
HAL Id: hal-00202314
https://hal.science/hal-00202314

Submitted on 8 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving First-Order Constraints in the Theory of the
Evaluated Trees

Thi-Bich-Hanh Dao, Khalil Djelloul

To cite this version:
Thi-Bich-Hanh Dao, Khalil Djelloul. Solving First-Order Constraints in the Theory of the Evaluated
Trees. Recent Advance in constraints. Lecture notes in computer science. Selected revised paper
Csclp 2006., Apr 2007, France. pp.LNAI, Vol 4651. P 108-123. �hal-00202314�

https://hal.science/hal-00202314
https://hal.archives-ouvertes.fr

Solving First-Order Constraints in the Theory of

the Evaluated Trees

Thi-Bich-Hanh Dao1 and Khalil Djelloul2

1 Laboratoire d’Informatique Fondamentale d’Orléans, France.
2 Faculty of Computer Science, University of Ulm, Germany.

Abstract. We present in this paper a first-order extension of the solver
of Prolog III, by giving not only a decision procedure, but a full first-
order constraint solver in the theory T of the evaluated trees, which is
a combination of the theory of finite or infinite trees and the theory
of the rational numbers with addition, subtraction and a linear dense
order relation. The solver is given in the form of 28 rewriting rules which
transform any first-order formula ϕ into an equivalent disjunction φ of
simple formulas in which the solutions of the free variables are expressed
in a clear and explicit way. The correctness of our algorithm implies the
completeness of a first-order theory built on the model of Prolog III.

1 Introduction

The algebra of finite or infinite trees plays a fundamental role in computer sci-
ence: it is a model for data structures, program schemes and program executions.
As early as 1976, G. Huet proposed an algorithm for unifying infinite terms, that
is solving equations in that algebra [13]. B. Courcelle has studied the properties
of infinite trees in the scope of recursive program schemes [7]. A. Colmerauer
has described the execution of Prolog II, III and IV programs in terms of solving
equations and disequations in that algebra [4, 3, 1].

The unification of finite terms, i.e. solving conjunctions of equations in the
theory of finite trees has first been studied by A. Robinson [24]. Some algo-
rithms with better complexities have been proposed after by M.S. Paterson and
M.N.Wegman [22] and A. Martelli and U. Montanari [21]. A good synthesis
on this field can be found in the paper of J.P. Jouannaud and C. Kirchner
[15]. Solving conjunctions of equations on infinite trees has been studied by G.
Huet [13], by A. Colmerauer [5] and by J. Jaffar [14]. Solving conjunctions of
equations and disequations on finite or infinite trees has been studied by H.J.
Burckert [2] and A. Colmerauer [4]. An incremental algorithm for solving con-
junctions of equations and disequations on rational trees has then been proposed
by V.Ramachandran and P. Van Hentenryck [23].

On the other hand, M.J. Maher has axiomatized the theory of finite or infinite
trees and showed its completeness using a decision procedure which transforms
any first-order formula into a Boolean combination of quantified conjunctions
of atomic formulas [19]. A much more general decision procedure was recently
given by K. Djelloul in the frame of decomposable theories [12].

We have then extended Maher’s theory of finite or infinite trees by giving
a complete first-order axiomatization of the evaluated trees which are a com-
bination of finite or infinite trees with construction operations and the rational
numbers with addition, subtraction and a linear dense order relation [9]. This
theory, denoted by T , reflects essentially to Prolog III which has been modeled
by A. Colmerauer [3] using a combination of trees and rational numbers. Never-
theless, the solver of Prolog III is not able to solve arbitrary quantified first-order
constraints built on a combination of trees and rational numbers.

A first attempt of an extension of the solver of Prolog III was given in [11]. It
consists in a decision procedure which for every proposition (formula without free
variables) gives either true of false in T . Unfortunately, this decision procedure is
not able to solve first-order constraints having free variables. In fact, it does not
warrant that the solutions of the free variables of a solved formula are expressed
in a clear and explicit way and can even produce, starting from a formula ϕ which
contains free variables, an equivalent solved formula φ having free variables but
being always false (or always true) in T . The appropriate solved formula of ϕ in
this case should be the formula false (or the formula true) instead of φ.

Much more elaborated algorithms are then needed, specially when we want
to induce solved formulas expressing solutions of complex first-order constraint
satisfaction problems in T . Of course, our goal in these kinds of problems is not
only to know if there exist solutions or not, but to express these solutions in the
form of a solved formula which is either the formula true (i.e. the problem is
always satisfiable) or the formula false (i.e. the problem is always unsatisfiable)
or a simple first-order formula which is neither equivalent to true nor to false
and where the solutions of the free variables are expressed in a clear and explicit
way. Algorithms which are able to produce such a formula are called first-order
constraint solvers.

We present in this paper, not only a decision procedure, but a full first-
order constraint solver which gives clear and explicit solutions for any first-order
constraint satisfaction problem in T . Our solver is not simply a combination of an
algorithm over trees with one over rational numbers, but a powerful mechanism
to solve mixed constraints. It includes full systems of typing deduction and
constraint simplification and propagation. One of the major difficulties in this
work resides in the fact that (i) the theory of finite or infinite trees does not
accept full elimination of quantifiers, (ii) every algorithm deciding propositions
in the theory of finite or infinite trees has a non-elementary complexity [25] and
(iii) the function symbols + and − of T have two different behaviors whether
they are applied on trees or rational numbers. For example +(1, 1) is the rational
number 2, while +(1, f0) is the tree whose root is labeled + and whose sons are
1 and the tree’s constant f0.

