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Computation of 2-groups of narrow logarithmic divisor classes of number fields

We present an algorithm for computing the 2-group Cℓ res F of narrow logarithmic divisor classes of degree 0 for number fields F . As an application, we compute in some cases the 2-rank of the wild kernel WK2(F ) and the 2-rank of its subgroup

Résumé. Nous présentons un algorithme de calcul du 2-groupe des classes logarithmiques de degré nul au sens restreint Cℓ res F pour tout corps de nombres F . Nous en déduisons sous certaines hypothèses les 2-rangs du noyau sauvage WK2(F ) ainsi que du sous-groupe K ∞ 2 (F ) := ∩ n≥1 K n 2 (F ) des éléments de hauteur infinie dans K2(F ).

Introduction

In [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres[END_REF] J.-F. Jaulent pointed out that the wild kernel WK 2 (F ) of a number field F can also be studied via logarithmic class groups, the arithmetic of which he therefore developed in [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF]. More precisely, if F contains a primitive 2ℓ-th root of unity, the ℓ-rank of WK 2 (F ) coincides with the ℓ-rank of the logarithmic class group Cℓ F . So an algorithm for computing Cℓ F for Galois extensions F was developed first in [START_REF] Diaz Y Diaz | Approche algorithmique du groupe des classes logarithmiques[END_REF] and later generalized and improved for arbitrary number field in [START_REF] Diaz Y Diaz | A new algorithm for the computation of logarithmic class groups of number fields[END_REF].

In case the prime ℓ is odd and the field F does not contain a primitive ℓth root of unity one considers the cyclotomic extension F ′ := F (ζ ℓ ), uses the isomorphism

µ ℓ ⊗ Cℓ F ′ ≃ WK 2 (F ′ )/WK 2 (F ′ ) ℓ ,
and gets back to F via the so-called transfer (see [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques[END_REF] and [START_REF] Soriano-Gafiuk | Sur le noyau hilbertien d'un corps de nombres[END_REF]). The algorithmic aspect of this is treated in [START_REF] Pauli | The discrete logarithm in logarithmic ℓ-class groups ands its applications in K-Theory[END_REF].

In case ℓ = 2, whenever the condition ζ 2ℓ ∈ F is not fulfilled, the relationship between logarithmic classes and exotic symbols is more intricate. For instance, when the number field F has a real embedding, F. Soriano-Gafiuk observed in [START_REF] Soriano | Classes logarithmiques au sens restreint[END_REF] that one may then define a narrow version of the logarithmic class group by analogy with the classical ideal class groups; and she used this in [START_REF] Soriano-Gafiuk | Sur le noyau hilbertien d'un corps de nombres[END_REF] for approximating the wild kernel more closely. But, unexpectedly, the 2-rank of this restricted logarithmic class group Cℓ res F sometimes differs from the 2-rank of the group WK 2 (F ). Moreover, in this case the wild kernel WK 2 (F ) may differ from its subgroup K ∞ 2 (F ) := ∩ n≥1 K n 2 (F ) of infinite height elements in K 2 (F ). This was observed by J. Tate and then made more explicit by K. Hutchinson (cf [START_REF] Hutchinson | The 2-Sylow subgroup of the wild kernel of exceptional number fields[END_REF][START_REF] Hutchinson | On tame and wild kernels of special number fields[END_REF]).

That last difficulty was finally solved in [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF],where the authors constructed a positive class group ad hoc Cℓ pos F which has the same 2-rank as the wild kernel WK 2 (F ). Nevertheless, in case the set PE F of dyadic exceptional primes of the number field F is empty, that group Cℓ pos F appears as a factor of the full narrow logarithmic class group Cℓ res F (without any assumption on the degree), so one may still use narrow logarithmic classes in order to compute the 2-rank of the wild kernel.

In the present paper we use the results from [START_REF] Diaz Y Diaz | A new algorithm for the computation of logarithmic class groups of number fields[END_REF] on (ordinary) logarithmic class groups and develop an algorithm for computing the narrow groups Cℓ res F in arbitrary number fields F . As a consequence, this algorithm calculates the 2rank of the wild kernel WK 2 (F ) whenever the field F has no dyadic exceptional places.

