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Abstract. Reasoning on Constraint Handling Rules (CHR) programs
and their executional behaviour is often ad-hoc and outside of a formal
system. This is a pity, because CHR subsumes a wide range of important
automated reasoning services. Mapping CHR to Transaction Logic (T R)
combines CHR rule specification, CHR rule application, and reasoning
on CHR programs and CHR derivations inside one formal system which
is executable. This new T R semantics obviates the need for disjoint
declarative and operational semantics.

1 Introduction

Constraint Handling Rules (CHR) [6] is a concurrent, committed-choice, rule-
based language which was originally created as a declarative logic constraint lan-
guage to implement monotonic reasoning services. Its main features are guarded
rules which transform multi-sets of constraints (atomic formulas) into simpler
ones until they are solved.

Over the last decade, CHR has become available for most Prolog systems,
Java, Haskell, and Curry and matured into a general-purpose programming lan-
guage with many applications [12]: Nonmonotonic reasoning services can be
implemented in CHR, e.g. the fluent executor (FLUX) [13] which provides gen-
eral reasoning facilities about actions and sensor information under incomplete
information. Also, classic algorithms like the union-find, which rely on inher-
ently nonmonotonic updates, have been implemented with optimal complexity
in CHR [11].

The operational semantics of CHR is specified by a state transition system.
Although applicability of a CHR rule is defined within predicate logic, the opera-
tional semantics is not integrated into a logic and is different from the declarative
semantics in predicate logic. Basically the problem is that there is no elegant
predicate logic-based semantics for changing the constraint store. Hence, rea-
soning on CHR programs and their executional behaviour is often ad-hoc and
outside of a formal logic-based system.

We integrate the operational semantics of CHR into Transaction Logic (T R)
[3–5] which extends predicate logic with – among other things – a declarative
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account for state changes in logic programs (cf. [3] for a list of failed attempts
to formalise updates in a logic programming language). Transaction Logic nat-
urally enjoys nonmonotonic behaviour due to the dynamics of a database which
represents a current state [8].

Contributions and overview of the paper. By mapping the core of CHR to T R, we
combine CHR rule specification, CHR rule application, and reasoning on CHR
programs and CHR derivations inside one formal system which is executable.
We show that a CHR rule applies if and only if the T R query of the mapping
of this CHR rule succeeds in T R and extend this result to CHR derivations
by integrating the CHR run-time system. A formal statement then links the
procedural aspect of execution (the operational semantics) with a new model-
theoretic (declarative) reading, thus our semantics covers both operational and
declarative aspects elegantly. An efficient proof system in T R executes CHR
programs and reasons on CHR derivations mechanically.

– We present the aspect of a missing unified semantics for CHR through an
easy example in Section 2 and propose our solution to overcome this missing
aspect in Section 3.

– We explain the most basic instantiation of T R to give a logical account for
range-restricted ground CHR programs in Section 4.

– We map the constraint store to a database, the CHR program to a serial-
Horn T R program that updates this database, and the CHR run-time system
to a generalised-Horn T R program. The details of our CHR-to-T R mapping
in Section 5 are necessary for our sound- and completeness result which is
our main contribution.

– In Section 6 we apply our approach to two examples, showing how to execute
and reason on them in the framework of Transaction Logic. We use the
FLORA-2 system [14] for implementation.

Complete proofs and full CHR and FLORA-2 sources of the examples are
available at http://www.informatik.uni-ulm.de/pm/index.php?id=138.

2 The Problem: Reasoning on Constraint Handling Rules

Example 1. Consider a coin-throw simulation program1, consisting of two CHR
rules r1 and r2.

r1 @ throw⇔ caput r2 @ throw⇔ nautica

Intuitively, as both rules are applicable for the goal throw, the answer constraint
is caput or nautica depending on the rule selection. Clearly, we have the two
possible state transitions (throw) ֌r1

(caput) and (throw) ֌r2
(nautica) for

the goal throw.

1 To avoid misunderstandings with the head of a rule, we replaced the good old “head”
and “tail” with the ancient “caput” and “nautica”.
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What we are missing is one logic-based formal system for mechanical ex-
ecution and reasoning, which should be implemented to also allow automatic
reasoning. Available CHR run-time systems (e.g. the reference implementation
in SICStus Prolog for CHR) come as black boxes and offer no means for reason-
ing. For example, we want to prove the following three properties automatically:

(P1) Throwing a coin can yield caput.
(P2) Throwing a coin cannot yield both caput and nautica.
(P3) Application of r1 cannot yield nautica.

Because the constraint throw is interpreted as a trigger (and not as static
truth) in the coin-throw simulation program, the gap between the predicate
declarative semantics [6] of this general-purpose CHR program – the meaning-
less formula caput ↔ nautica – and its executions is especially large. The
underlying problem is that predicate logic is a static logic, unable to express
the dynamics of deletion and insertion directly. Here, reasoning has to be done
ad-hoc (outside of a logic) along the operational semantics of CHR [1].

The linear logic semantics [2] overcomes this restriction of the classic predi-
cate logic semantics and gives a meaningful declarative semantics also for general-
purpose CHR programs. While the linear logic notion of a resource models the
necessary dynamics, it does not cover all aspects of the operational semantics:
Linear logic has no inherent notion of execution and we cannot reason on the
execution itself but only on the result of an execution. Similar to the classic
declarative semantics, the linear logic semantics links initial and final state with
a logical reading of the program. As CHR derivations are mimicked inside its
proofs, reasoning on derivations is not possible directly.