One of the practical applications of our solver is a powerful extension of the
internal solver of Prolog III by allowing the user to handle general first-order
constraints and solve them in T . The solver will then give the solutions of the
free variables in all the models of T and present them in a clear and explicit
way. As far as we know, this is the first algorithm which is able to do a such

work. Solving quantified constraints over trees and rational numbers can also be
used in PSPACE-complete decision problems from areas such as planning under
uncertainty, adversary game playing, and model checking. For example, in game
playing we may want to find a winning strategy for all possible moves of the
opponent. In a manufacturing problem it may be required that a configuration
must be possible for all possible sequences of user choices. Finally, when planning
in a safety critical environment, such as a nuclear power station, we require that
an action is possible for every eventuality.

The paper is organized in four sections followed by a conclusion. This intro-
duction is the first section. In Section 2 we present the theory of the evaluated
trees and introduce an example of a complex constraint in this theory. In Sec-
tion 3, we define the notions of basic formulas, blocks and solved blocks in T

which are particular conjunctions of atomic formulas. We end this section by
showing that every quantified solved block can be decomposed in three embed-
ded sequences of quantifications having particular properties which enable us
to eliminate some quantifiers. In Section 4, we present the working formulas,
the general solved formulas and the algorithm of constraint solving in T . The
algorithm is presented in the form of 28 rewriting rules and transforms an initial
working formula of depth d into a final working formula of depth less than or
equal to three. The main idea behind this algorithm consists in (1) a top-down
simplification and propagation of constraints. In each level, quantified blocks are
locally solved, decomposed and then propagated to the embedded sub-formulas.
Inconsistent sub-formulas are also removed (2) a bottom-up elimination of quan-
tifiers and working formulas’ depth decrease using distribution. The disjunction
φ of general solved formulas extracted from the final working formula is either
the formula false or true or a formula having at least one free variable, being
equivalent neither to false nor to true in T , and where the solutions of the free
variables are expressed in a clear and explicit way. We end this section by giving
an example of a constraint having two free variables but being always false in T .

The algorithm represented by a set of rewriting rules and the general solved
formulas are our main contribution in this paper. The expressiveness and clear-
ness of the solutions of the free variables in the final solved formula are our main
goal in this work.

2 Theory T of evaluated trees

2.1 Preliminaries

Let F be an infinite set of function symbols containing the symbols +, −, 0 and
1. To each element of F is associated a non-negative integer, its arity. The arities
of +, −, 0 and 1 are respectively 2, 1, 0 and 0. Let R = {<,num , tree } be the
set of relation symbols, of respective arities 2, 1 and 1. Let V be an infinite
countable set of variables. A term is an expression of the form x or ft1 . . . tn
where n ≥ 0, f an n-ary symbol in F and the ti’s are shorter terms. A formula
is an expression of the forms:

s= t, rt1..tn, true, false, ¬(ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ψ), (ϕ↔ψ), ∃xϕ, ∀xϕ,

where x ∈ V , s, t and the ti’s are terms, r is an n-ary relation symbol in R
and ϕ and ψ are shorter formulas. The first four forms are called atomic. An
occurrence of a variable x in a formula is bound if it occurs in a sub-formula of
the form (∃xϕ) or (∀xϕ). It is free otherwise. The free variables of a formula are
those which have at least a free occurrence in the formula. For each formula ϕ,
we denote by var(ϕ) the set of all the free variables of ϕ. Let x̄ = x1 . . . xn and
ȳ = y1 . . . yn be two vectors of variables of the same length. The empty vector
is denoted by ε. Let ϕ and ϕ(x̄) be formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,
∀x̄ ϕ for ∀x1...∀xn ϕ,
∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →

∧

i∈{1,...,n}
xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

Semantically, the new quantifiers ∃? and ∃! simply mean ”at most one” and
”one and only one”.

2.2 Axiomatization of T

Let a be a positive integer and let t1, ..., tn be terms. Let us denote by:
– t1 < t2, the term < t1t2,
– t1 + t2, the term +t1t2,
– t1 + t2 + t3, the term +t1(+t2t3),
– 0t1, the term 0,

– at1, the term t1 + · · · + t1
︸ ︷︷ ︸

a

,

– −at1, the term (−t1) + · · · + (−t1)
︸ ︷︷ ︸

a

.