The computation of the 2-rank of WK 2 (F ) in the remaining case (PE F = ∅) will be solved in a forthcoming article where we compute the finite positive classgroup Cℓ pos F and its subgroup Cℓ pos F of positive classes of degree 0.

2 The group of narrow logarithmic classes Cℓ res F In this preliminary section we recall the definition and the main properties of the arithmetic of restricted (or narrow) logarithmic classes. We refer to [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF] and [START_REF] Soriano-Gafiuk | Sur le noyau hilbertien d'un corps de nombres[END_REF] for a more detailed account.

Throughout this paper the prime number ℓ equals 2 and F is a number field of degree n = r + 2c with r real places, c complex places and d dyadic places.

According to [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres[END_REF], for every finite place p of F there exists a 2-adic p-valuation ṽp which is related to the wild p-symbol in case the cyclotomic Z 2 -extension of F p contains i. The degree deg F p of the place p is a 2-adic integer such that the image of [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF]), where Log denotes the usual 2-adic logarithm and | | p is the 2-adic absolute value at the place p.

R F := Z 2 ⊗ Z F × under the map Log | | p is the Z 2 -module deg F p Z 2 (see
The construction of the 2-adic logarithmic valuations ṽp yields:

∀α ∈ R F := Z 2 ⊗ Z F × : p∈P l 0 F ṽp (α) deg F p = 0 , (1) 
where P l 0 F is the set of finite places of the number field F . Setting 

deg F ( div F (α)) = 0 . (2) 
We then define the subgroup of logarithmic divisors of degree 0 by:

Dℓ F := a = p∈P l 0 F a p p ∈ Dℓ F | deg F a := p∈P l 0 F a p deg F p = 0 ;
and the group of principal logarithmic divisors as the image of R F by div F :

Pℓ F := div F (α) | α ∈ R F .
Because of (2), Pℓ F is a subgroup of Dℓ F . And by the so-called extended Gross conjecture the factor group

Cℓ F := Dℓ F / Pℓ F
is a finite group, the 2-group of logarithmic divisor classes (of degree 0) of the field F introduced in [START_REF] Jaulent | Classes logarithmiques des corps de nombres[END_REF]. Now let PR F := {p 1 , . . . , p r } be the (non empty) set of real places of the field F and F + be the subgroup of all totally positive elements in F × , i.e. the kernel of the sign map sign ∞ F : F × → {±1} r which maps x ∈ F onto the vector of the signs of the real conjugates of x. For

Pℓ + F := { div F (α) | α ∈ R + F := Z 2 ⊗ Z F + } the factor group Cℓ res F := Dℓ F / Pℓ + F
is the 2-group of narrow (or restricted) logarithmic divisor classes (of degree 0) introduced in [START_REF] Soriano | Classes logarithmiques au sens restreint[END_REF]; and it is also finite under the extended Gross conjecture.

In order to make it more suitable for actual computations, we may define it in a slighty different way by introducing real signed divisors of degree 0: Definition 1. With the notations above, the 2-group of real signed logarithmic divisors (of degree 0) is the direct sum:

Dℓ res F := Dℓ F ⊕ {±1} r ;
and the subgroup of principal real signed logarithmic divisors is the image:

Pℓ res F := {( div F (α), sign ∞ F (α)) | α ∈ R F } of R F := Z 2 ⊗ Z F × under the ( div F , sign ∞ F ) map.
The factor group:

Cℓ res F := Dℓ res F / Pℓ res F
is the 2-group of narrow logarithmic divisor classes (of degree 0).