Summarising, both predicate and linear logic declarative semantics allow rea-
soning on the properties of the program, but lack the possibility to actually ex-
ecute the rules, reason on the execution, and are not readily mechanised. Thus,
reasoning on execution lacks a formal logic-based framework. Most importantly,
specification (as CHR rules), execution (by a CHR run-time system), and rea-
soning are not integrated and reasoning is either done by hand or by special-
purpose tools (e.g. for confluence [1]). The need to integrate the operational
semantics into a logic was recognised by Maher [9]: Besides a “logical” (declar-
ative) semantics, also a data/control-flow analysis is highly desirable, e.g. to
prove termination of a program. Clearly this data/control-flow analysis aspect
is inherently absent in [6, 2] which cover the “logical” (declarative) semantics
only. Maher continues, that “there is possibility that this analysis can be carried
out within a logic framework”[9, p. 870]. We argue that Transaction Logic (T R)
provides this missing aspect in the next section.

3 The Idea: Map CHR to Transaction Logic

We map CHR to Transaction Logic to simulate the operational semantics of
CHR by logic programming with state changes and use executional entailment
– a formal statement in T R – to execute and to reason on CHR derivations. In
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their seminal work on Transaction Logic [3] Bonner and Kifer extend predicate
logic with a declarative account for state changes in logic programming. As the
operational semantics of CHR is formalised by a state transition system, where
a CHR rule application changes the constraints store, we map CHR programs
to serial-Horn T R programs and identify the application of a CHR rule by the
state transition system with a successful query of the T R program. To this end,
we map the constraint store to a database with the elementary database updates
insertion and deletion. A CHR derivation is then the side-effect on the database
when the T R proof system infers the T R query to be true.

Example 1 (Cont.). We show the basic ideas for the coin-throw simulation pro-
gram with a non-deterministic rule selection strategy (and review this example
in Section 6 in detail). We map rule r1 to the serial-Horn T R rule rT R

1

rT R
1 ≡ chr(r1)← throw⊗ throw.del ⊗ caput.ins

To make the T R-predicate chr(r1) true, we have to execute the serial conjunction
on its right hand side: First check that throw is present, then delete it, and
then insert caput. The order in the serial conjunction ⊗ is crucial, as the T R-
predicates throw.del and caput.ins have side-effects on the database2. If we
execute chr(r1) on the (initial) database {throw}, we pass trough the empty
database {}, and arrive at the (final) database {caput}. For P = {rT R

1 }, we
have the following executional entailment statement |=x in T R, which states,
that the successful invocation of program P by chr(r1) can successfully update
the database along the given execution path {throw}, {}, {caput}.

P, {throw}, {}, {caput} |=x chr(r1)

The executional entailment statement has both a procedural (operational)
and a model-theoretic (declarative) semantics in T R. On the one hand, an avail-
able efficient T R inference system for the subclass of (serial-Horn) programs
actually computes the necessary updates of an initial database {throw} when
establishing the truth of chr(r1) and implements the procedural aspect of T R. In-
tegrating the operational semantics of CHR into T R by executional entailment,
we have – on the other hand – a new model-theoretic (declarative) semantics
which captures the possible executions of a CHR program.

We show in Section 5, that a CHR rule r is applicable iff we can establish the
truth of the head of a T R rule rT R and then extend our mapping to cover the
CHR run-time system. The changes caused on the constraint store are mapped
one-to-one to updates of the database as we simulate CHR rule application by
the T R inference system.

We can then prove properties (P1-3) from Section 2 mechanically. Even bet-
ter, the FLORA-2 system allows us to both execute and reason on this example
automatically (cf. Section 6).

2 The symbol ⊗ stands for serial conjunction in T R and not for join of views on
databases.
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4 Preliminaries

We provide necessary background for readers not familiar with CHR and T R.

4.1 Constraint Handling Rules

Constraint Handling Rules (CHR) [6, 12] is a concurrent, committed-choice, rule-
based logic programming language. We distinguish between two different kinds
of constraints: built-in constraints which are solved by a given constraint solver,
and user-defined (CHR) constraints which are defined by the rules in a CHR
program. This distinction allows one to embed and utilise existing constraint
solvers as well as side-effect-free host language statements. As we trust the built-
in black-box constraint solvers, there is no need to modify or inspect them.

A CHR program is a finite set of rules. There are two main kinds of rules:
Simplification rules N @ H ⇔ G | B and propagation rules N @ H ⇒ G | B.
Each rule has a unique identifier N , the head H is a non-empty multi-set con-
junction of CHR constraints, the guard G is a conjunction of built-in constraints,
and the body B is a goal. A goal is a multi-set conjunction of built-in and CHR
constraints. A trivial guard expression “true |” can be omitted.

Since we do not focus on propagation rules in this paper, it suffices to say
that they are equivalent (in the standard semantics) to simplification rules of
the form N @ H ⇔ G | (H ∧B).

The operational semantics of CHR is defined by a state transition system
where states are conjunctions of constraints. To a conjunction of constraints,
rules are applied until a fixpoint is reached. Note that conjunctions in CHR
are considered as multi-sets of atomic constraints. Any of the rules that are
applicable can be applied and rule application cannot be undone since CHR is
a committed-choice language. A simplification rule H ⇔ G | B is applicable in
state (H ′ ∧ C), if the built-in constraints Cb of C imply that H ′ matches the
head H and the guard G is entailed under this matching, cf. (1). The consistent,
predicate logic, built-in constraint theory CT contains Clark’s syntactic equality.

IF H ⇔ G | B is a fresh variant of a rule with variables X̄
AND CT |= (∀)Cb → ∃X̄ (H = H ′ ∧G)
THEN (H ′ ∧ C) ֌ (B ∧G ∧H = H ′ ∧ C)

(1)

If applied, a simplification rule replaces the matched CHR constraints in the
state by the body of the rule. In the operational semantics, rules are applied until
exhaustion, i.e. the CHR run-time system (which actually runs a CHR program
by selecting applicable rules and matching constraints) computes the reflexive
transitive closure ֌∗ of ֌. The CHR run-time system should stop immediately,
when insertion of a built-in constraint makes Cb inconsistent. However, this
termination at failure is not explicitly addressed in the operational semantics.