The theory T of the evaluated trees is the set of first-order propositions of
the following forms:

1 ∀x̄∀ȳ ((tree f x̄) ∧ (tree f ȳ) ∧ f x̄ = f ȳ) →
∧

i
xi = yi ,

2 ∀x̄∀ȳ f x̄ = gȳ → num f x̄ ∧ num gȳ ,

3 ∀x̄∀ȳ ((
∧

i∈I
num xi) ∧ (

∧

j∈J
tree yj)) → (∃!z̄

∧

k∈K
(tree zk ∧ zk = tk (x̄ , ȳ , z̄))),

4 ∀x∀y x < y → (num x ∧ num y),
5 ∀x∀y num x + y ↔ num x ∧ num y ,

6 ∀xnum − x ↔ num x ,

7 ∀x̄ tree hx̄ ,

8 ∀x∀y (num x ∧ num y) → x + y = y + x ,

9 ∀x∀y∀z (num x ∧ num y ∧ num z) → x + (y + z) = (x + y) + z ,

10 ∀xnum x → x + 0 = x ,

11 ∀xnum x → x + (−x) = 0 ,

12n ∀xnum x → (nx = 0 → x = 0),
13n ∀xnum x → ∃!y num y ∧ ny = x ,

14 ∀xnum x → ¬x < x ,

15 ∀x∀y∀z num x ∧ num y ∧ num z → ((x < y ∧ y < z) → x < z),
16 ∀x∀y (num x ∧ num y) → (x < y ∨ x = y ∨ y < x),
17 ∀x∀y (num x ∧ num y) → (x < y → (∃z num z ∧ x < z ∧ z < y)),
18 ∀xnum x → (∃y num y ∧ x < y),
19 ∀xnum x → (∃y num y ∧ y < x),
20 ∀x∀y ∀z (num x ∧ num y ∧ num z) → (x < y → (x + z < y + z)),
21 ∀x (¬num x) ↔ tree x

22 0 < 1,
where n is a non-null integer, f and g are two distinct function symbols taken
from F , h ∈ F − {+,−, 0, 1}, x, y, z are variables, x̄ is a vector of variables

xi, ȳ is a vector of variables yi, z̄ is a vector of distinct variables zi, I and J

are finite possibly empty sets, and where tk(x̄, ȳ, z̄) is a term which begins by
a function symbol fk element of F − {0, 1} followed by variables taken from
x̄ or ȳ or z̄. Moreover, if fk ∈ {+,−} then tk(x̄, ȳ, z̄) contains at least one
variable taken from ȳ or z̄. The axiom 3 shows that all models of T contain
infinite trees. In fact we have T |= ∃!z z = fz ∧ tree z for I = J = ∅. In this
case, the tree z is an infinite tree of the form f(f(f(...))). Note that we have not
T |= ∀xnum x → (∃!z z = x+x∧tree z), since we have T |= num x ↔ num (x+x)
according to axiom 5 which contradicts tree z and z = x + x. This is why we
have a condition if fk belongs to {+,−}.

This theory has as model (possibly) infinite trees whose nodes are labelled
by Q∪F such that each subtree labelled by Q∪{+,−} is evaluated in Q and
reduced to a leaf labeled by an element of Q.

Let us now introduce an example of constraints in T . Let us consider the
following two-player game: An ordered pair (n,m) of non-negative rational num-
bers is given and one after another each player subtracts 1 or 2 from n or m but
keeping n and m non-negative. The first player who cannot play any more has
lost.

Suppose that it is the turn of player A to play. A position (n,m) is called
k-winning if, no matter the way the other player B plays, it is always possible
for A to win, after having made at most k moves. The constraint expressing that
a position x is k-winning is:

winningk(x) ↔






∃ymove(x, y) ∧ ¬(∃xmove(y, x)∧
¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(. . .∧
¬(∃ymove(x, y) ∧ ¬(∃xmove(y, x) ∧ ¬(false)) . . .)

︸ ︷︷ ︸

2k






Each position (n,m) is represented by c(i, j) with c a function symbol of arity 2
and i, j ∈ Q. The constraint move(x, y) is defined by








(∃i∃j x = c(i, j) ∧ y = c(i− 1, j) ∧ i > 1 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i− 2, j) ∧ i > 2 ∧ j > 0)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 1) ∧ i > 0 ∧ j > 1)∨
(∃i∃j x = c(i, j) ∧ y = c(i, j − 2) ∧ i > 0 ∧ j > 2)∨
(¬(∃i∃j x = c(i, j) ∧ num i ∧ num j) ∧ x = y)








By replacing the definition of move in the constraint winningk(x), we have a
first-order constraint with one free variable x in the theory T of evaluated trees.
Solving this constraint means finding all the positions x which are k-winning.

3 Block and quantified block in T

We will now present structured formulas called blocks and show some of their
properties. Essentially a block is a conjunction of atomic formulas where all
the variables are well typed and which gives enough informations to be locally
solved. We will also define a mechanism to decompose each quantified block in
three quantified blocks having interesting properties that will help us for solving
first-order constraints on quantified blocks.

3.1 Basic formula and block in T

Suppose that the variables of V are ordered by a linear strict and dense order
relation without endpoints, denoted by “ ≻ ”. For each formula ϕ, the bound
variables are renamed such that for each sub-formula of ϕ we have x ≻ y for
each bound variable x and each free variable y. We denote by Σn

i=1
ti the term

t1 + . . .+ tn + 0 with t1 + . . .+ tn the term t1 + . . . + tn where all the terms 0
have been removed.