Because of the weak approximation theorem, every class in Cℓ res F can be represented by a pair (a, 1) where the vector 1 has all entries 1. So the canonical map a → (a, 1) induces a morphism from Dℓ F onto Cℓ res F , the kernel of which is Pℓ + F . We conclude as expected:

Cℓ res F = Dℓ res F / Pℓ res F ≃ Dℓ F / Pℓ + F .
We are now in a situation to present an algorithm for computing narrow logarithmic classes. It uses our previous results of [START_REF] Diaz Y Diaz | A new algorithm for the computation of logarithmic class groups of number fields[END_REF] on (ordinary) logarithmic classes and mimics the classical feature concerning narrow and ordinary ideal classes. We note that this algorithm is a bit more intricate in the logarithmic context since the logarithmic units are not algebraic numbers and are therefore not exactely known from a numerical point of view.

F

We assume in this section that the number field F has at least one real place and that the logarithmic 2-class group Cℓ F is isomorphic to the sum

Cℓ F ≃ ν j=1 Z/2 nj Z subject to 1 ≤ n 1 ≤ ... ≤ n ν . Let a j (1 ≤ j ≤ ν)
be fixed representatives of the ν generating divisor classes (of degree 0). We let (ǫ i ) i=1,...,r denote the canonical basis of the multiplicative F 2 -space {±1} r .

Thus any real signed divisor (a, ǫ) in Dℓ res F can be uniquely written:

(a, ǫ) =   ν j=1 a j a j + div F (α), r i=1 ǫ bi i sign ∞ F (α)   with suitable integers a j ∈ Z, b i ∈ {0, 1} and α ∈ R F .
Then the (a j , 1) j=1,...,ν together with the (0, ǫ i ) i=1,...,r are a finite set of generators of the narrow class group Cℓ res F . And we just need to detect the relations among those.

From the description of the logarithmic class group Cℓ F above we get:

2 nj a j = div F (α j ),
with α j ∈ R F for j = 1, . . . , ν. So we can define coefficients c ν+i,j in {0, 1} by: sign ∞ F (α j ) = ((-1) cν+1,j , . . . , (-1) cν+r,j )

Consequently, a first set of relations is given by the columns of the following matrix A ∈ Z (ν+r)×ν 2

: A =                 2 n1 0 • • • 0 0 0 2 n2 • • • 0 0 .. . • • • . . .. . • • • . . 0 0 • • • 2 nν-1 0 0 0 • • • 0 2 nν ----------- c i,j                
. Now, the ν elements α j are only given up to logarithmic units. Hence, we must additionally consider the sign-function on the 2-group E F of logarithmic units of F (see [START_REF] Jaulent | Sur le noyau sauvage des corps de nombres[END_REF]). More precisely, in case

E F = {±1}× < ε1 , ..., εr+c > , (3) 
we define exponents b i,j via

sign ∞ F (ε j ) = r i=1 ǫ bi,j i (4) 
and we have, of course:

sign ∞ F (-1) = r i=1 ǫ i .
From a computational point of view things are a bit more complicated. We just know that

E F = {x ∈ R F | ∀p : ṽp (x) = 0} (5)
is a subgroup of the 2-group of 2-units E ′ F . If we assume that there are exactly d places p 1 , ..., p d containing 2 in F , we have, say,

E ′ F = {±1} × ε 1 , ..., ε r+c+d-1 .
In the same way that in [START_REF] Diaz Y Diaz | A new algorithm for the computation of logarithmic class groups of number fields[END_REF], for the calculation of E F we fix a precision e for our 2-adic approximations by requiring for elements

ε of E ′ F the relation ṽpi (ε) ≡ 0 mod 2 e (1 ≤ i ≤ d) .
We obtain a system of generators of E F by computing the nullspace of the matrix

M =   | 2 e • • • 0 ṽpi (ε j ) | • • • • • | 0 • • • 2 e  
with r + c + 2d -1 columns and d rows. We assume that the nullspace is generated by the columns of the matrix

M ′ =           C --- D          
where 

ε ni i ∈ E F R 2 e
F so that we can choose

ε := r+c+d-1 i=1 ε ni i
as an approximation for a logarithmic unit. This procedure yields k ≥ r + c logarithmic units. Of course, by the generalized Gross conjecture we would have exactly r + c such units.