4.2 Transaction Logic

Transaction Logic (T R) [3–5] is a conservative extension of classical predicate
logic, where predicates can have side-effects on a database, allowing to model
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state changes. Similar to predicate logic, T R features a Horn fragment which
supports logic programming. While T R is an extremely versatile logic to handle
specification, execution, and reasoning on logic programs with updates, it suffices
for this work to use a basic instantiation of T R which restricts side-effects to
the updates insertion and deletion on a relational, ground database.

A database is a set of ground atoms. A sequence of databases D0, . . . , Dn is
called a path π = 〈D0, . . . , Dn〉 which can be split into sub-paths 〈D0, . . . , Di〉 ◦
〈Di, . . . , Dn〉 (for 0 ≤ i ≤ n). Access to the database is restricted by two oracles:
The data oracle Od maps a database D to a set of ground atoms that are
considered to be true along the path 〈D〉. Elementary database updates are
captured by the transition oracle Ot which maps two databases D and D′ to a
set of ground atoms considered to be true along the path 〈D,D′〉.

Definition 1 (Path Structure with Relational Oracles). A path struc-
ture M assigns a classical Herbrand structure (or ⊤ which satisfies everything)
to every path and is subject to the following restrictions for ground atoms p.

M(〈D〉) |= p as p ∈ Od(D) if p ∈ D
M(〈D,D′〉) |= p.ins as p.ins ∈ Ot(D,D′) if D′ = D ∪ {p}
M(〈D,D′〉) |= p.del as p.del ∈ Ot(D,D′) if D′ = D \ {p}

(2)

Quantification of T R formulas and satisfaction of composed T R formulas
are defined analogously to predicate logic: A T R formula with ¬,∧,∨, or ←
as main connective is satisfied along a path π if the appropriate property holds
between its sub-formulas along the same path π. Satisfaction from the basic
properties (2) extends to the case of longer paths by the new serial conjunction
operator: A serial conjunction φ⊗ψ is satisfied along the path π iff φ is satisfied
along π1 and ψ is satisfied along π2 for some split of the path π = π1 ◦ π2. The
modal possibility ♦φ expresses that φ is satisfiable along some path starting
from the current database, formally M(〈D〉) |= ♦φ iff there is a path π starting
at database D with M(π) |= φ.

The formal statement executional entailment links a program, a possible
sequence of databases which captures the side-effects of the program, and the
invocation of the program.

Definition 2 (Executional Entailment). Consider a set of T R formulas P ,
an execution path consisting of a sequence of databases D0, . . . , Dn, and a
T R formula φ. A path structure MP is a model of P iff MP (π) |= φ for every
φ ∈ P and every path π.

P,D0, . . . , Dn |=x φ iff MP (〈D0, . . . , Dn〉) |= φ for every model MP of P

Executional entailment selects one of (possibly several) valid execution paths,
for which φ is true for all models MP of P . A model MP of P is a path structure
that respects the oracles and satisfies every formula of P along every path. The
execution path D0, . . . , Dn records all side-effects when establishing the truth
of φ: “[The] successful program invocation of φ for program P can update the
database along execution path from D0 to D1 . . . to Dn” [3, p. 31].
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Example 2. Consider the T R program P = {r ← p ⊗ p.del}. Invocation of r
deletes p from the database, but only if p was initially present and we have
P, {p, q}, {q} |=x r but P, {q}, {} 6|=x r. Also, deletion of p should be the only
side-effect of the invocation of r, hence P, {p, q}, {} 6|=x r as MP (〈{p, q}, {}〉) |= r
is not correct for all models MP of P . When we delete q under the condition
that r can execute, e.g. P, {p}, {p, q} |=x ♦r ⊗ q.ins, we keep p in the database.

For the class of serial-Horn programs (i.e. sets of Horn rules with only serial
conjunctions in the r.h.s) and serial queries, T R features an executional deduc-
tion inference system [3]. For a serial-Horn program P , an initial database D0,
and an existentially quantified serial query (∃)φ, it infers the sequent P,D0--- ⊢
(∃)φ iff there is an executional entailment of (∃)φ along an execution path start-
ing from D0. Most importantly the system both tries to infer the truth of (∃)φ
and computes the necessary changes to D0 which we record in D0, . . . , Dn. For-
mally, the following fundamental sound- and completeness result links the model-
theoretic executional entailment with the mechanised executional deduction.

Theorem 1 (Bonner and Kifer [3]). P,D0, . . . , Dn |=x (∃)φ iff there is an
executional deduction of (∃)φ with execution path D0, . . . , Dn.

For our serial-Horn program P from Example 2 we have P, {p, q}--- ⊢ r and
the successful inference of the query r computes the execution path {p, q}, {q}
from the initial database {p, q}. Of course, we cannot infer P, {q}--- ⊢ r as
there exists no execution path for the query r starting from {q}. By the def-
inition of executional entailment, an execution either succeeds or all tentative
side-effects are rolled back. Due to this transaction property of T R we cannot
infer P, {p}--- ⊢ r⊗ r and the tentative deletion of p by the first call to r is not
manifested as the second call to r fails.

5 The Details: CHR-to-T R-Mapping

We map CHR states to databases, adapt the data oracle Od, map CHR rules to
serial-Horn T R rules, and specify the CHR run-time system as a generalised-
Horn T R program. We then show our sound- and completeness result that links
CHR derivations with executional entailment statements of T R.

