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Introduction

Constraint Handling Rules (CHR) [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF] is a concurrent, committed-choice, rulebased language which was originally created as a declarative logic constraint language to implement monotonic reasoning services. Its main features are guarded rules which transform multi-sets of constraints (atomic formulas) into simpler ones until they are solved.

Over the last decade, CHR has become available for most Prolog systems, Java, Haskell, and Curry and matured into a general-purpose programming language with many applications [START_REF] Schrijvers | The Constraint Handling Rules (CHR) web page[END_REF]: Nonmonotonic reasoning services can be implemented in CHR, e.g. the fluent executor (FLUX) [START_REF] Thielscher | FLUX: A logic programming method for reasoning agents[END_REF] which provides general reasoning facilities about actions and sensor information under incomplete information. Also, classic algorithms like the union-find, which rely on inherently nonmonotonic updates, have been implemented with optimal complexity in CHR [START_REF] Schrijvers | Optimal union-find in Constraint Handling Rules[END_REF].

The operational semantics of CHR is specified by a state transition system. Although applicability of a CHR rule is defined within predicate logic, the operational semantics is not integrated into a logic and is different from the declarative semantics in predicate logic. Basically the problem is that there is no elegant predicate logic-based semantics for changing the constraint store. Hence, reasoning on CHR programs and their executional behaviour is often ad-hoc and outside of a formal logic-based system.

We integrate the operational semantics of CHR into Transaction Logic (T R) [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF][START_REF] Bonner | A logic for programming database transactions[END_REF][START_REF] Bonner | Results on reasoning about updates in Transaction Logic[END_REF] which extends predicate logic with -among other things -a declarative account for state changes in logic programs (cf. [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF] for a list of failed attempts to formalise updates in a logic programming language). Transaction Logic naturally enjoys nonmonotonic behaviour due to the dynamics of a database which represents a current state [START_REF] Kifer | Nonmonotonic reasoning in FLORA-2[END_REF].

Contributions and overview of the paper. By mapping the core of CHR to T R, we combine CHR rule specification, CHR rule application, and reasoning on CHR programs and CHR derivations inside one formal system which is executable. We show that a CHR rule applies if and only if the T R query of the mapping of this CHR rule succeeds in T R and extend this result to CHR derivations by integrating the CHR run-time system. A formal statement then links the procedural aspect of execution (the operational semantics) with a new modeltheoretic (declarative) reading, thus our semantics covers both operational and declarative aspects elegantly. An efficient proof system in T R executes CHR programs and reasons on CHR derivations mechanically.

-We present the aspect of a missing unified semantics for CHR through an easy example in Section 2 and propose our solution to overcome this missing aspect in Section 3. -We explain the most basic instantiation of T R to give a logical account for range-restricted ground CHR programs in Section 4. -We map the constraint store to a database, the CHR program to a serial-Horn T R program that updates this database, and the CHR run-time system to a generalised-Horn T R program. The details of our CHR-to-T R mapping in Section 5 are necessary for our sound-and completeness result which is our main contribution. -In Section 6 we apply our approach to two examples, showing how to execute and reason on them in the framework of Transaction Logic. We use the FLORA-2 system [START_REF] Yang | FLORA-2: User's Manual, Version 0.94[END_REF] for implementation.

Complete proofs and full CHR and FLORA-2 sources of the examples are available at http://www.informatik.uni-ulm.de/pm/index.php?id=138.

The Problem: Reasoning on Constraint Handling Rules

Example 1. Consider a coin-throw simulation program 1 , consisting of two CHR rules r 1 and r 2 .

r 1 @ throw ⇔ caput r 2 @ throw ⇔ nautica
Intuitively, as both rules are applicable for the goal throw, the answer constraint is caput or nautica depending on the rule selection. Clearly, we have the two possible state transitions (throw) r1 (caput) and (throw) r2 (nautica) for the goal throw.

What we are missing is one logic-based formal system for mechanical execution and reasoning, which should be implemented to also allow automatic reasoning. Available CHR run-time systems (e.g. the reference implementation in SICStus Prolog for CHR) come as black boxes and offer no means for reasoning. For example, we want to prove the following three properties automatically:

(P1) Throwing a coin can yield caput. (P2) Throwing a coin cannot yield both caput and nautica. (P3) Application of r 1 cannot yield nautica.

Because the constraint throw is interpreted as a trigger (and not as static truth) in the coin-throw simulation program, the gap between the predicate declarative semantics [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF] of this general-purpose CHR program -the meaningless formula caput ↔ nautica -and its executions is especially large. The underlying problem is that predicate logic is a static logic, unable to express the dynamics of deletion and insertion directly. Here, reasoning has to be done ad-hoc (outside of a logic) along the operational semantics of CHR [START_REF] Abdennadher | Confluence and semantics of constraint simplification rules[END_REF].

The linear logic semantics [START_REF] Betz | A linear-logic semantics for Constraint Handling Rules[END_REF] overcomes this restriction of the classic predicate logic semantics and gives a meaningful declarative semantics also for generalpurpose CHR programs. While the linear logic notion of a resource models the necessary dynamics, it does not cover all aspects of the operational semantics: Linear logic has no inherent notion of execution and we cannot reason on the execution itself but only on the result of an execution. Similar to the classic declarative semantics, the linear logic semantics links initial and final state with a logical reading of the program. As CHR derivations are mimicked inside its proofs, reasoning on derivations is not possible directly.

