild kernel in K2(F );

K∞
2 denotes the subgroup of infinite height elements in K2(F ).
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5.1 Imaginary quadratic fields

K. Belabas and H. Gangl have developed an algorithm for the computation of
the tame kernel K2OF [1]. The following table contains the structure of K2OF

as computed by Belabas and Gangl and the 2-rank of the wild kernel WK2(F )
calculated with our methods. We also give the structure of the wild kernel if it
can be deduced from the structure of K2OF and of the rank of the wild kernel
computed here or in [14]. The structure of the tame kernel K2(OF ) of all fields
except for the starred entries has been proven by Belabas and Gangl.

The table gives the structure of the wild kernel of all imaginary quadratic
fields F with no exceptional places and discriminant |dF | < 1000.

dF CℓF K2(OF ) [:] Cℓ′F C̃ℓF C̃ℓ res
F rk2 WK2 K∞

2

-68 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
-132 [2,2] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-136 [ 4 ] [ 4 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
-164 [ 8 ] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
-228 [2,2] [ 12] 6 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-260 [2,4] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
-264 [2,4] [ 6 ] 3 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
-292 [ 4 ] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-328 [ 4 ] [ 2 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-356 [ 12 ] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-388 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
-420 [2,2,2] [2,4] 2 [2,2] [2,2] [2,2] 2 [2,2] [2]
-452 [ 8 ] [ 8 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [4] [2]
-456 [2,4] [ 2 ] 1 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
-516 [2,6] [ 12 ] 6 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-520 [2,2] [ 2 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-548 [ 8 ] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
-580 [2,4] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
-584 [ 16 ] [ 2 ] 1 [ 8 ] [ 8 ] [ 8 ] 1 [2] [ ]
-644 [2,8] [2,16] 2 [2,4] [2,4] [2,4] 2 [2,8] [?]
-708 [2,2] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-712 [ 8 ] [ 2 ] 1 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ]
-740 [2,8] [ 4 ] 2 [ 8 ] [ 8 ] [ 8 ] 1 [2] [ ]
-772 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
-776 [ 20 ] [ 4 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
-804 [2,6] [ 36 ] 6 [ 2 ] [ 2 ] [ 2 ] 1 [6] [3]
-836 [2,10] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
-840 [2,2,2] [2,6] 3 [2,2] [2,2] [2,2] 2 [2,2] [2]
-868 [2,4] [2,4] 2 [2,2] [2,2] [2,2] 2 [2,2] [2]
-904 [ 8 ] [4] 1 [ 4 ] [ 4 ] [ 4 ] 2 [4] [2]
-964 [ 12 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2]
-996 [2,6] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]
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5.2 Real Quadratic Fields

The following table contains all real quadratic fields F with no exceptional places
and discriminant |dF | < 1000. All these quadratic fields are exceptional.

dF CℓF [:] |P | |PE| Cℓ′F C̃ℓF C̃ℓ res
F rk2

28 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
56 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
60 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1
92 [ ] 8 1 0 [ ] [ ] [ 2 ] 1

120 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
124 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
156 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
184 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
188 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
220 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
248 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
284 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
312 [ 2 ] 12 1 0 [ ] [ ] [ 2 ] 1
316 [ 3 ] 8 1 0 [ ] [ ] [ 2 ] 1
348 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1
376 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
380 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
412 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
440 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
444 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
476 [ 2 ] 8 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2
604 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
632 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
636 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1
668 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
696 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
732 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
760 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1
764 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
796 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
824 [ ] 4 1 0 [ ] [ ] [ 2 ] 1
860 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
888 [ 2 ] 12 1 0 [ ] [ ] [ 2 ] 1
892 [ 3 ] 8 1 0 [ ] [ ] [ 2 ] 1
924 [ 2, 2 ] 24 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2
952 [ 2 ] 4 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2
956 [ ] 8 1 0 [ ] [ ] [ 2 ] 1
988 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1
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The following table contains extensions with class number 32 up to discrim-
inant 222780 and extensions with class number 64 up tp discriminant 805596.

dF CℓF [:] |P | |PE| Cℓ′F C̃ℓF C̃ℓ res
F rk2

112924 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
120796 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
136120 [ 2,16 ] 4 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
153660 [2,2,8] 8 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3
158844 [2,2,8] 8 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3
163576 [ 2,16 ] 4 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3
170872 [ 2,16 ] 4 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
176316 [ 2,16 ] 24 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
176440 [ 2,16 ] 4 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
196540 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
202524 [ 2,16 ] 24 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
207480 [2,2,2,4] 4 1 0 [2,2,4] [2,2,4] [2,2,2,4] 4
213180 [2,2,2,4] 24 1 0 [2,2,4] [2,2,4] [2,2,2,4] 4
221276 [ 2,16 ] 8 1 0 [ 16 ] [ 16 ] [ 2,16 ] 2
222780 [2,2,8] 8 1 0 [ 2,8 ] [ 2,8 ] [2,2,8] 3