Let f ∈ F − {0, 1}, a0 ∈ Z and ai ∈ Z. We call leader of the equation x0 =
fx1...xn or x0 = x1 the variable x0. We call leader of the formula Σn

i=1
aixi = a01

the greatest variable xk (in the order ≻) such that ak 6= 0.
Let f ∈ F , a0 ∈ Z and ai ∈ Z. We call basic formula every conjunction α of

formulas of the form:

– true, false, numx, tree x ,
– x = y, x = fy1...yn, Σn

i=1
aixi = a01, Σn

i=1
aixi < a01.

The formulas num x and tree x are called typing constraints. The formulas x = y,
x = fy1...yn, Σn

i=1
aixi = a01 are called equations. The formula Σn

i=1
aixi < a01

is called inequation. Let α be a basic formula:
(1) We say that “num x is a consequence of α” iff α contains at least one of

the following sub-formulas: num x , x = y∧num y , y = x∧num y , x = −y∧num y ,
y = −x∧num y , z = y+x∧num z , z = x+y∧num z , x = y+z∧num z ∧num y ,
x = 0, x = 1, Σiaixi = a01 or Σiaixi < a01 and x is one of the xi’s.

(2) We say that “tree x is a consequence of α” iff α contains at least one of
the following sub-formulas: tree x , x = y ∧ tree y , y = x∧ tree y , x = −y ∧ tree y ,
y = −x∧ tree y , x = y+ z ∧ tree z , x = z+ y ∧ tree z , y = x+ z ∧ tree y ∧ num z ,
y = z + x ∧ tree y ∧ num z , x = hy1...yn, with h ∈ F − {+,−, 0, 1}.

(3) We call tree-section of α the conjunction αt of the sub-formulas of α of
the form:

– true, tree x ,
– x = y or x = fy1...yn, with f ∈ F −{0, 1} and where x is such that tree x is

a sub-formula of α.

This tree-section αt is called formatted iff all the left-hand sides of the equations
of αt are distinct and for each equation x = y of αt we have x ≻ y.

(4) We call numeric-section of α the conjunction αn of sub-fomulas of α of
the form:

– true, false, Σn
i=1

aixi = a01, Σn
i=1

aixi < a01, num x ,
– x = y, x = −y, x = y+ z, where x is such that num x is a sub-formula of α.

This numeric-section αn is called consistent iff T |= ∃x̄ αn with x̄ = var(αn) and
formatted iff

– αn does not contain sub-formulas of the form x = y, x = −y, x = y + z,
0 = a01, 0 < a01, with a0 ∈ Z

– αn is consistent and each leader of the equations of αn has one occurrence
in only one the equations of αn and no occurrence in the inequations of αn.

(5) The variable u is called reachable in ∃x̄α if u is a free variable in ∃x̄α or
α has a sub-formula of the form y = t(u) ∧ tree y with t(u) a term containing u
and y a reachable variable. In the last case, the equation y = t(u) is also called
reachable in ∃x̄α.
Example: In the formula ∃xyz w = fxy∧z = v∧ tree w , the variables w, v, x, y
are reachable because w, v are free and x and y occur in the sub-formula w =
fxy ∧ tree w . The variable z is not reachable and since z is bound and v is free,
they must be such that z ≻ v. The equation w = fxy is reachable while the
equation z = v is not.

We call block every basic formulas α such that for each variable x in α either
num x or tree x is a sub-formula of α and α does not contain sub-formulas of the
form:

– x = 0 ∧ tree x , x = 1 ∧ tree x ,
– x = y ∧ num x ∧ tree y , x = y ∧ tree x ∧ num y ,
– x = −y ∧ tree x ∧ num y , x = −y ∧ num x ∧ tree y
– x = y + z ∧ num x ∧ tree y , x = y + z ∧ num x ∧ tree z , x = hȳ ∧ num x ,
– x = y + z ∧ tree x ∧ num y ∧ num z ,
– Σn

i=1
aixi = a01 ∧ tree xk , Σn

i=1
aixi < a01 ∧ tree xk

with h ∈ F − {+,−, 0, 1}, k ∈ {1, ..., n}, a0 ∈ Z and ai ∈ Z.
Since each variable x in a block is typed i.e. occurs in a sub-formula of the

form num x or tree x , every block α can be divided into two disjoint sections: a
tree-section and a numeric-section.

A block α without equations is called relation block. A block α without in-
equations and where each variable has an occurrence in at least one of the equa-
tions of α is called equation block. A block α is called solved iff its tree-section
and numerical-section are formatted.

3.2 Decomposition of quantified solved blocks

Let ψ be a formula. Let x̄ be a vector of variables and α a solved block such
that for all unreachable quantified variable u in ∃x̄α and all reachable quantified
variable v in ∃x̄α we have u ≻ v. We call decomposition of the formula ∃x̄α ∧ ψ
the formula

∃x̄1 α1 ∧ (∃x̄2 α2 ∧ (∃x̄3 α3 ∧ ψ))), (1)

obtained as follows : Let X be the set of the variables in x̄. Let us decompose
the set X into two disjoint subsets: Xr (the set of the elements of X which are
reachable in ∃x̄α) and Xu. Let Lead be the set of the leaders of the equations
of α. We have:
− x̄1 is the vector of the variables of Xr.
− x̄2 is the vector of the variables of Xu − Lead.
− x̄3 is the vector of the variables of Xu ∩ Lead.