Summarising, both predicate and linear logic declarative semantics allow reasoning on the properties of the program, but lack the possibility to actually execute the rules, reason on the execution, and are not readily mechanised. Thus, reasoning on execution lacks a formal logic-based framework. Most importantly, specification (as CHR rules), execution (by a CHR run-time system), and reasoning are not integrated and reasoning is either done by hand or by specialpurpose tools (e.g. for confluence [START_REF] Abdennadher | Confluence and semantics of constraint simplification rules[END_REF]). The need to integrate the operational semantics into a logic was recognised by Maher [START_REF] Maher | Logic semantics for a class of committed-choice programs[END_REF]: Besides a "logical" (declarative) semantics, also a data/control-flow analysis is highly desirable, e.g. to prove termination of a program. Clearly this data/control-flow analysis aspect is inherently absent in [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF][START_REF] Betz | A linear-logic semantics for Constraint Handling Rules[END_REF] which cover the "logical" (declarative) semantics only. Maher continues, that "there is possibility that this analysis can be carried out within a logic framework" [9, p. 870]. We argue that Transaction Logic (T R) provides this missing aspect in the next section.

The Idea: Map CHR to Transaction Logic

We map CHR to Transaction Logic to simulate the operational semantics of CHR by logic programming with state changes and use executional entailment -a formal statement in T R -to execute and to reason on CHR derivations. In their seminal work on Transaction Logic [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF] Bonner and Kifer extend predicate logic with a declarative account for state changes in logic programming. As the operational semantics of CHR is formalised by a state transition system, where a CHR rule application changes the constraints store, we map CHR programs to serial-Horn T R programs and identify the application of a CHR rule by the state transition system with a successful query of the T R program. To this end, we map the constraint store to a database with the elementary database updates insertion and deletion. A CHR derivation is then the side-effect on the database when the T R proof system infers the T R query to be true.

Example 1 (Cont.). We show the basic ideas for the coin-throw simulation program with a non-deterministic rule selection strategy (and review this example in Section 6 in detail). We map rule r 1 to the serial-Horn T R rule r T R

1 r T R 1 ≡ chr(r 1 ) ← throw ⊗ throw.del ⊗ caput.ins
To make the T R-predicate chr(r 1 ) true, we have to execute the serial conjunction on its right hand side: First check that throw is present, then delete it, and then insert caput. The order in the serial conjunction ⊗ is crucial, as the T Rpredicates throw.del and caput.ins have side-effects on the database2 . If we execute chr(r 1 ) on the (initial) database {throw}, we pass trough the empty database {}, and arrive at the (final) database {caput}. For P = {r T R 1 }, we have the following executional entailment statement |= x in T R, which states, that the successful invocation of program P by chr(r 1 ) can successfully update the database along the given execution path {throw}, {}, {caput}.

P, {throw}, {}, {caput} |= x chr(r 1 )
The executional entailment statement has both a procedural (operational) and a model-theoretic (declarative) semantics in T R. On the one hand, an available efficient T R inference system for the subclass of (serial-Horn) programs actually computes the necessary updates of an initial database {throw} when establishing the truth of chr(r 1 ) and implements the procedural aspect of T R. Integrating the operational semantics of CHR into T R by executional entailment, we have -on the other hand -a new model-theoretic (declarative) semantics which captures the possible executions of a CHR program.

We show in Section 5, that a CHR rule r is applicable iff we can establish the truth of the head of a T R rule r T R and then extend our mapping to cover the CHR run-time system. The changes caused on the constraint store are mapped one-to-one to updates of the database as we simulate CHR rule application by the T R inference system.

We can then prove properties (P1-3) from Section 2 mechanically. Even better, the FLORA-2 system allows us to both execute and reason on this example automatically (cf. Section 6).

Preliminaries

We provide necessary background for readers not familiar with CHR and T R.

Constraint Handling Rules

Constraint Handling Rules (CHR) [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF][START_REF] Schrijvers | The Constraint Handling Rules (CHR) web page[END_REF] is a concurrent, committed-choice, rulebased logic programming language. We distinguish between two different kinds of constraints: built-in constraints which are solved by a given constraint solver, and user-defined (CHR) constraints which are defined by the rules in a CHR program. This distinction allows one to embed and utilise existing constraint solvers as well as side-effect-free host language statements. As we trust the builtin black-box constraint solvers, there is no need to modify or inspect them.

A CHR program is a finite set of rules. There are two main kinds of rules:

Simplification rules N @ H ⇔ G | B and propagation rules N @ H ⇒ G | B.
Each rule has a unique identifier N , the head H is a non-empty multi-set conjunction of CHR constraints, the guard G is a conjunction of built-in constraints, and the body B is a goal. A goal is a multi-set conjunction of built-in and CHR constraints. A trivial guard expression "true |" can be omitted.

Since we do not focus on propagation rules in this paper, it suffices to say that they are equivalent (in the standard semantics) to simplification rules of the form

N @ H ⇔ G | (H ∧ B).
The operational semantics of CHR is defined by a state transition system where states are conjunctions of constraints. To a conjunction of constraints, rules are applied until a fixpoint is reached. Note that conjunctions in CHR are considered as multi-sets of atomic constraints. Any of the rules that are applicable can be applied and rule application cannot be undone since CHR is a committed-choice language. A simplification rule H ⇔ G | B is applicable in state (H ′ ∧ C), if the built-in constraints C b of C imply that H ′ matches the head H and the guard G is entailed under this matching, cf. [START_REF] Abdennadher | Confluence and semantics of constraint simplification rules[END_REF]. The consistent, predicate logic, built-in constraint theory CT contains Clark's syntactic equality.