For this paper, we restrict ourselves to range-restricted ground CHR. Range-
restricted CHR rules have no local variables, i.e. every variable in each rule
already occurs in the head of the rule and all CHR states are ground as there
are no variables in the goal.

5.1 Mapping CHR States to Valid Databases

We map each ground, user-defined constraint ci of a CHR state (recall that
a CHR state is a multi-set conjunction) to a T R-predicate u(ci, i) where the
second argument is a unique identifier – we use a natural number. We trail a
new, unique identifier k in a bookkeeping T R-predicate n(k) (assuming that
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u/2 and n/1 are not defined by CT ). Reflecting user-defined constraints as T R-
function symbols allows us to specify the necessary bookkeeping for the insertion
and deletion of user-defined constraints as a serial-Horn program.

Definition 3. A valid database D contains one bookkeeping predicate n(k),
predicates u/2 with unique identifiers that are all smaller than k, and built-
ins bi. The mapping ms is defined from the set of CHR states S (consisting of
user-defined constraints ci and built-ins bi) to the set of valid databases D by

(
∧

0≤i<k

ci ∧
∧

0≤i<l

bi) 7→ {u(ci, i) : 0 ≤ i < k} ∪ {n(k)} ∪ {bi : 0 ≤ i < l}

Two valid databases are equivalent, ∼, if there is a bijective mapping between
their sets of identifiers.

Clearly, ms(c(a)) = {u(c(a), 0), n(1)} and {u(c(a), 5), n(9)} are equivalent.
We update valid databases through the serial-Horn program Pbasic:

udel(U)← u(U,K)⊗ u(U,K).del

uins(U)← n(K)⊗ n(K).del ⊗ n(K + 1).ins ⊗ u(U,K).ins
(3)

Deletion of a ground user-defined constraint is conditional (cf. Example 2) and
insertion requires some bookkeeping.

Property 1 (Conditional Deletion of User-Defined Constraints). Invocation of
udel(c) deletes a copy of the ground, user-defined constraint c from the valid
database D + {u(c, k)}3, and terminates in the valid database D.

Pbasic, D + {u(c, k)}, D |=x (∃) udel(c) with k ∈ N

Property 2 (Insertion of User-Defined Constraints). Invocation of uins(c) inserts
a new copy of the ground, user-defined constraint c into the valid database D+
{n(k)}, and terminates in the valid database D + {n(k + 1), u(c, k)}.

Pbasic, D + {n(k)}, . . . , D + {n(k + 1), u(c, k)} |=x (∃) uins(c) with k ∈ N

5.2 Mapping the Built-In Theory CT to the Data Oracle Od

For range-restricted ground CHR the entailment condition of the state transition
system, defined in (1) can be simplified as there are no local variables. Because
we match the head H with the ground constraints H ′ from the store, the formula
∃X̄(H = H ′ ∧ G) is ground. We extend the relational data oracle Od, defined
in (2), to implement the built-in constraint theory CT .

Definition 4 (Data Oracle as Built-in Solver). For any database D and
ground atomic built-in φ, the data oracle respects CT :
φ ∈ Od(D) if CT |= Db → φ for the conjunction Db of built-in predicates of D.

3 We use “+” to denote disjoint set union.
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5.3 Mapping CHR Rules to Serial-Horn Rules in T R

We map CHR rules to T R rules that update the database through Pbasic as de-
fined in (3). We normalise any range-restricted CHR rule to contain no function
symbols in the head by introducing a new variable for any implicit equality in the
head and adding an explicit (new) equality to the guard, e.g. r @ p(a) ⇔ true
normalises to r @ p(X)⇔ X = a | true.

Definition 5. Consider a normalised range-restricted simplification rule r. The
head H or rule r is the (multiset) conjunction

∧nh

i=0 hi of user-defined con-
straints hi, the guard G is the conjunction

∧ng

i=1 gi of built-in constraints gi

(ng = 0 represents true), and the body B is the (multiset) conjunction
∧nu

i=1 ui

of constraints ui (nu = 0 represents true). The auxiliary t maps user-defined
constraints ui to uins(ui) and built-in constraints to ui.ins. We define the map-
ping mr : r @ H ⇔ G | B 7→ rT R by

rT R ≡ chr(r)←
(

nh
⊗

i=0

udel(hi)
)

⊗
(

ng
⊗

i=1

gi

)

⊗
(

nu
⊗

i=1

t(ui)
)

(4)

Our mapping mr is guided by the intuition that establishing the truth of
chr(r) should have the same effect on the database as rule application by CHR’s
state transition system on the constraint store. The body of chr(r) consists
of parts corresponding to head, guard, and body of the CHR rule r: First, we
succinctly query the database for copies of each head constraint and delete them.
Then we pass the check for the guard (as r is range-restricted, all variables in the
guard are now bound) to our data oracle which respects the built-in constraint
theory CT . Finally, we add the body constraints, labelling each inserted user-
defined constraint with a new identifier.

By the transaction property of T R we can safely intertwine applicability
checks with updates of the database, e.g. if the guard fails, the tentative deletions
of the user-defined head constraints are undone.

Formally, application of r by the state transition system is equivalent to
executional entailment of chr(r) modulo identifier renaming.

Lemma 1. Consider two ground CHR states S and S′, two valid databases D
and D′, a normalised range-restricted CHR simplification rule r, and its map-
ping rT R as defined in (4). For D ∼ ms(S) and D′ ∼ ms(S

′) we have

S ֌r S
′ iff Pbasic + {rT R}, D, . . . ,D′ |=x (∃) chr(r) (5)

5.4 Sound and Complete: CHR Run-Time System in T R

We now extend Lemma 1 from a single rule step of a single CHR rule to a CHR
derivation of a CHR program by integrating the fixpoint computation, i.e. the
operational semantics of CHR, into T R.