− α1 is of the form α1

1
∧ α1

2
where α1

1
is the conjunction of all the equations in

∃x̄α whose leader is reachable, α1

2
is the conjunction of all the typing constraints

of α which concern variables of var(α1

1
).

− α2 is of the form α2

1
∧ α2

2
where α2

1
is the conjunction of all the inequations

of α and α2

2
is the conjunction of all the typing constraints of α which do not

concern variables of x̄3.
− α3 is of the form α3

1
∧ α3

2
where α3

1
is the conjunction of the other equations

and α3

2
is the conjunction of all the typing constraints of α which concern the

variables of var(α3

1
). The restriction on the order ≻ of the quantified unreach-

able and reachable variables is due to an aim to get as leader of the equations
of the numeric section of α unreachable variables. If one quantified leader is
reachable then we deduce that all the quantified variables of this equation are
reachable. This condition will help us for the algorithm of resolution given at
Section 4. The intuitions behind this decomposition come from an aim to de-
compose a quantified solved block into three embedded sections each one having
particular properties that enable us either to remove quantifiers or make special
distributions in ψ and reduce the size of the formula ∃x̄α ∧ ψ.

Let A be the set of the solved blocks. Let A1 be the set of the formulas of
the form ∃x̄1α1, where α1 is a solved equation block and all the variables of x̄1

are reachable in ∃x̄1α1. Let A2 be the set of the solved relation blocks.

Property 3.2.1 For all decomposed formula of the form (1) we have : ∃x̄1α1 ∈
A1, α2 ∈ A2, α3 ∈ A and T |= ∀x̄2 α2 → ∃!x̄3α3.

Example 3.2.2 Let v, w, x, y, z be variables such that w ≻ y ≻ z ≻ x ≻ v. Let
us decompose the formula

∃wxyz





v = fvx ∧ w + 2x+ (−2)z = 1 ∧ y + 3z = 0∧
z < 1 ∧ 3z + 2x < 0∧
tree v ∧ num w ∧ num x ∧ num y ∧ num z



 (2)

The reachable variables in the formula (2) are v and x. We have Xr = {x, v},
Xu = {w, y, z} and Lead = {v, w, y}. Since w ≻ y ≻ z ≻ x then the formula (2)
is equivalent in T to the decomposed formula





∃x v = fvx ∧ tree v ∧ num x∧
(∃z z < 1 ∧ 3z + 2x < 0 ∧ num z ∧ numx ∧ tree v∧
(∃wy w+2x+(−2)z=1 ∧ y+3z=0 ∧ num w ∧ num x ∧ num y ∧ num z))





Note that the elements of A1 does not accept elimination of quantifiers, this
is due to the fact that all the variables of x̄1 are reachable in ∃x̄1 α1. Indeed in
the formula ∃x v = fvx the quantification ∃x can not be eliminated in T .

In all what follows we will use the notations x̄1, x̄2, x̄3, α1, α2,α3 to refer to
the decomposition of the formula ∃x̄α.

4 Solving first-order constraints in T

4.1 Working and general solved formulas

Definition 4.1.1 A normalized formula ϕ of depth d ≥ 1 is a formula of the
form

¬(∃x̄ α ∧
∧

i∈I ϕi), (3)

with I a finite (possibly empty) set, α a basic formula and the ϕi normalized
formulas of depth di and d = 1 + max{0, d1, ..., dn}.

Property 4.1.2 Every formula is equivalent in T to a normalized formula.

Definition 4.1.3 A working formula is a normalized formula in which all the
occurrences of ¬ are of the form ¬k with k ∈ {0, ..., 9} and such that each
occurrence of a sub-formula of the form

φ = ¬k(∃x̄ αc ∧ αp ∧
∧

i∈I ϕi), (4)

has αp = true if k = 0 and satisfies the first k conditions of the following
condition list if k > 0. Here αp is a solved block and is called propagated con-
straint section, αc is a basic formula and is called core constraint section, the ϕi

are working formulas, and in the conditions: βp ∧ βc is the conjunction of the
equations and relations of the immediate top-working formula ψ of φ if it exists.
i.e. ψ = ¬k(∃ȳβc ∧ βp ∧ φ∧

∧

j∈J φj) where φ is the formula (4) and φj are any
working formulas.

1. if ψ exists then T |= αp ∧ αc → βp ∧ βc, and the tree-sections of αp and
βc ∧ βp have the same set of left-hand side of equations,

2. the tree-section of αp ∧ αc is formatted and the formula αp ∧ αc does not
contain tree x ∧ num x for any variable x,

3. αp ∧ αc is a block,
4. the numeric-section of αp ∧ αc is consistent, and we have u ≻ v for u any

unreachable variable in x̄ and v any reachable variable in x̄,
5. αp ∧ αc is a solved block,
6. αp is the formula βc ∧βp if ψ exists, and is the formula true otherwise. The

formula αc is a solved block and for each relation num x (or tree x) in αp, if
x does not occur in an equation or inequation of αc then num x (resp. tree x)
does not occur in αc,

7. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃x̄2 αc2 ∧ (∃ε true))),
8. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε αc2 ∧ (∃ε true))),
9. (∃x̄ αc) is decomposable into (∃x̄1 αc1 ∧ (∃ε true ∧ (∃ε true))).