IF H ⇔ G | B is a fresh variant of a rule with variables X AND CT |= (∀) C b → ∃ X (H = H ′ ∧ G) THEN (H ′ ∧ C) (B ∧ G ∧ H = H ′ ∧ C) (1)
If applied, a simplification rule replaces the matched CHR constraints in the state by the body of the rule. In the operational semantics, rules are applied until exhaustion, i.e. the CHR run-time system (which actually runs a CHR program by selecting applicable rules and matching constraints) computes the reflexive transitive closure * of . The CHR run-time system should stop immediately, when insertion of a built-in constraint makes C b inconsistent. However, this termination at failure is not explicitly addressed in the operational semantics.

Transaction Logic

Transaction Logic (T R) [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF][START_REF] Bonner | A logic for programming database transactions[END_REF][START_REF] Bonner | Results on reasoning about updates in Transaction Logic[END_REF] is a conservative extension of classical predicate logic, where predicates can have side-effects on a database, allowing to model state changes. Similar to predicate logic, T R features a Horn fragment which supports logic programming. While T R is an extremely versatile logic to handle specification, execution, and reasoning on logic programs with updates, it suffices for this work to use a basic instantiation of T R which restricts side-effects to the updates insertion and deletion on a relational, ground database.

A database is a set of ground atoms. A sequence of databases D 0 , . . . , D n is called a path π = D 0 , . . . , D n which can be split into sub-paths D 0 , . . . , D i • D i , . . . , D n (for 0 ≤ i ≤ n). Access to the database is restricted by two oracles: The data oracle O d maps a database D to a set of ground atoms that are considered to be true along the path D . Elementary database updates are captured by the transition oracle O t which maps two databases D and D ′ to a set of ground atoms considered to be true along the path D, D ′ . Definition 1 (Path Structure with Relational Oracles). A path structure M assigns a classical Herbrand structure (or ⊤ which satisfies everything) to every path and is subject to the following restrictions for ground atoms p.

M ( D ) |= p as p ∈ O d (D) if p ∈ D M ( D, D ′ ) |= p.ins as p.ins ∈ O t (D, D ′ ) if D ′ = D ∪ {p} M ( D, D ′ ) |= p.del as p.del ∈ O t (D, D ′ ) if D ′ = D \ {p} (2)
Quantification of T R formulas and satisfaction of composed T R formulas are defined analogously to predicate logic: A T R formula with ¬, ∧, ∨, or ← as main connective is satisfied along a path π if the appropriate property holds between its sub-formulas along the same path π. Satisfaction from the basic properties (2) extends to the case of longer paths by the new serial conjunction operator: A serial conjunction φ ⊗ ψ is satisfied along the path π iff φ is satisfied along π 1 and ψ is satisfied along π 2 for some split of the path π = π 1 • π 2 . The modal possibility ♦φ expresses that φ is satisfiable along some path starting from the current database, formally M ( D ) |= ♦φ iff there is a path π starting at database D with M (π) |= φ.

The formal statement executional entailment links a program, a possible sequence of databases which captures the side-effects of the program, and the invocation of the program.

Definition 2 (Executional Entailment). Consider a set of T R formulas P , an execution path consisting of a sequence of databases D 0 , . . . , D n , and a T R formula φ. A path structure M P is a model of P iff M P (π) |= φ for every φ ∈ P and every path π. P, D 0 , . . . , D n |= x φ iff M P ( D 0 , . . . , D n ) |= φ for every model M P of P Executional entailment selects one of (possibly several) valid execution paths, for which φ is true for all models M P of P . A model M P of P is a path structure that respects the oracles and satisfies every formula of P along every path. The execution path D 0 , . . . , D n records all side-effects when establishing the truth of φ: "[The] successful program invocation of φ for program P can update the database along execution path from D 0 to D 1 . . . to D n " [3, p. 31].

Example 2. Consider the T R program P = {r ← p ⊗ p.del }. Invocation of r deletes p from the database, but only if p was initially present and we have P, {p, q}, {q} |= x r but P, {q}, {} |= x r. Also, deletion of p should be the only side-effect of the invocation of r, hence P, {p, q}, {} |= x r as M P ( {p, q}, {} ) |= r is not correct for all models M P of P . When we delete q under the condition that r can execute, e.g. P, {p}, {p, q} |= x ♦r ⊗ q.ins, we keep p in the database.

For the class of serial-Horn programs (i.e. sets of Horn rules with only serial conjunctions in the r.h.s) and serial queries, T R features an executional deduction inference system [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF]. For a serial-Horn program P , an initial database D 0 , and an existentially quantified serial query (∃) φ, it infers the sequent P, D 0 ---⊢ (∃) φ iff there is an executional entailment of (∃) φ along an execution path starting from D 0 . Most importantly the system both tries to infer the truth of (∃) φ and computes the necessary changes to D 0 which we record in D 0 , . . . , D n . Formally, the following fundamental sound-and completeness result links the modeltheoretic executional entailment with the mechanised executional deduction.