374136 [2,2,16] 12 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3
382204 [ 2,32 ] 8 1 0 [ 32 ] [ 32 ] [ 2,32 ] 2
449436 [2,2,16] 8 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3
484764 [2,2,16] 24 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3
506940 [2,2,2,8] 24 1 0 [2,2,8] [2,2,8] [2,2,2,8] 4
805596 [2,2,16] 24 1 0 [ 2,16 ] [ 2,16 ] [2,2,16] 3

5.3 Biquadratic Extensions

The following table contains quadratic and biquadratic number fields. The
biquadratic fields are the compositum of the the first quadratic extensions and
one of the other quadratic extensions. All fields are exceptional.

F dF r CℓF [:] |P | Cℓ′F C̃ℓF C̃ℓ res
F rk2

K 9660 2 [2,2,2] 8 1 [ 2,2 ] [ 2,2 ] [ 2,2,2 ] 3
L1 9340 2 [ 10 ] 8 1 [ ] [ ] [ 2 ] 1

KL1 4 [2,2,2,10] 128 2 [2,2,2] [2,2,2] [2,2,2,2,2] 5
L2 13020 2 [2,2,2] 24 1 [ 2,2 ] [ 2,2 ] [ 2,2,2 ] 3

KL2 4 [2,2,4] 384 2 [ 2,2 ] [2,2,2] [2,2,2,2,2,2] 6
L3 15708 2 [2,2,2] 8 1 [ 2,2 ] [ 2,2 ] [ 2,2,2 ] 3

KL3 4 [2,2,4,28] 128 2 [ 2,2,4] [2,2,4] [2,2,2,2,2,4] 6
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f dF r Gal CℓF [:] |P | Cℓ′F C̃ℓF C̃ℓ res
F rk2

x4 + x2 − 6x + 1 -3312 2 D(4) [ ] 8 1 [ ] [ ] [ 2 ] 1
x4 − 2x3 − 2x2 + 18x + 21 3600 0 E(4) [ 2 ] 6 1 [ 2 ] [ 2 ] [ 2 ] 1

x4 + 25x2 + 400 608400 0 E(4) [ 4,8 ] 72 2 [ 4 ] [ 4 ] [ 4 ] 1
x4 + 56x2 − 32x + 713 700672 0 D(4) [2,2,4] 4 1 [2,4] [2,4] [2,4] 2
x4 + 3x2 − 30x + 66 723600 0 D(4) [ 4,8 ] 24 2 [ 2 ] [ 2 ] [ 2 ] 1

x4 − 2x3 + 29x2 − 28x + 417 781456 0 E(4) [ 4,8 ] 2 1 [2,8] [2,8] [2,8] 2
x4 + 10x2 − 28x + 18 815360 0 D(4) [ 4,8 ] 4 1 [2,4] [ 4 ] [ 4 ] 1
x4 + 12x2 − 40x + 81 825600 0 D(4) [ 4,8 ] 1 1 [ 8 ] [ 8 ] [ 8 ] 1

x6+ 2x5−4x4−16x3+6x2+44x+308 -6832605533873152 0 S(6) [ 2,2 ] 8 2 [ 2 ] [ 2 ] [ 2 ] 1
x6 − 2x4 + 10x2 + 12x + 260 -3797563908766976 0 S(6) [ 2,2 ] 8 2 [ 2 ] [ 2 ] [ 2 ] 1

x6 + 2x5 + 4x4 − 2x2 − 4x + 260 -382132112360448 0 S(6) [ 4 ] 48 2 [ 4 ] [ 4 ] [ 4 ] 1
x6 − 26x4 − 16x3 + 90x2 − 52x + 68 -212547578875136 4 S(6) [ 2 ] 128 2 [ ] [ ] [2,2] 2

x6 − 7x4 + 14x2 − 7 1075648 6 C(6) [ ] 128 1 [ ] [ ] [ 2 ] 1
x8 + 4x7 −8x6 − 42x5 + 11x4

+130x3 +15x2−106x+11 8090338299904 8 [A(4)2]2 [ ] 512 2 [ ] [ ] [2,2] 2
x8−2x7−27x6+62x5+185x4

−520x3−40x2+832x−496 9082363580416 8 E(8) [ ] 512 2 [ ] [ ] [ 2 ] 2
x8−4x7−20x6+30x5+105x4

−30x3−168x2−78x−3 9299377062144 8 [A(4)2]2 [ ] 2048 2 [ ] [ ] [ 2 ] 1
x8+2x7−22x6−8x5+159x4

−160x3−110x2+186x−47 9451049953536 8 [A(4)2]2 [ ] 2048 2 [ ] [ ] [2,2] 2

1
2
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