Our main result shows that our mapping from CHR to T R is sound- and
complete w.r.t. the operational semantics of CHR. To this end, we express ap-
plicability of a CHR rule in state S by P,D |=x (∃) ♦ chr(R) with D ∼ ms(S)
and use induction on the derivation length for the extension from ֌ to ֌n.
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Theorem 2. [Sound- and Completeness] Consider two ground CHR states S
and S′, two valid databases D and D′, a CHR program P consisting of range-
restricted simplification rules, and its mapping P T R = Pbasic + {rT R : r ∈ P}.
For D ∼ ms(S), D′ ∼ ms(S

′), and an execution path π starting in D and ending
in D′ we have

S ֌∗
P S′ iff P T R, π |=x (∃)

(

n
⊗

i=1

chr(Ri)

)

⊗ [¬♦ chr(R)] with n ∈ N

where [¬♦ chr(R)] restricts satisfaction of ¬♦ chr(R) to paths of length one.

We now sketch how to implement the CHR run-time system as T R program
with hypothetic goals (to express possibility) and negated goals (to check that
no rule is applicable). We capture the fixpoint semantics of CHR as

fixpoint← while applicable do chr(R) od

and implement the imperative while-loop programming construct as a generalised-
Horn program PrunTime in T R.4 We explain its generalised-Horn rules in turn:

fixpoint← chr(R)⊗ fixpoint (6)

applicable← ♦ chr(R) (7)

fixpoint← [¬ applicable] (8)

Rule (6) succeeds if the call chr(R) – which successfully applies a CHR rule R –
succeeds. In this case we call fixpoint (tail-recursively). We need two generalised-
Horn rules to express that no CHR rule is applicable: Rule (7) succeeds if a CHR
rule is applicable and this test leaves the database D untouched and rule (8)
succeeds if no CHR rule is applicable at the current state using negation-as-
failure to compute [¬ applicable].

Bonner and Kifer give an extended (sound- and complete) executional deduc-
tion inference system that integrates the ♦ operator. Negation ¬ is then treated
(outside of the proof system) as negation-as-failure. A slight modification of the
model-theoretic executional statement allows to give a declarative account for
locally stratified generalised-Horn programs. Compared to Definition 2, we no
longer look at all but only at the perfect models of the program. As PrunTime is
stratified we can use this executional entailment statement, |=perf

x (cf. [3]):

Corollary 1. Under the premises of Theorem 2 we have

S ֌∗
P S′ iff P T R + PrunTime, π |=

perf
x (∃) fixpoint

Our declarative T R semantics of the CHR program P is the perfect-model
semantics of the generalised-Horn T R program P T R + PrunTime. Invocation of
fixpoint – on the other hand – computes ֌∗ as side-effect on the database, i.e.
captures the operational semantics of CHR. This brings together the operational
and declarative semantics of CHR in T R.
4 Note that we can add termination at failure by adding “Db consistent” to the loop

condition easily, allowing to reason also on failed derivations.
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6 Examples

We use the FLORA-2 system [14], a sophisticated object-oriented, knowledge
management environment that implements the executional deduction inference
system of T R by offering backtrackable deletion and insertion of facts, to ex-
ecute and reason on CHR. Similar to Prolog, but with handling updates in a
declarative way, serial queries are treated from left to right and one database is
kept at any time. We have P,D0, --- ⊢ (∃)φ iff the query “?- φ” succeeds for
the program P from the initial database D0. In this case, FLORA-2 updates the
database according to the computed executional path as side-effect.

Example 3 (Coin-Throw Simulation Program). We revisit Example 1 in detail.
For the program P T R

coin = Pbasic +{rT R
1 , rT R

2 }, defined in (3) and by (4), and the
initial database ms(throw) = {u(throw, 0), n(1)} we throw a coin by querying
“?- chr(R)”. This query succeeds, returns an answer substitution for R, and
updates the database. In a subsequent query “?- u(S, I)” we query the current
database state for the side S of the coin.

We now prove properties (P1-3) from Section 2 automatically:

(P1) The query “?- chr(R), u(nautica, I)”5 succeeds from D0, i.e. we have a
mechanical proof that a computation (throw) ֌ (nautica) exists. Due to
the post-condition u(nautica, I) the FLORA-2 system backtracks over rule-
application if rule r1 is selected in the first try.

(P2) Throwing a coin cannot yield both caput and nautica is true because the
query “?- chr(R), u(nautica, I), u(caput, J)” fails (from database D0).

(P3) Applying rule r1 cannot yield nautica as “?- chr(r1), u(nautica, I)” fails.

For complex CHR programs this knowledge is much less trivial and very valuable
for understanding. While CHR programs are usually very concise, debugging is
often tedious and automatised reasoning is highly desirable.

Example 4 (Greatest Common Denominator). Euclid’s algorithm to compute
the greatest common denominator (gcd) is probably the first algorithm in history
that is still commonly used. The CHR implementation of the gcd consists of only
two rules, where the built-in theory CT also contains the order between natural
numbers.

r1 @ gcd(0)⇔ true

r2 @ gcd(X1) ∧ gcd(X2)⇔ 0 < X1 ∧X1 ≤ X2 | gcd(X1) ∧ gcd(X2%X1)

The CHR derivation (gcd(24)∧gcd(30)∧gcd(42)) ֌∗ (gcd(6)) computes the gcd
of 24, 30, and 42. The gcd algorithm can be seen as a (very basic) nonmonotonic
reasoning service, as e.g. adding gcd(7) to the goal invalidates the original answer
constraint gcd(6). We assume D0 = ms(gcd(24) ∧ gcd(30) ∧ gcd(42)) as initial
database.