Theorem 1 (Bonner and Kifer [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF]). P, D 0 , . . . , D n |= x (∃)φ iff there is an executional deduction of (∃)φ with execution path D 0 , . . . , D n .

For our serial-Horn program P from Example 2 we have P, {p, q}---⊢ r and the successful inference of the query r computes the execution path {p, q}, {q} from the initial database {p, q}. Of course, we cannot infer P, {q}---⊢ r as there exists no execution path for the query r starting from {q}. By the definition of executional entailment, an execution either succeeds or all tentative side-effects are rolled back. Due to this transaction property of T R we cannot infer P, {p}---⊢ r ⊗ r and the tentative deletion of p by the first call to r is not manifested as the second call to r fails.

The Details: CHR-to-T R-Mapping

We map CHR states to databases, adapt the data oracle O d , map CHR rules to serial-Horn T R rules, and specify the CHR run-time system as a generalised-Horn T R program. We then show our sound-and completeness result that links CHR derivations with executional entailment statements of T R.

For this paper, we restrict ourselves to range-restricted ground CHR. Rangerestricted CHR rules have no local variables, i.e. every variable in each rule already occurs in the head of the rule and all CHR states are ground as there are no variables in the goal.

Mapping CHR States to Valid Databases

We map each ground, user-defined constraint c i of a CHR state (recall that a CHR state is a multi-set conjunction) to a T R-predicate u(c i , i) where the second argument is a unique identifier -we use a natural number. We trail a new, unique identifier k in a bookkeeping T R-predicate n(k) (assuming that u/2 and n/1 are not defined by CT ). Reflecting user-defined constraints as T Rfunction symbols allows us to specify the necessary bookkeeping for the insertion and deletion of user-defined constraints as a serial-Horn program. Definition 3. A valid database D contains one bookkeeping predicate n(k), predicates u/2 with unique identifiers that are all smaller than k, and builtins b i . The mapping m s is defined from the set of CHR states S (consisting of user-defined constraints c i and built-ins b i ) to the set of valid databases D by

( 0≤i<k c i ∧ 0≤i<l b i ) → {u(c i , i) : 0 ≤ i < k} ∪ {n(k)} ∪ {b i : 0 ≤ i < l}
Two valid databases are equivalent, ∼, if there is a bijective mapping between their sets of identifiers.

Clearly, m s (c(a)) = {u(c(a), 0), n(1)} and {u(c(a), 5), n(9)} are equivalent. We update valid databases through the serial-Horn program P basic :

udel(U ) ← u(U, K) ⊗ u(U, K).del uins(U ) ← n(K) ⊗ n(K).del ⊗ n(K + 1).ins ⊗ u(U, K).ins (3) 
Deletion of a ground user-defined constraint is conditional (cf. Example 2) and insertion requires some bookkeeping. For range-restricted ground CHR the entailment condition of the state transition system, defined in (1) can be simplified as there are no local variables. Because we match the head H with the ground constraints H ′ from the store, the formula ∃ X(H = H ′ ∧ G) is ground. We extend the relational data oracle O d , defined in (2), to implement the built-in constraint theory CT .

Definition 4 (Data Oracle as Built-in Solver). For any database D and ground atomic built-in φ, the data oracle respects CT :

φ ∈ O d (D) if CT |= D b → φ for the conjunction D b of built-in predicates of D.

Mapping CHR Rules to Serial-Horn Rules in T R

We map CHR rules to T R rules that update the database through P basic as defined in (3). We normalise any range-restricted CHR rule to contain no function symbols in the head by introducing a new variable for any implicit equality in the head and adding an explicit (new) equality to the guard, e.g. r @ p(a) ⇔ true normalises to r @ p(X) ⇔ X = a | true.

Definition 5. Consider a normalised range-restricted simplification rule r. The head H or rule r is the (multiset) conjunction n h i=0 h i of user-defined constraints h i , the guard G is the conjunction ng i=1 g i of built-in constraints g i (n g = 0 represents true), and the body B is the (multiset) conjunction nu i=1 u i of constraints u i (n u = 0 represents true). The auxiliary t maps user-defined constraints u i to uins(u i ) and built-in constraints to u i .ins. We define the mapping m r :

r @ H ⇔ G | B → r T R by r T R ≡ chr(r) ← n h i=0 udel(h i ) ⊗ ng i=1 g i ⊗ nu i=1 t(u i ) (4) 
Our mapping m r is guided by the intuition that establishing the truth of chr(r) should have the same effect on the database as rule application by CHR's state transition system on the constraint store. The body of chr(r) consists of parts corresponding to head, guard, and body of the CHR rule r: First, we succinctly query the database for copies of each head constraint and delete them. Then we pass the check for the guard (as r is range-restricted, all variables in the guard are now bound) to our data oracle which respects the built-in constraint theory CT . Finally, we add the body constraints, labelling each inserted userdefined constraint with a new identifier.

By the transaction property of T R we can safely intertwine applicability checks with updates of the database, e.g. if the guard fails, the tentative deletions of the user-defined head constraints are undone.

Formally, application of r by the state transition system is equivalent to executional entailment of chr(r) modulo identifier renaming.