If the integer k which we get in our calculations is not much larger than r + c then we will proceed with the k generating elements of E F obtained. Otherwise, we reduce the number of generators by computing a basis of the submodule of Z r+c+d-1 which is the span of the columns of C. Hence, from now on we may assume that we have determined exactly r + c generators ε1 , ..., εr+c of E F .

To conclude, with the notations of (4) the columns of the following matrix R ∈ Z (ν+r)×(ν+2r+c+1) 2 generate all relations for the (a j , 1) and the (0, ǫ j ):

R =             2 n1 | 0 • • • 0 | 0 • • • 0 0 . . . | . . . . . . | . . . . . . . . . 2 nν | 0 • • • 0 | 0 • • • 0 0 -------| ------| -------- | 2 | b 1,1 • • • b 1,r+c 1 
c i,j | . . . | . . . . . . . . . | 2 | b ν,1 • • • b ν,r+c 1            
4 Applications in K-Theory

We adopt the notations and definitions in this section from [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF]. In particular i denotes a primitive fourth root of unity; and we say that the number field F is exceptional when i is not contained in the cyclotomic Z 2 -extension F c of F , i.e. whenever the cyclotomic extension F c [i]/F is not procyclic.

We say that a non-complex place p of a number field F is signed whenever the local field F p does not contain the fourth root of unity i. These are the places which do not decompose in the extension F [i]/F . For such a place p, there exists a non trivial sign-map sign p : F × p → {±1}, given by the Artin reciprocity map F × p → Gal(F p [i]/F p ) of class field theory. We say that a non-complex place p of F is logarithmically signed if and only if one has i ∈ F c p . These are the places which do not decompose in F c [i]/F c . So the finite set PLS F of logarithmic signed places of the field F only contains:

(i) the subset PR F of infinite real places and (ii) the subset PE F of exceptional dyadic places, i.e. the set of logarithmic signed places above the prime 2.

We say that a non-complex place p of F is logarithmically primitive if and only if p does not decompose in the first step E/F of the cyclotomic Z 2 -extension F c /F . Finally we say that an exceptional number field F is primitive whenever there exists an exceptional dyadic place which is logarithmically primitive.

Naturally, the task arises to determine logarithmically signed places, i.e. those non complex places of F for which i is not contained in F c p :

Proposition 2. Let E p be the first quadratic extension of F p in the tower of field extension from F p to F c p . Then i ∈ F c p holds precisely for i ∈ E p . Proof. Since F c p /F p is a Z 2 -extension, it contains exactly one quadratic extension E p of F p . So we immediately obtain:

i ∈ F c p ⇔ F p (i) ⊆ E p ⇔ i ∈ E p . Remark. The extension E p is F p (α k )
where k is the smallest integer such that α k does not belong to F p with α 0 = 0 and

α k+1 = √ 2 + α k .
We assume in the following that the number field F has no exceptional dyadic place. Let us introduce the group Cℓ res Since, according to [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF], this later gives the 2-rank of the wild kernel WK 2 (F ). we can extend the results of K. Hutchinson [START_REF] Hutchinson | The 2-Sylow subgroup of the wild kernel of exceptional number fields[END_REF][START_REF] Hutchinson | On tame and wild kernels of special number fields[END_REF] as follows: Theorem 3. Let F be a number field which has no exceptional dyadic places.

(i) If F is not exceptional (i.e. in case i ∈ F c ) the wild kernel WK 2 (F ) coincide with the subgroup K ∞ 2 (F ) = ∩ n≥1 K n 2 (F ) of infinite height elements in K 2 (F ); the group Cℓ res F of narrow logarithmic classes coincide with the group Cℓ F of (ordinary) logarithmic classes; and one has immediately:

rk 2 WK 2 (F ) = rk 2 K ∞ 2 (F ) = rk 2 Cℓ res F = rk 2 Cℓ F (ii) If F is exceptional ( i.e. in case i / ∈ F c ) the subgroup K ∞ 2 ( 
F ) has index 2 in the wild kernel WK 2 (F ) and one still has:

rk 2 WK 2 (F ) = rk 2 Cℓ res F ≥ 1 (ii,a) In case WK 2 (F ) and K ∞ 2 (F ) have the same 2-rank, this gives: rk 2 K ∞ 2 (F ) = rk 2 Cℓ res F ≥ 1. (ii,b) And in case K ∞ 2 (F ) is a direct summand in WK 2 (F ), one has: rk 2 K ∞ 2 (F ) = rk 2 Cℓ res F -1. Proof.
In the non exceptional case, the number field F is not locally exceptional, i.e. has no logarithmic signed places: PE F = PR F = ∅. In particular, narrow logarithmic classes coincide with ordinariry logarithmic classes and the result follows from [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF].

In the exceptional case, the number field F may have real places, so the narrow logarithmic class group Cℓ res F may differ from the ordinary logarithmic class group. Moreover, because the assumption P E F = ∅ and accordingly to Hutchinson [START_REF] Hutchinson | The 2-Sylow subgroup of the wild kernel of exceptional number fields[END_REF][START_REF] Hutchinson | On tame and wild kernels of special number fields[END_REF], the subgroup K ∞ 2 (F ) has index 2 in the wild kernel WK 2 (F ).

Remark. It remains to determine whether a number field F is not exceptional, i.e. whether the cyclotomic Z 2 extension F c contains the fourth root of unity i.

Of course if i ∈ F c then i is contained in the quadratic subfield E/F in F c . Now the finite subfields of Q c are the real cyclic fields Q (s) = Q[ζ 2 s+2 + ζ -1 2 s+2
] and the finite extensions of F c are of the form F Q (s) . So we only need to check whether i is contained in

F [ζ 2 s+2 + ζ -1 2 s+2
] where s is minimal with

ζ 2 s+2 + ζ -1 2 s+2 / ∈ F .

Examples

The methods described here are implemented in the computer algebra system Magma [START_REF] Cannon | The computer algebra system Magma[END_REF]. Many of the fields used in the examples were results of queries to the QaoS number field database [13, section 6]. The wild kernel W K 2 (F ) is contained in the tame kernel K 2 (O F ). Let µ(F ) be the order of the torsion subgroup of F × and for a prime p of F over p denote by µ 1 (F p ) the p-Sylow subgroup of the torsion subgroup of F × p . By coupling Moore's exact sequence and the localization sequence [5, section 1] one obtains the index formula [1, equation ( 6)]:

(K 2 (O F ) : W K 2 (F )) = 2 r |µ(F )| p |µ 1 (F p )|,
where p runs through all finite places and r is the number of real places of F .

We apply this in the determination of the structure of WK 2 (F ) in the cases where the structure of K 2 (O F ) is known.

Abelian groups are given as a list of the orders of their cyclic factors; Cℓ res F denotes the group of narrow logarithmic classes; rk 2 denotes the 2-rank of the wild kernel WK 2 ;

WK 2 denotes the wild kernel in K 2 (F ); K ∞ 2 denotes the subgroup of infinite height elements in K 2 (F ).

Imaginary quadratic fields

K. Belabas and H. Gangl have developed an algorithm for the computation of the tame kernel K 2 O F [START_REF] Belabas | Generators and Relations for K 2 O F[END_REF]. The following table contains the structure of K 2 O F as computed by Belabas and Gangl and the 2-rank of the wild kernel WK 2 (F ) calculated with our methods. We also give the structure of the wild kernel if it can be deduced from the structure of K 2 O F and of the rank of the wild kernel computed here or in [START_REF] Pauli | The discrete logarithm in logarithmic ℓ-class groups ands its applications in K-Theory[END_REF]. The structure of the tame kernel K 2 (O F ) of all fields except for the starred entries has been proven by Belabas and Gangl.