5 The serial conjunction operator ⊗ is written as comma in FLORA-2.
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As FLORA-2 does not implement the possibility operator ♦, we carry out
the next two inferences mechanically – but not automatically. We simulate one
(of several possible) CHR derivations – recall that CHR is a committed-choice
language – by inferring the sequent P T R

gcd + PrunTime, D0--- ⊢ (∃) fixpoint. Then
we inspect the final database Dn of the computed executional path D0, . . . , Dn

which contains u(gcd(6), k) with some identifier k ∈ N. Similarly, we have a
mechanical proof that no gcd(0) constraint is in the final constraint store as we
cannot infer P T R

gcd + PrunTime, D0--- ⊢ (∃) fixpoint⊗u(gcd(0), I). Here the post-
condition u(gcd(0), I) forces us to backtrack over all possible execution paths,
resp. CHR derivations, due to non-deterministic constraint and rule selection.

We can reason automatically on the derivation length: There is no CHR
derivation of the gcd with only 4 CHR rule applications because the FLORA-2
query “?- chr(r2), chr(r2), chr(r1), chr(r1)” fails. Similarly, we prove that the
gcd can be computed with derivation length 5 and that another CHR deriva-
tion with length 8 exists, e.g. (24, 30, 42) ֌r2

(24, 30, 18) ֌r2
(24, 12, 18) ֌r2

(6, 12, 18) ֌r2
(6, 12, 6) ֌r2

(6, 0, 6) ֌r1
(6, 6) ֌r2

(6, 0) ֌r1
(6).

7 Conclusion

We showed how we can execute and reason on execution of CHR programs within
one logical framework by integrating the operational and declarative semantics
of CHR into T R. We introduced rule names into the formalism, mapped CHR
states and CHR rules to databases and T R rules, and mapped the CHR run-
time system for non-deterministic rule application to a recursively defined T R-
predicate. The perfect-model semantics of a generalised-Horn T R program is our
new declarative T R semantics of the CHR. The model-theoretical executional
entailment statement (“one possible execution sequence”) brings together T R
program, execution path, and program invocation. The executional deduction
inference system mechanically infers a T R-query and computes the necessary
updates to the database. We showed execution and automatic reasoning on CHR
using the FLORA-2 system.

By bringing the operational semantics of CHR into T R, we merged opera-
tional and declarative semantics of CHR in one formal system which allows both
execution and reasoning. Our approach is more practical then the one taken for
the available declarative semantics of CHR. Both the declarative classic predi-
cate logic semantics and its recent extension to linear logic are more theoretical.
They cannot execute a CHR program, cannot reason on its execution, and offer
only limited help to mechanise reasoning.

We plan to extend our mapping and to investigate the relationship between
CHR and T R in more detail:

– Lift the restrictions on ground, range-restricted CHR by encoding variables
in the database, introduce propagation rules H ⇒ G | B (which do not
remove H upon application), and avoid trivial non-termination, by encoding
the propagation history in the database.
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– Use full T R to reason on the effect properties [5] of a CHR program starting
from our new declarative T R semantics.

– Another direction is to extend T R with constraints according to the general
CLP-scheme [7] which would then allow constraint solving over a side-effect
full, logic programming host language.

As CHR enables the direct implementation of many important monotonic
and nonmonotonic reasoning services, this work can be seen as very first step
towards a unifying framework to specify, execute, and reason about the semantics
of rule-based programs, knowledge bases, and inference engines as envisioned
in [10].
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A Appendix

This appendix is not part of the official submission and provided for ease of
reviewing. A technical report version of our CHR-to-T R-mapping which includes
the proofs of this appendix is in preparation, a preliminary version is available
online at http://www.informatik.uni-ulm.de/pm/index.php?id=138.

In Subsection A.1 we provide the necessary preliminaries of T R, which are
taken from [3]. In Subsection A.2 we prove our main result.

A.1 (More) Preliminaries of T R

Serial-Horn formulas are similar to predicate-logic Horn formulas but with the
⊗ operator (instead of the ∧ operator) as main connective in rule bodies.

Definition 6 (Serial-Horn Formulas). A serial-Horn program P is a finite
set of serial-Horn rules. A serial-Horn rule is a formula of the form a← φ where
a is an atomic formula and φ is a serial goal. A serial gaol is a formula of the
form a1 ⊗ · · · ⊗ an where each ai is an atomic formula (with n ∈ N).

As our database consists of ground atoms only, we adapt the original defini-
tion of the serial-Horn conditions, given by Bonner and Kifer:

Definition 7 (Serial-Horn Conditions). For a serial-Horn Program P , a
data-oracle which returns a classic Herbrand-Model Od(D) of D, and an exis-
tential serial goal (∃)φ the serial-Horn conditions hold, if Od is independent of
P , i.e. no predicate symbols occurs as a rule head in P and as an atom of D.

The procedural semantics of T R, i.e., the executional entailment, can be
inferred by the following, efficient, sound and complete sequent calculus.

Definition 8 (Executional Deduction Inference System). Consider a serial-
Horn T R program P , two databases D and D′, and a serial-Horn query φ (which
satisfy the serial-Horn conditions).