We use k in order to be able to control the execution of our rewriting rules on
working formulas. We strongly insist on the fact that ¬k does not mean that the
normalized formula satisfies only the kth condition but all the conditions i with
1 ≤ i ≤ k. We call initial working formula a working formula of the form

¬6(∃ε true ∧
∧

i∈I

ϕi)

with ϕi working formulas where all negation symbols ¬k have k = 0 and all
propagated constraint sections are reduced to true. We call final working formula
a formula of the form

¬7(∃ε true ∧
∧

i∈I

¬8 (∃x̄i α
c
i ∧ α

p
i ∧

∧

j∈Ji

¬9 (∃ȳij β
c
ij ∧ β

p
ij))), (5)

where all the βc
ij are different from true.

Definition 4.1.4 A general solved formula is a formula of the form

∃x̄1 α1 ∧ α2 ∧
∧

i∈I

¬(∃ȳ1

i β
1

i), (6)

where ∃x̄1 α1 ∈ A1, α2 ∈ A2, ∃ȳ1

i β
1

i ∈ A1, all the α1 ∧ α2 ∧ β1

i are solved blocks
and all the β1

i are different from true.

According to the properties of ¬8 and ¬9, in the final working formula (5),
α

p
i = true and β

p
ij = α

p
i ∧ αc

i . Thus the formula (5) is equivalent in T to the
following disjunction of general solved formulas

∨

i∈I

(∃x̄i α
c
i ∧

∧

j∈Ji

¬(∃ȳij β
c
ij)) (7)

Property 4.1.5 Let ϕ be a general solved formula of the form (6). If ϕ has no
free variables then ϕ is the formula true, otherwise neither T |= ϕ nor T |= ¬ϕ
and the solutions of the free variables of ϕ are explicit.

This result is very important because it shows that for each solved formula ϕ

containing at least one free variable there exists a set of solutions and a set
of non-solutions, i.e. ϕ is neither true nor false in T . A similar result has been
shown for the finite trees of J. Lassez [17] and the rational trees of M. Maher [20].
Note also that in all our proofs [8] we have not used the famous independence of
inequations [4, 16, 6, 18] but only the condition that the signature of T is infinite
(F is infinite) which implies in this case the independence of the inequations.

4.2 Main idea

The general algorithm for solving first-order constraints in T uses a system of
rewriting rules. The main idea is to transform an initial working formula of
depth d into a final working formula of depth less than or equal to three. The
transformation is done in two steps:

(1) The first step is a top-down simplification and propagation. In each sub-
working formula, αc ∧ αp is transformed to a solved block, then ∃x̄αc is decom-
posed into three parts as in subsection 3.2. The third part is eliminated and
added to the core-constraint section of the immediate sub-working formulas us-
ing a special property of the quantifier ∃!. The constraints of the two other parts

in αp are propagated to the propagated-constraint section of the immediate sub-
working formulas. In this step, the rules 1 to 24 are applied and transform the
initial working formula into a working formula where each negation symbol is of
the form ¬7.

(2) The second step is a bottom-up simplification and elimination of quan-
tifiers. This step is done by the rules 25 to 28. In each sub-working formula of
depth one or two, the rule 25 eliminates quantified variables of the second part
of the decomposition (the third one had been already removed in the first step).
The rule 26 eliminates the constraints of the second part in the deepest level.
Each sub-working formula of depth 3 is transformed step by step to a conjunction
of working formulas of depth 2 by the rule 28 using a property of the quantifier
∃?. The transformations in this step can create new sub-working formulas where
the first step needs to be done. At the end of the transformation, we obtain a
final working formula of depth less than or equal to 3.

4.3 Rewriting rules

We present in Figure 1 the rewriting rules which transform an initial working
formula into an equivalent final working formula. To apply the rule p1 =⇒ p2 to
the working formula p means to replace in p, a sub-formula p1 by the formula
p2, by considering that the connector ∧ is associative and commutative.

In all these rules, α is a basic formula, ϕ and ψ are conjunctions of working
formulas.

In the rules 1 to 14, the equations and relations in αc and αp are mixed by
considering the connector ∧ associative and commutative. In these rules, except
the rule 6, all modifications in the right hand side are done in αc, since αp is a
solved block.

In the rule 2, f and g are two distinct function symbols taken from F . The
rules 4, 6, 7, are applied only if x ≻ y. This condition prevents infinite loops and
makes the procedure terminating. In the rule 5, the equation x = fz1...zn does
not belong to αp. In the rule 6, if the equation x = fz1...zn belongs to αp, then
x = y ∧ tree y is moved to αp. In the rule 7, the equation x = z does not belong
to αp.

In the rule 9, a0 > 0. In the rules 13 and 14 the variable xk is the leader of
the equation Σiaixi = a01 and bk 6= 0. Moreover, the equation Σjbjxj = b01
does not belong to αp. In the rule 14, the relation Σjbjxj < b01 does not belong
to αp and λ = 1 if ak > 0 and λ = −1 otherwise.