The table gives the structure of the wild kernel of all imaginary quadratic fields F with no exceptional places and discriminant |d F | < 1000.

d F Cℓ F K 2 (O F ) [:] Cℓ ′ F Cℓ F Cℓ res F rk 2 WK 2 K ∞ 2 -68 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2] -132 [2,2] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -136 [ 4 ] [ 4 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2] -164 [ 8 ] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ] -228 [2,2] [ 12] 6 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -260 [2,4] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ] -264 [2,4] [ 6 ] 3 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ] -292 [ 4 ] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -328 [ 4 ] [ 2 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [2] 
[ ] -356 [START_REF] Jaulent | 2-groupe des classes positives d'un corps de nombres et noyau sauvage de la K-théorie[END_REF] [ 4 ]

2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -388 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2] -420 [2,2,2] [2,4] 2 [2,2] [2,2] [2,2] 2 [2,2] [2] -452 [ 8 ] [ 8 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [4] [2] -456 [2,4] [ 2 ] 1 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ] -516 [2,6] [ 12 ] 6 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -520 [2,2] [ 2 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -548 [ 8 ] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ] -580 [2,4] [ 4 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ] -584 [ 16 ] [ 2 ] 1 [ 8 ] [ 8 ] [ 8 ] 1 [2] [ ] -644 [2,8] [2,16] 2 [2,4] [2,4] [2,4] 2 [2,8] [?] -708 [2,2] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -712 [ 8 ] [ 2 ] 1 [ 4 ] [ 4 ] [ 4 ] 1 [2] [ ] -740 [2,8] [ 4 ] 2 [ 8 ] [ 8 ] [ 8 ] 1 [2] [ ] -772 [ 4 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2] -776 [ 20 ] [ 4 ] 1 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2] -804 [2,6] [ 36 ] 6 [ 2 ] [ 2 ] [ 2 ] 1 [6] [3] -836 [2,10] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ] -840 [2,2,2] [2,6] 3 [2,2] [2,2] [2,2] 2 [2,2] [2] -868 [2,4] [2,4] 2 [2,2] [2,2] [2,2] 2 [2,2] [2] -904 [ 8 ] [4] 1 [ 4 ] [ 4 ] [ 4 ] 2 [4] [2] -964 [ 12 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [4] [2] -996 [2,6] [ 4 ] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2] [ ]

Real Quadratic Fields

The following table contains all real quadratic fields F with no exceptional places and discriminant |d F | < 1000. All these quadratic fields are exceptional.

d F Cℓ F [:] |P | |PE| Cℓ ′ F Cℓ F Cℓ res F rk 2 28 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 56 [ ] 4 1 0 [ ] [ ] [ 2 ] 1 60 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1 92 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 120 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1 124 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 156 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1 184 [ ] 4 1 0 [ ] [ ] [ 2 ] 1 188 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 220 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1 248 [ ] 4 1 0 [ ] [ ] [ 2 ] 1 284 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 312 [ 2 ] 12 1 0 [ ] [ ] [ 2 ] 1 316 [ 3 ] 8 1 0 [ ] [ ] [ 2 ] 1 348 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1 376 [ ] 4 1 0 [ ] [ ] [ 2 ] 1 380 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1 412 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 440 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1 444 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1 476 [ 2 ] 8 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2 604 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 632 [ ] 4 1 0 [ ] [ ] [ 2 ] 1 636 [ 2 ] 24 1 0 [ ] [ ] [ 2 ] 1 668 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 696 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1 732 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1 760 [ 2 ] 4 1 0 [ ] [ ] [ 2 ] 1 764 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 796 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 824 [ ] 4 1 0 [ ] [ ] [ 2 ] 1 860 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1 888 [ 2 ] 12 1 0 [ ] [ ] [ 2 ] 1 892 [ 3 ] 8 1 0 [ ] [ ] [ 2 ] 1 924 [ 2, 2 ] 24 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2 952 [ 2 ] 4 1 0 [ 2 ] [ 2 ] [ 2, 2 ] 2 956 [ ] 8 1 0 [ ] [ ] [ 2 ] 1 988 [ 2 ] 8 1 0 [ ] [ ] [ 2 ] 1 10 
The following 

div F (α) := p∈P l 0 FFZ 2

 02 ṽp (α) pwith values in Dℓ F := p∈P l 0 p, we obtain by Z 2 -linearity:

  C has r + c + d -1 and D exactly d rows. It suffices to consider C. Each column (n 1 , ..., n r+c+d-1 ) tr of the matrix C corresponds to a unit r+c+d-1 i=1

F 2 2

 22 of narrow logarithmic classes without any assumption of degree:Cℓ res F = Dℓ res F / Pℓ res F .Via the degree map, we obtain the direct decomposition:Cℓ res F ≃ Z 2 ⊕ Cℓres F , where the torsion subgroup Cℓ res F was yet computed in the previous section. So the quotient of exponent 2 Cℓ res F := Cℓ res F /(Cℓ res F ) 2 contains both as hyperplanes the two quotients 2 Cℓ res F relative to Cℓ res F and Cℓ pos F relative to the positive class group Cℓ pos F introduced in [12].

  [:] denotes the index (K 2 (O F ) : WK 2 (F )); d F denotes the discriminant for a number field F ; Cℓ F denotes the class group, P the set of dyadic places; Cℓ ′ F denotes the 2-part of Cl/ P ; Cℓ F denotes the logarithmic classgroup;

  table contains extensions with class number 32 up to discriminant 222780 and extensions with class number 64 up tp discriminant 805596.The following table contains quadratic and biquadratic number fields. The biquadratic fields are the compositum of the the first quadratic extensions and one of the other quadratic extensions. All fields are exceptional.