Axioms: P,D--- ⊢ ().
Inference Rules: Consider atomic formulas a, b, serial goals φ and rest, and

a most general unifier σ.
Transaction definition: If the fresh rule a← φ is in P and aσ = bσ, then

P,D--- ⊢ (∃) (b⊗ rest) IF P,D--- ⊢ (∃) (φ⊗ rest)σ (9)

Query: If bσ and rσ share no variables and (∃) bσ ∈ Od(D), then

P,D--- ⊢ (∃) (b⊗ rest) IF P,D--- ⊢ (∃) restσ (10)

Update: If bσ and rσ share no variables and (∃) bσ ∈ Ot(D,D′), then

P,D--- ⊢ (∃) (b⊗ rest) IF P,D′--- ⊢ (∃) restσ (11)
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Starting from the sequent P,D--- ⊢ (∃)φ we try to apply the inference rules
in reverse order and notate the databases we pass through as execution path.

We use the following basic property of executional entailment repeatedly.

Property 3. Consider a T R program P , a sequence of database statesD0, . . . , Dn,
and two closed formulas α and β:
If P,D0, . . . , Di |=x α and P,Di, . . . , Dn |=x β then P,D0, . . . , Dn |=x α⊗ β.

A.2 Proofs

We prove Properties 1 and 2, present several lemmas, and then prove our main
result (Theorem 2).

Proof (Property 1). By Theorem 1, it suffices to give the executional deduc-
tion s1, s2, s3, s4 along the execution path D + {u(c, k)}, D.

s4 ≡ Pbasic, D + {u(c, k)}--- ⊢ (∃) udel(c) by (9), (3), and [U/c]
s3 ≡ Pbasic, D + {u(c, k)}--- ⊢ ∃K u(c,K)⊗ rest by (10) and [K/k]
s2 ≡ Pbasic, D + {u(c, k)}--- ⊢ u(c, k).del by (11)
s1 ≡ Pbasic, D--- ⊢ ()

Removing a user-defined constraint keeps a database valid. ⊓⊔

Proof (Property 2). By Theorem 1, it suffices to give the executional deduc-
tion s1, . . . , s6 along the execution pathD1, D2, D3, D4 withD1 = D+{n(k)},D2 =
D, D3 = D + {n(k + 1)}, and D4 = D + {n(k + 1), u(c, k)}.

s6 ≡ Pbasic, D1--- ⊢ (∃) uins(c) by (9), (3), and [U/c]
s5 ≡ Pbasic, D1--- ⊢ ∃K n(K)⊗ n(K).del ⊗ rest by (10) and [K/k]
s4 ≡ Pbasic, D1--- ⊢ n(k).del ⊗ n(k + 1).ins ⊗ rest by (11)
s3 ≡ Pbasic, D2--- ⊢ n(k + 1).ins ⊗ u(c, k).ins by (11)
s2 ≡ Pbasic, D3--- ⊢ u(c, k).ins by (11)
s1 ≡ Pbasic, D4--- ⊢ ()

As the initial database is valid, all quantifiers in D are less than k and hence all
identifiers in the final database D + {n(k + 1), u(c, k)} are less than k + 1. ⊓⊔

We show that an executional deduction of chr(r) is possible iff r is applicable
in the state transition system and that the changes of the constraint store are
faithfully recorded by the updates of the database.

Proof (Lemma 1). As r is range-restricted, rule application on a ground con-
straint store keeps the constraint store ground and the entailment condition of
the state transition system, defined in (1), simplifies to

CT |=

ng
∧

i=1

giσ with σ =

nh
∏

i=1

ah
i
∏

j=1

[Xi,j/vi,j ] (12)
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as all variables in the guard are bound by the substitution σ of the matching of
the ground constraints with the head

∧nh

i=0 hi(Xi,1, . . . , Xi,ah
i
).

By Theorem 1 we have Pbasic + {rT R}, D, . . . ,D′ |=x (∃) chr(r) iff the fol-
lowing executional deduction s1, . . . , s5 for (∃) chr(r) holds.

s5 ≡ P,D--- ⊢ (∃) chr(r) by (4)

s4 ≡ P,D--- ⊢ (∃)
(

⊗nh

i=0 udel(hi(Xi,1, . . . , Xi,ah
i
))
)

⊗ rest cf. (i)

s3 ≡ P,D
′′--- ⊢ (∃)

(

⊗ng

i=1 giσ
)

⊗ restσ cf. (ii)

s2 ≡ P,D
′′--- ⊢ (∃)

(

⊗nu

i=1 t(ui)σ
)

cf. (iii)

s1 ≡ P,D
′--- ⊢ () by axiom

We link the necessary conditions for an executional deduction to a CHR rule
application in the state transition system.

(i) Sequent s4 holds (iff s3 holds) and, iff D = {u(hi(v̄i), ki) : 1 ≤ i ≤ nh}+D′′

by repeated application of Property 1 with σ =
∏nh

i=0

∏ah
i

j=1[Xi,j/vi,j ]. Note
that D′′ is valid if D is valid.

(ii) Sequent s3 holds (iff s2 holds) and, iff (12) holds with Od defined in Defi-
nition 4. Note that the guard is ground by application of σ.

(iii) Let the body consist of n′
u many user-defined constraints uu(i) with 1 ≤ i ≤

n′
u and nu − n

′
u many built-in constraints ub(i) with 1 ≤ i ≤ nu − n

′
u. Then

sequent s2 holds, iff D′ = D′′−{n(k)}+ {n(k+n′
u)}+ {u(uu(i)σ, k+ i− 1) :

1 ≤ i ≤ n′u}+{ub(i) : 1 ≤ i ≤ nu−n
′
u} by repeated application of Property 2

and (2). Note that D′ is valid if D′′ is valid and that (for range-restricted
ground CHR) the body is ground by application of σ.

By T R’s transaction property, the query (∃) chr(r) either succeeds with all
conditions in (i), (ii), and (iii) met, or rolls back to the initial database state
which proves (5): For D ∼ ms(S), a successful invocation of chr(r) updates D
to D′ iff S ֌r S

′ with D′ ∼ ms(S
′). ⊓⊔

Definition 9 (state). The T R-constant state is defined by ♦(φ ∨ ¬φ).