Lemma 1. Consider two ground CHR states S and S ′ , two valid databases D and D ′ , a normalised range-restricted CHR simplification rule r, and its mapping r T R as defined in (4). For D ∼ m s (S) and D ′ ∼ m s (S ′ ) we have S r S ′ iff P basic + {r T R }, D, . . . , D ′ |= x (∃) chr(r)

(5)

Sound and Complete: CHR Run-Time System in T R

We now extend Lemma 1 from a single rule step of a single CHR rule to a CHR derivation of a CHR program by integrating the fixpoint computation, i.e. the operational semantics of CHR, into T R.

Our main result shows that our mapping from CHR to T R is sound-and complete w.r.t. the operational semantics of CHR. To this end, we express applicability of a CHR rule in state S by P, D |= x (∃) ♦ chr(R) with D ∼ m s (S) and use induction on the derivation length for the extension from to n . Theorem 2. [Sound-and Completeness] Consider two ground CHR states S and S ′ , two valid databases D and D ′ , a CHR program P consisting of rangerestricted simplification rules, and its mapping P T R = P basic + {r T R : r ∈ P }. For D ∼ m s (S), D ′ ∼ m s (S ′ ), and an execution path π starting in D and ending in D ′ we have

S * P S ′ iff P T R , π |= x (∃) n i=1 chr(R i ) ⊗ [¬♦ chr(R)] with n ∈ N
where [¬♦ chr(R)] restricts satisfaction of ¬♦ chr(R) to paths of length one.

We now sketch how to implement the CHR run-time system as T R program with hypothetic goals (to express possibility) and negated goals (to check that no rule is applicable). We capture the fixpoint semantics of CHR as fixpoint ← while applicable do chr(R) od and implement the imperative while-loop programming construct as a generalised-Horn program P runTime in T R. 4 We explain its generalised-Horn rules in turn:

fixpoint ← chr(R) ⊗ fixpoint (6) applicable ← ♦ chr(R) (7) fixpoint ← [¬ applicable] (8) 
Rule ( 6) succeeds if the call chr(R) -which successfully applies a CHR rule Rsucceeds. In this case we call fixpoint (tail-recursively). We need two generalised-Horn rules to express that no CHR rule is applicable: Rule ( 7) succeeds if a CHR rule is applicable and this test leaves the database D untouched and rule ( 8) succeeds if no CHR rule is applicable at the current state using negation-asfailure to compute [¬ applicable].

Bonner and Kifer give an extended (sound-and complete) executional deduction inference system that integrates the ♦ operator. Negation ¬ is then treated (outside of the proof system) as negation-as-failure. A slight modification of the model-theoretic executional statement allows to give a declarative account for locally stratified generalised-Horn programs. Compared to Definition 2, we no longer look at all but only at the perfect models of the program. As P runTime is stratified we can use this executional entailment statement, |= perf x (cf. [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF]):

Corollary 1. Under the premises of Theorem 2 we have

S * P S ′ iff P T R + P runTime , π |= perf x (∃) fixpoint
Our declarative T R semantics of the CHR program P is the perfect-model semantics of the generalised-Horn T R program P T R + P runTime . Invocation of fixpoint -on the other hand -computes * as side-effect on the database, i.e. captures the operational semantics of CHR. This brings together the operational and declarative semantics of CHR in T R.

Examples

We use the FLORA-2 system [START_REF] Yang | FLORA-2: User's Manual, Version 0.94[END_REF], a sophisticated object-oriented, knowledge management environment that implements the executional deduction inference system of T R by offering backtrackable deletion and insertion of facts, to execute and reason on CHR. Similar to Prolog, but with handling updates in a declarative way, serial queries are treated from left to right and one database is kept at any time. We have P, D 0 , ---⊢ (∃) φ iff the query "?-φ" succeeds for the program P from the initial database D 0 . In this case, FLORA-2 updates the database according to the computed executional path as side-effect.

Example 3 (Coin-Throw Simulation Program). We revisit Example 1 in detail. For the program P T R coin = P basic + {r T R 1 , r T R 2 }, defined in (3) and by ( 4), and the initial database m s (throw) = {u(throw, 0), n(1)} we throw a coin by querying "?-chr(R)". This query succeeds, returns an answer substitution for R, and updates the database. In a subsequent query "?-u(S, I)" we query the current database state for the side S of the coin.

We now prove properties (P1-3) from Section 2 automatically:

(P1) The query "?-chr(R), u(nautica, I)"5 succeeds from D 0 , i.e. we have a mechanical proof that a computation (throw) (nautica) exists. Due to the post-condition u(nautica, I) the FLORA-2 system backtracks over ruleapplication if rule r 1 is selected in the first try. (P2) Throwing a coin cannot yield both caput and nautica is true because the query "?-chr(R), u(nautica, I), u(caput, J)" fails (from database D 0 ). (P3) Applying rule r 1 cannot yield nautica as "?-chr(r 1 ), u(nautica, I)" fails.

For complex CHR programs this knowledge is much less trivial and very valuable for understanding. While CHR programs are usually very concise, debugging is often tedious and automatised reasoning is highly desirable.