				f					d F r	Gal	Cℓ F	[:] |P | Cℓ ′ F	Cℓ F Cℓ res F	rk 2
	5.4 Examples of higher degrees	d F 112924 [ 2,16 ] Cℓ F x 4 + x 2 -6x + 1 [:] |P | |PE| 8 1 0 x 4 -2x 3 -2x 2 + 18x + 21 x 4 + 25x 2 + 400 120796 [ 2,16 ] 8 1 0 136120 [ 2,16 ] 4 1 0 153660 [2,2,8] 8 1 0 158844 [2,2,8] 8 1 0 163576 [ 2,16 ] 4 1 0 170872 [ 2,16 ] 4 1 0 176316 [ 2,16 ] 24 1 0 176440 [ 2,16 ] 4 1 0 196540 [ 2,16 ] 8 1 0 202524 [ 2,16 ] 24 1 0 207480 [2,2,2,4] 4 1 0 213180 [2,2,2,4] 24 1 0 221276 [ 2,16 ] 8 1 0 222780 [2,2,8] 8 1 0 374136 [2,2,16] 12 1 0 382204 [ 2,32 ] 8 1 0 449436 [2,2,16] 8 1 0 484764 [2,2,16] 24 1 0 506940 [2,2,2,8] 24 1 0 x 4 + 56x 2 -32x + 713 x 4 + 3x 2 -30x + 66 x 4 -2x 3 + 29x 2 -28x + 417 x 4 + 10x 2 -28x + 18 x 4 + 12x 2 -40x + 81 x 6 + 2x 5 -4x 4 -16x 3 +6x 2 +44x+308 -6832605533873152 0 Cℓ ′ F Cℓ F Cℓ res F [ 16 ] [ 16 ] [ 2,16 ] -3312 2 3600 0 608400 0 [ 16 ] [ 16 ] [ 2,16 ] [ 16 ] [ 16 ] [ 2,16 ] [ 2,8 ] [ 2,8 ] [2,2,8] [ 2,8 ] [ 2,8 ] [2,2,8] [ 2,8 ] [ 2,8 ] [2,2,8] [ 16 ] [ 16 ] [ 2,16 ] [ 16 ] [ 16 ] [ 2,16 ] [ 16 ] [ 16 ] [ 2,16 ] [ 16 ] [ 16 ] [ 2,16 ] [ 16 ] [ 16 ] [ 2,16 ] [2,2,4] [2,2,4] [2,2,2,4] [2,2,4] [2,2,4] [2,2,2,4] [ 16 ] [ 16 ] [ 2,16 ] [ 2,8 ] [ 2,8 ] [2,2,8] [ 2,16 ] [ 2,16 ] [2,2,16] [ 32 ] [ 32 ] [ 2,32 ] [ 2,16 ] [ 2,16 ] [2,2,16] [ 2,16 ] [ 2,16 ] [2,2,16] [2,2,8] [2,2,8] [2,2,2,8] 700672 0 723600 0 781456 0 815360 0 825600 0 -3797563908766976 0 x 6 -2x 4 + 10x 2 + 12x + 260 -382132112360448 0 x 6 + 2x 5 + 4x 4 -2x 2 -4x + 260 -212547578875136 4 x 6 -26x 4 -16x 3 + 90x 2 -52x + 68 1075648 6 x 6 -7x 4 + 14x 2 -7 x 8 + 4x 7 -8x 6 -42x 5 + 11x 4 8090338299904 8 [A(4) 2 ]2 rk 2 D(4) E(4) E(4) 2 2 2 3 3 3 2 2 2 2 2 4 4 2 3 3 2 3 3 4 D(4) D(4) E(4) D(4) D(4) S(6) S(6) S(6) S(6) C(6) +130x 3 +15x 2 -106x+11 x 8 -2x 7 -27x 6 +62x 5 +185x 4 9082363580416 8 E(8) -520x 3 -40x 2 +832x-496 x 8 -4x 7 -20x 6 +30x 5 +105x 4 9299377062144 8 [A(4) 2 ]2 -30x 3 -168x 2 -78x-3 x 8 +2x 7 -22x 6 -8x 5 +159x 4 -160x 3 -110x 2 +186x-47 9451049953536 8 [A(4) 2 ]2	[ ] [ 2 ] [ 4,8 ] [2,2,4] [ 4,8 ] [ 4,8 ] [ 4,8 ] [ 4,8 ] [ 2,2 ] [ 2,2 ] [ 4 ] [ 2 ] [ ] [ ] [ ] [ ] [ ]	8 6 72 4 24 2 4 1 8 8 48 128 128 512 512 2048 2 1 1 [ 2 ] [ 2 ] [ 2 ] [ ] [ ] [ 2 ] 2 [ 4 ] [ 4 ] [ 4 ] 1 [2,4] [2,4] [2,4] 2 [ 2 ] [ 2 ] [ 2 ] 1 [2,8] [2,8] [2,8] 1 [2,4] [ 4 ] [ 4 ] 1 [ 8 ] [ 8 ] [ 8 ] 2 [ 2 ] [ 2 ] [ 2 ] 2 [ 2 ] [ 2 ] [ 2 ] 2 [ 4 ] [ 4 ] [ 4 ] 2 [ ] [ ] [2,2] 1 [ ] [ ] [ 2 ] 2 [ ] [ ] [2,2] 2 [ ] [ ] [ 2 ] [ ] [ ] [ 2 ] 2048 2 [ ] [ ] [2,2]	1 1 1 2 1 2 1 1 1 1 1 2 1 2 2 1 2
		805596 [2,2,16] 24	1	0	[ 2,16 ] [ 2,16 ] [2,2,16]	3
	5.3 Biquadratic Extensions			
	F	d F r	Cℓ F	[:] |P |	Cℓ ′ F	Cℓ F	Cℓ res F	rk 2
	K	9660 2	[2,2,2]	8	1	[ 2,2 ] [ 2,2 ]	[ 2,2,2 ]	3
	L 1	9340 2	[ 10 ]	8	1	[ ]	[ ]	[ 2 ]	1
	KL 1	4 [2,2,2,10] 128 2 [2,2,2] [2,2,2] [2,2,2,2,2]	5
	L 2	13020 2	[2,2,2]	24	1	[ 2,2 ] [ 2,2 ]	[ 2,2,2 ]	3
	KL 2	4	[2,2,4]	384 2	[ 2,2 ] [2,2,2] [2,2,2,2,2,2] 6
	L 3	15708 2	[2,2,2]	8	1	[ 2,2 ] [ 2,2 ]	[ 2,2,2 ]	3
	KL 3	4 [2,2,4,28] 128 2 [ 2,2,4] [2,2,4] [2,2,2,2,2,4] 6