The formula state succeeds on paths of length one. We assume that state
is implemented by Od to avoid the need for disjunction.

Definition 10. The abbreviation [φ] is defined by φ ∧ state.

The formula [φ] restricts possible satisfaction of the formula φ to paths of
length one. We need this when using negation as the formula ¬♦φ is satisfied for
for all paths of length greater than one while the formula [¬♦φ] denotes that φ
cannot execute starting from the current database.

The reverse of Property 3 holds in the important case, when we fix the length
of one of its sub-formulas:

Lemma 2. Consider a T R program P , a sequence of database states D0, . . . , Dn,
and two closed formulas α and β. Then:
P,D0, . . . , Dn |=x α⊗ [β] iff P,D0, . . . , Dn |=x α and P,Dn |=x β.
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Proof. The following, equivalent statements hold for all models MP of P and
as the serial conjunction is defined for some split 〈D0, . . . , Di〉 ◦ 〈Di, . . . , Dn〉
of 〈D0, . . . , Dn〉, we have some i with 0 ≤ i ≤ n: MP (〈D0, . . . , Dn〉) |= α ⊗ [β]
iff (by definition of ⊗) MP (〈D0, . . . , Di〉) |= α and MP (〈Di, . . . , Dn〉) |= [β]
iff (by definition of ∧) MP (〈D0, . . . , Di〉) |= α, MP (〈Di, . . . , Dn〉) |= β, and
MP (〈Di, . . . , Dn〉) |= state iff (by definition of state) MP (〈D0, . . . , Dn〉) |= α
and MP (〈Dn〉) |= β. ⊓⊔

We can now extend Lemma 1 from a single rule application ֌ to a CHR
derivation ֌n with length n ∈ N.

Lemma 3. Consider two ground CHR states S and S′, two valid databases D
and D′, a CHR program P consisting of range-restricted simplification rules,
and its mapping P T R = Pbasic +{rT R : r ∈ P}. For D ∼ ms(S), D′ ∼ ms(S

′),
and an execution path π starting in D and ending in D′ we have

S ֌n
P S′ iff P T R, π |=x (∃)

n
⊗

i=1

chr(Ri)

Proof. We use induction on n.

Base case n = 0: S ֌0
P S iff P T R, D |=x () (the empty proposition () is true

for all execution paths).
Induction step n − 1 to n: Assume we have S ֌

n−1
P S′′ iff P T R, π′ |=x

(∃)
⊗n−1

i=1 chr(Ri) and π′ starts in D and ends in D′′ with D′′ ∼ ms(S
′′).

By Lemma 1, we have S′′ ֌r S
′ iff Pbasic+{r

T R}, D′′, . . . , D′ |=x (∃) chr(r)
for a rule r ∈ P and for non-deterministic rule selection we have S′′ ֌P S′

iff P T R, D′′, . . . , D′ |=x (∃) chr(Rn).
– For the CHR side, we have S ֌n

P S ≡ S ֌
n−1
P S′′ ֌P S′.

– For the T R side, we infer P T R, π |=x (∃)
⊗n

i=1 chr(Ri) for a path start-
ing in D and ending in D′ from the two executional entailment state-
ments P T R, π′ |=x (∃)

⊗n−1
i=1 chr(Ri) with π′ starting in D and ending

in D′′ and P T R, D′′, . . . , D′ |=x (∃) chr(Rn) by Property 3.
⊓⊔

Applicability of a CHR rule of a CHR program P in state S is expressed as
executional entailment P T R, D |=x (∃) ♦ chr(R) for the database D ∼ ms(S).

Lemma 4. Consider a ground CHR state S, a valid database D, a CHR program
P consisting of range-restricted simplification rules, and its mapping P T R =
Pbasic + {rT R : r ∈ P}. For D ∼ ms(S) we have
No CHR rule is applicable in state S iff P T R, D |=x (∃)¬♦ chr(R).

Proof. By Lemma 1 and definition of the ♦ operator we have: P,D |=x (∃) ♦ chr(R)
iff P,D, . . . ,D′ |=x (∃) chr(R) iff a rule is applicable. Hence, we have P,D |=x

(∃) ♦¬ chr(R) iff P,D, . . . ,D′ |=x (∃) chr(R) fails iff no rule is applicable. ⊓⊔

We can now prove our main result using Lemmas 3 and 4.
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Proof (Theorem 2). We prove each direction in turn. We have ms(S) ∼ D,
ms(S

′) ∼ D′, and π starting in D and ending in D′.

Soundness: By Lemma 2, we have P T R, π |=x (∃) (
⊗n

i=1 chr(Ri))⊗[¬♦ chr(R)]
iff P T R, π |=x (∃) (

⊗n

i=1 chr(Ri)) and P T R, D′ |=x (∃)¬♦ chr(R) for n ∈ N.
By Lemma 4 no CHR rule is applicable in state S′ and by Lemma 3 we have
computed a CHR derivation S ֌n

P S′. Hence we have computed S ֌∗
P S′.

Completeness: Consider a CHR derivation S ֌∗
P S′ with length n. Then

no CHR rule is applicable in S′ and by Lemma 4 we have P T R, D′ |=x

(∃)¬♦ chr(R). By Lemma 3 we have the executional entailment P T R, π |=x

(∃) (
⊗n

i=1 chr(Ri)) for S ֌n
P S′. By Property 3, we can combine the two

executional entailment statements into P T R, π |=x (∃) (
⊗n

i=1 chr(Ri)) ⊗
[¬♦ chr(R)].

⊓⊔