Example 4 (Greatest Common Denominator). Euclid's algorithm to compute the greatest common denominator (gcd) is probably the first algorithm in history that is still commonly used. The CHR implementation of the gcd consists of only two rules, where the built-in theory CT also contains the order between natural numbers.

r 1 @ gcd(0) ⇔ true r 2 @ gcd(X 1 ) ∧ gcd(X 2 ) ⇔ 0 < X 1 ∧ X 1 ≤ X 2 | gcd(X 1 ) ∧ gcd(X 2 %X 1 )
The CHR derivation (gcd(24)∧gcd(30)∧gcd(42)) * (gcd( 6)) computes the gcd of 24, 30, and 42. The gcd algorithm can be seen as a (very basic) nonmonotonic reasoning service, as e.g. adding gcd [START_REF] Jaffar | The semantics of constraint logic programs[END_REF] to the goal invalidates the original answer constraint gcd [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF]. We assume D 0 = m s (gcd(24) ∧ gcd(30) ∧ gcd(42)) as initial database.

As FLORA-2 does not implement the possibility operator ♦, we carry out the next two inferences mechanically -but not automatically. We simulate one (of several possible) CHR derivations -recall that CHR is a committed-choice language -by inferring the sequent P T R gcd + P runTime , D 0 ---⊢ (∃) fixpoint. Then we inspect the final database D n of the computed executional path D 0 , . . . , D n which contains u(gcd(6), k) with some identifier k ∈ N. Similarly, we have a mechanical proof that no gcd(0) constraint is in the final constraint store as we cannot infer P T R gcd + P runTime , D 0 ---⊢ (∃) fixpoint ⊗u(gcd(0), I). Here the postcondition u(gcd(0), I) forces us to backtrack over all possible execution paths, resp. CHR derivations, due to non-deterministic constraint and rule selection.

We can reason automatically on the derivation length: There is no CHR derivation of the gcd with only 4 CHR rule applications because the FLORA-2 query "?-chr(r 2 ), chr(r 2 ), chr(r 1 ), chr(r 1 )" fails. Similarly, we prove that the gcd can be computed with derivation length 5 and that another CHR derivation with length 8 exists, e.g. (24, 30, 42) r2 (24, 30, 18) r2 (24, 12, 18) r2 [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF][START_REF] Schrijvers | The Constraint Handling Rules (CHR) web page[END_REF]18) r2 [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF][START_REF] Schrijvers | The Constraint Handling Rules (CHR) web page[END_REF][START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF] r2 (6, 0, 6) r1 [START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF][START_REF] Frühwirth | Theory and Practice of Constraint Handling Rules[END_REF] r2 (6, 0) r1 (6).

Conclusion

We showed how we can execute and reason on execution of CHR programs within one logical framework by integrating the operational and declarative semantics of CHR into T R. We introduced rule names into the formalism, mapped CHR states and CHR rules to databases and T R rules, and mapped the CHR runtime system for non-deterministic rule application to a recursively defined T Rpredicate. The perfect-model semantics of a generalised-Horn T R program is our new declarative T R semantics of the CHR. The model-theoretical executional entailment statement ("one possible execution sequence") brings together T R program, execution path, and program invocation. The executional deduction inference system mechanically infers a T R-query and computes the necessary updates to the database. We showed execution and automatic reasoning on CHR using the FLORA-2 system.

By bringing the operational semantics of CHR into T R, we merged operational and declarative semantics of CHR in one formal system which allows both execution and reasoning. Our approach is more practical then the one taken for the available declarative semantics of CHR. Both the declarative classic predicate logic semantics and its recent extension to linear logic are more theoretical. They cannot execute a CHR program, cannot reason on its execution, and offer only limited help to mechanise reasoning.

We plan to extend our mapping and to investigate the relationship between CHR and T R in more detail:

-Lift the restrictions on ground, range-restricted CHR by encoding variables in the database, introduce propagation rules H ⇒ G | B (which do not remove H upon application), and avoid trivial non-termination, by encoding the propagation history in the database.

-Use full T R to reason on the effect properties [START_REF] Bonner | Results on reasoning about updates in Transaction Logic[END_REF] of a CHR program starting from our new declarative T R semantics. -Another direction is to extend T R with constraints according to the general CLP-scheme [START_REF] Jaffar | The semantics of constraint logic programs[END_REF] which would then allow constraint solving over a side-effect full, logic programming host language.

As CHR enables the direct implementation of many important monotonic and nonmonotonic reasoning services, this work can be seen as very first step towards a unifying framework to specify, execute, and reason about the semantics of rule-based programs, knowledge bases, and inference engines as envisioned in [START_REF] Robin | Reused Oriented Automated Reasoning Software (ROARS) project web page[END_REF].

A Appendix

This appendix is not part of the official submission and provided for ease of reviewing. A technical report version of our CHR-to-T R-mapping which includes the proofs of this appendix is in preparation, a preliminary version is available online at http://www.informatik.uni-ulm.de/pm/index.php?id=138.

In Subsection A.1 we provide the necessary preliminaries of T R, which are taken from [START_REF] Bonner | Transaction Logic programming (or, a logic of procedural and declarative knowledge)[END_REF]. In Subsection A.2 we prove our main result.

A.1 (More) Preliminaries of T R Serial-Horn formulas are similar to predicate-logic Horn formulas but with the ⊗ operator (instead of the ∧ operator) as main connective in rule bodies.

Definition 6 (Serial-Horn Formulas). A serial-Horn program P is a finite set of serial-Horn rules. A serial-Horn rule is a formula of the form a ← φ where a is an atomic formula and φ is a serial goal. A serial gaol is a formula of the form a 1 ⊗ • • • ⊗ a n where each a i is an atomic formula (with n ∈ N).