In the rule 15, the tree section of αc ∧ αp is formatted and there is no sub-
formula in αc ∧αp of the form num x ∧ tree x . In the rule 16 respectively 17, the
typing constraint num z , respectively tree z is not in αc∧αp and is a consequence
of αc ∧ αp. In the rule 18, z does not have typing constraints in αc ∧ αp and
neither num z nor tree z is a consequence of αc ∧ αp.

In the rule 19, αc∧αp is a block. In the rule 20, the numeric section of αc∧αp

is inconsistent. In the rule 21, the unreachable variables in x̄ are renamed if
necessary such that u ≻ v for each unreachable variable u and each reachable
variable v in x̄ and the numeric section of αc ∧αp is consistent. The consistency

Fig. 1. The rewriting rules

1 ¬
1(∃ūnum x ∧ tree x ∧ α ∧ ϕ) =⇒ true

2 ¬
1(∃ū x = fȳ ∧ x = gz̄ ∧ tree x ∧ α ∧ ϕ) =⇒ true

3 ¬
1(∃ū x = x ∧ α ∧ ϕ) =⇒ ¬

1(∃ū α ∧ ϕ)
4 ¬

1(∃ū y = x ∧ tree x ∧ α ∧ ϕ) =⇒ ¬
1(∃ū x = y ∧ tree x ∧ α ∧ ϕ)

5 ¬
1

[
∃ū x = fy1...yn ∧ x = fz1...zn∧

tree x ∧ α ∧ ϕ

]

=⇒ ¬
1

[
∃ū x = fy1...yn ∧

∧

i
yi = zi∧

tree x ∧ α ∧ ϕ

]

6 ¬
1

[
∃ū x = y ∧ x = fz1...zn∧

tree x ∧ tree y ∧ α ∧ ϕ

]

=⇒ ¬
1

[
∃ū x = y ∧ y = fz1...zn∧

tree x ∧ tree y ∧ α ∧ ϕ

]

7 ¬
1(∃ū x = y ∧ x = z ∧ tree x ∧ α ∧ ϕ) =⇒ ¬

1(∃ū x = y ∧ y = z ∧ tree x ∧ α ∧ ϕ)

8 ¬
4(∃ū 0 = 0 ∧ α ∧ ϕ) =⇒ ¬

4(∃ū α ∧ ϕ)
9 ¬

4(∃ū 0 < a01 ∧ α ∧ ϕ) =⇒ ¬
4(∃ū α ∧ ϕ)

10 ¬
4

[
∃ū x = y∧

num x ∧ num y ∧ α ∧ ϕ

]

=⇒ ¬
4

[
∃ū x+ (−1y) = 0∧
num x ∧ num y ∧ α ∧ ϕ

]

11 ¬
4

[
∃ū x = −y∧

num x ∧ num y ∧ α ∧ ϕ

]

=⇒ ¬
4

[
∃ū x+ y = 0∧
num x ∧ num y ∧ α ∧ ϕ

]

12 ¬
4

[
∃ū x = y + z ∧ num x∧

num y ∧ num z ∧ α ∧ ϕ

]

=⇒ ¬
4

[
∃ū x+ (−1y) + (−1z) = 0∧
num x ∧ num y ∧ num z ∧ α ∧ ϕ

]

13 ¬
4

[
∃ū Σn

i=1aixi = a01∧
Σn

i=1bixi = b01∧
α ∧ ϕ

]

=⇒ ¬
4

[
∃ū Σn

i=1aixi = a01∧
Σn

i=1(bkai − akbi)xi = (bka0 − akb0)1∧
α ∧ ϕ

]

14 ¬
4

[
∃ū Σn

i=1aixi = a01∧
Σn

i=1bixi < b01∧
α ∧ ϕ

]

=⇒ ¬
4

[
∃ū Σn

i=1aixi = a01∧
Σn

i=1λ(bkai − akbi)xi < (bka0 − akb0)1∧
α ∧ ϕ

]

15 ¬
1(∃x̄ αc

∧ αp
∧ ϕ) =⇒ ¬

2(∃x̄ αc
∧ αp

∧ ϕ)
16 ¬

2(∃x̄ αc
∧ αp

∧ ϕ) =⇒ ¬
1(∃x̄num z ∧ αc

∧ αp
∧ ϕ)

17 ¬
2(∃x̄ αc

∧ αp
∧ ϕ) =⇒ ¬

1(∃x̄ tree z ∧ αc
∧ αp

∧ ϕ)

18 ¬
2(∃x̄ αc

∧ αp
∧ ϕ) =⇒

[
¬

1(∃x̄num z ∧ αc
∧ αp

∧ ϕ)∧
¬

1(∃x̄ tree z ∧ αc
∧ αp

∧ ϕ)

]

19 ¬
2(∃x̄ αc

∧ αp
∧ ϕ) =⇒ ¬

3(∃x̄ αc
∧ αp

∧ ϕ)
20 ¬

3(∃x̄ αc
∧ αp

∧ ϕ) =⇒ true

21 ¬
3(∃x̄ αc

∧ αp
∧ ϕ) =⇒ ¬

4(∃x̄ αc
∧ αp

∧ ϕ)
22 ¬

4(∃x̄ αc
∧ αp

∧ ϕ) =⇒ ¬
5(∃x̄ αc

∧ αp
∧ ϕ)