As our database consists of ground atoms only, we adapt the original definition of the serial-Horn conditions, given by Bonner and Kifer: Definition 7 (Serial-Horn Conditions). For a serial-Horn Program P , a data-oracle which returns a classic Herbrand-Model O d (D) of D, and an existential serial goal (∃) φ the serial-Horn conditions hold, if O d is independent of P , i.e. no predicate symbols occurs as a rule head in P and as an atom of D.

The procedural semantics of T R, i.e., the executional entailment, can be inferred by the following, efficient, sound and complete sequent calculus. 

Starting from the sequent P, D---⊢ (∃) φ we try to apply the inference rules in reverse order and notate the databases we pass through as execution path.

We use the following basic property of executional entailment repeatedly. 

A.2 Proofs

We prove Properties 1 and 2, present several lemmas, and then prove our main result (Theorem 2).

Proof (Property 1). By Theorem 1, it suffices to give the executional deduction s 1 , s 2 , s 3 , s 4 along the execution path D + {u(c, k)}, D. We show that an executional deduction of chr(r) is possible iff r is applicable in the state transition system and that the changes of the constraint store are faithfully recorded by the updates of the database.

Proof (Lemma 1). As r is range-restricted, rule application on a ground constraint store keeps the constraint store ground and the entailment condition of the state transition system, defined in (1), simplifies to

CT |= ng i=1 g i σ with σ = n h i=1 a h i j=1 [X i,j /v i,j ] (12) 
Proof. The following, equivalent statements hold for all models M P of P and as the serial conjunction is defined for some split D 0 , . . Proof. We use induction on n.

Base case n = 0: S 0 P S iff P T R , D |= x () (the empty proposition () is true for all execution paths). We can now prove our main result using Lemmas 3 and 4.

Property 1 (Property 2 (

 12 Conditional Deletion of User-Defined Constraints). Invocation of udel(c) deletes a copy of the ground, user-defined constraint c from the valid database D + {u(c, k)} 3 , and terminates in the valid database D. P basic , D + {u(c, k)}, D |= x (∃) udel(c) with k ∈ N Insertion of User-Defined Constraints). Invocation of uins(c) inserts a new copy of the ground, user-defined constraint c into the valid database D + {n(k)}, and terminates in the valid database D + {n(k + 1), u(c, k)}. P basic , D + {n(k)}, . . . , D + {n(k + 1), u(c, k)} |= x (∃) uins(c) with k ∈ N 5.2 Mapping the Built-In Theory CT to the Data Oracle O d

Definition 8 ( 9 )

 89 Executional Deduction Inference System). Consider a serial-Horn T R program P , two databases D and D ′ , and a serial-Horn query φ (which satisfy the serial-Horn conditions). Axioms: P, D---⊢ (). Inference Rules: Consider atomic formulas a, b, serial goals φ and rest, and a most general unifier σ. Transaction definition: If the fresh rule a ← φ is in P and aσ = bσ, then P, D---⊢ (∃) (b ⊗ rest) IF P, D---⊢ (∃) (φ ⊗ rest)σ (Query: If bσ and rσ share no variables and (∃) bσ ∈ O d (D), then P, D---⊢ (∃) (b ⊗ rest) IF P, D---⊢ (∃) rest σ (10) Update: If bσ and rσ share no variables and (∃) bσ ∈ O t (D, D ′ ), then P, D---⊢ (∃) (b ⊗ rest) IF P, D ′ ---⊢ (∃) rest σ

Property 3 .

 3 Consider a T R program P , a sequence of database states D 0 , . . . , D n , and two closed formulas α and β: If P, D 0 , . . . , D i |= x α and P, D i , . . . , D n |= x β then P, D 0 , . . . , D n |= x α ⊗ β.

s 4 ≡

 4 P basic , D + {u(c, k)}---⊢ (∃) udel(c) by (9), (3), and [U/c] s 3 ≡ P basic , D + {u(c, k)}---⊢ ∃K u(c, K) ⊗ rest by (10) and [K/k] s 2 ≡ P basic , D + {u(c, k)}---⊢ u(c, k).del by (11) s 1 ≡ P basic , D---⊢ () Removing a user-defined constraint keeps a database valid. ⊓ ⊔ Proof (Property 2). By Theorem 1, it suffices to give the executional deduction s 1 , . . . , s 6 along the execution path D 1 , D 2 , D 3 , D 4 with D 1 = D+{n(k)}, D 2 = D, D 3 = D + {n(k + 1)}, and D 4 = D + {n(k + 1), u(c, k)}. s 6 ≡ P basic , D 1 ---⊢ (∃) uins(c) by (9), (3), and [U/c] s 5 ≡ P basic , D 1 ---⊢ ∃K n(K) ⊗ n(K).del ⊗ rest by (10) and [K/k] s 4 ≡ P basic , D 1 ---⊢ n(k).del ⊗ n(k + 1).ins ⊗ rest by (11) s 3 ≡ P basic , D 2 ---⊢ n(k + 1).ins ⊗ u(c, k).ins by (11) s 2 ≡ P basic , D 3 ---⊢ u(c, k).ins by (11) s 1 ≡ P basic , D 4 ---⊢ () As the initial database is valid, all quantifiers in D are less than k and hence all identifiers in the final database D + {n(k + 1), u(c, k)} are less than k + 1. ⊓ ⊔

Lemma 3 .

 3 . , D i • D i , . . . , D n of D 0 , . . . , D n , we have some i with 0 ≤ i ≤ n: M P ( D 0 , . . . , D n ) |= α ⊗ [β] iff (by definition of ⊗) M P ( D 0 , . . . , D i ) |= α and M P ( D i , . . . , D n ) |= [β] iff (by definition of ∧) M P ( D 0 , . . . , D i ) |= α, M P ( D i , . . . , D n ) |= β, and M P ( D i , . . . , D n ) |= state iff (by definition of state) M P ( D 0 , . . . , D n ) |= α and M P ( D n ) |= β. ⊓ ⊔ We can now extend Lemma 1 from a single rule application to a CHR derivation n with length n ∈ N. Consider two ground CHR states S and S ′ , two valid databases D and D ′ , a CHR program P consisting of range-restricted simplification rules, and its mapping P T R = P basic + {r T R : r ∈ P }. For D ∼ m s (S), D ′ ∼ m s (S ′ ), and an execution path π starting in D and ending in D ′ we have S n P S ′ iff P T R , π |= x (∃) n i=1 chr(R i )

1 PS 1 PS

 11 Induction step n -1 to n: Assume we have S n-′′ iff P T R , π ′ |= x (∃) n-1 i=1 chr(R i ) and π ′ starts in D and ends in D ′′ with D ′′ ∼ m s (S ′′ ). By Lemma 1, we have S ′′ r S ′ iff P basic +{r T R }, D ′′ , . . . , D ′ |= x (∃) chr(r) for a rule r ∈ P and for non-deterministic rule selection we haveS ′′ P S ′ iff P T R , D ′′ , . . . , D ′ |= x (∃) chr(R n ).-For the CHR side, we have S n P S ≡ S n-′′ P S ′ . -For the T R side, we infer P T R , π |= x (∃) n i=1 chr(R i ) for a path starting in D and ending in D ′ from the two executional entailment statements P T R , π ′ |= x (∃) n-1 i=1 chr(R i ) with π ′ starting in D and ending in D ′′ and P T R , D ′′ , . . . , D ′ |= x (∃) chr(R n ) by Property 3. ⊓ ⊔ Applicability of a CHR rule of a CHR program P in state S is expressed as executional entailment P T R , D |= x (∃) ♦ chr(R) for the database D ∼ m s (S).

Lemma 4 .

 4 Consider a ground CHR state S, a valid database D, a CHR program P consisting of range-restricted simplification rules, and its mappingP T R = P basic + {r T R : r ∈ P }. For D ∼ m s (S) we have No CHR rule is applicable in state S iff P T R , D |= x (∃) ¬♦ chr(R).Proof. By Lemma 1 and definition of the ♦ operator we have: P, D |= x (∃) ♦ chr(R) iff P, D, . . . , D ′ |= x (∃) chr(R) iff a rule is applicable. Hence, we have P, D |= x (∃) ♦¬ chr(R) iff P, D, . . . , D ′ |= x (∃) chr(R) fails iff no rule is applicable.⊓ ⊔

The symbol ⊗ stands for serial conjunction in T R and not for join of views on databases.

We use "+" to denote disjoint set union.

Note that we can add termination at failure by adding "D b consistent" to the loop condition easily, allowing to reason also on failed derivations.

The serial conjunction operator ⊗ is written as comma in FLORA-2.
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as all variables in the guard are bound by the substitution σ of the matching of the ground constraints with the head n h i=0 h i (X i,1 , . . . , X i,a h i ). By Theorem 1 we have P basic + {r T R }, D, . . . , D ′ |= x (∃) chr(r) iff the following executional deduction s 1 , . . . , s 5 for (∃) chr(r) holds.

by ( 4)

We link the necessary conditions for an executional deduction to a CHR rule application in the state transition system.

(i) Sequent s 4 holds (iff s 3 holds) and, iff

(ii) Sequent s 3 holds (iff s 2 holds) and, iff [START_REF] Schrijvers | The Constraint Handling Rules (CHR) web page[END_REF] holds with O d defined in Definition 4. Note that the guard is ground by application of σ.

} by repeated application of Property 2 and (2). Note that D ′ is valid if D ′′ is valid and that (for range-restricted ground CHR) the body is ground by application of σ.

By T R's transaction property, the query (∃) chr(r) either succeeds with all conditions in (i), (ii), and (iii) met, or rolls back to the initial database state which proves (5): For D ∼ m s (S), a successful invocation of chr(r) updates D to D ′ iff S r S ′ with D ′ ∼ m s (S ′ ).

⊓ ⊔ Definition 9 (state). The T R-constant state is defined by ♦(φ ∨ ¬φ).

The formula state succeeds on paths of length one. We assume that state is implemented by O d to avoid the need for disjunction. Definition 10. The abbreviation [φ] is defined by φ ∧ state.

The formula [φ] restricts possible satisfaction of the formula φ to paths of length one. We need this when using negation as the formula ¬♦φ is satisfied for for all paths of length greater than one while the formula [¬♦φ] denotes that φ cannot execute starting from the current database.

The reverse of Property 3 holds in the important case, when we fix the length of one of its sub-formulas: Proof (Theorem 2). We prove each direction in turn. We have m s (S) ∼ D, m s (S ′ ) ∼ D ′ , and π starting in D and ending in D ′ . Soundness: By Lemma 2, we have ⊓ ⊔