23 ¬
7

[
∃x̄ αc

∧ αp
∧ ϕ∧

¬
5(∃ȳ βc

∧ βp
∧ ψ)

]

=⇒ ¬
7

[
∃x̄ αc

∧ αp
∧ ϕ∧

¬
6(∃ȳ γc

∧ γp
∧ ψ)

]

24 ¬
6

[
∃x̄ αc

∧ αp
∧

∧

i
¬

0(∃ȳiβ
c
i ∧ β

p

i ∧ ϕi)

]

=⇒ ¬
7

[
∃x̄1x̄2 αc1

∧ αc2
∧ αp

∧
∧

i
¬

1(∃ȳix̄
3γc

i ∧ γ
p

i ∧ ϕi)

]

25 ¬
7

[
∃x̄ αc

∧ αp
∧

∧

i∈I
¬

9(∃ȳiβ
c
i ∧ β

p

i)

]

=⇒ ¬
8

[
∃x̄1αc1

∧ αc2∗
∧ αp

∧
∧

i∈I′
¬

9(∃ȳiβ
c
i ∧ β

p∗
i)

]

26 ¬
7

[
∃x̄ αc

∧ αp
∧ ϕ∧

¬
8(∃ȳβc

∧ βp)

]

=⇒

[
¬

7(∃x̄ αc
∧ αp

∧ ϕ ∧ ¬
9(∃ȳβc1

∧ βp))∧
∧

i∈I
¬

1(∃x̄ȳβp
∧ βc1

∧ βc2∗
i ∧ ϕ0)

]

27 ¬
7

[
∃x̄ αc

∧ αp
∧ ϕ∧

¬
9(∃εtrue ∧ βp)

]

=⇒ true

28 ¬
7







∃x̄ αc
∧ αp

∧ ϕ∧

¬
8





∃ȳ βc
∧ βp

∧
∧

i∈I

¬
9(∃z̄i γ

c
i ∧ γ

p

i)











=⇒





¬
7(∃x̄ αc

∧ αp
∧ ϕ ∧ ¬

8(∃ȳ βc
∧ βp))∧

∧

i∈I

¬
6(∃x̄ȳz̄i δ

c
i ∧ δ

p

i ∧ ϕ0)





can be verified for example by using the first step of the Simplex. In the rule 22,
αc ∧ αp is a solved block.

In the rule 23, γc is obtained from βc as follows: for every variable x ∈ var(βc),
we add all the relations num x or tree x which are in βp but not in βc, and for all
the variables y which do not occur in an equation or inequation of βc we remove
all relations num y or tree y which are both in βc and βp. The formula γp is the
formula αp ∧ αc.

In the rule 24, ∃x̄αc is decomposed into ∃x̄1αc1 ∧ (∃x̄2αc2 ∧ (∃x̄3αc3)), γc
i =

βc
i ∧ α

c3 and γp
i = β

p
i ∧ αc1 ∧ αc2 ∧ αp.

The four rules 25, 26, 27 and 28 cannot be applied on the occurrence of ¬7

of the first level of the general working formula. In the rule 25, all the βci are
different from true, I ′ is the set of i ∈ I such that βc

i does not contain occurrences
of any variables in x̄2. The formula αc2∗ is such that T |= (∃x̄2αc2) ↔ αc2∗ and
is computed using the Fourier quantifier elimination. The propagated-constraint
section βp∗

i = αc1 ∧ αc2∗ ∧ αp.
In the rule 26, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0 is

obtained from ϕ by replacing all occurrences of ¬k by ¬0 and all propagated-
constraint sections by true. Let β2 be the formula obtained from βc2 by removing
the multiple occurrences of typing constraints and for all the variables y which
do not occur in an inequation of βc2 we remove all relations num y or tree y
which are both in βc1 and βc2. If β2 is the formula true then I = ∅, otherwise
the βc2∗

i with i ∈ I are obtained from β2 as follows: Since β2 ∈ A2 then it is of
the form [

(
∧

ℓ∈L num zℓ) ∧ (
∧

k∈K tree vk)∧
((

∧

j∈J

∑n

i=1
aijxi < a0j) ∧

∧n

m=1
num xm)

]

,

thus ¬β2 is of the form




(
∨

ℓ∈L tree zℓ) ∨ (
∨

k∈K num vk) ∨ (
∨n

m=1 tree xm)∨
∨

j∈J((
∑n

i=1
aijxi = a0j1 ∧

∧n

m=1
num xm)∨

(
∑n

i=1
(−aij)xi < (−a0j)1 ∧

∧n

m=1
num xm))





Each element of this disjunction is a block and represents a formula βc2∗
i . Of

course we have T |= (¬β2) ↔
∨

i β
c2∗
i .

In the rule 28, I 6= ∅, ϕ is such that every negation symbol ¬k has k ≥ 6, ϕ0

is obtained from ϕ by replacing all occurrences of ¬k by ¬0 and all propagated-
constraint sections by true. Moreover δp

i = αp and δc
i = γc

i ∧ βc ∧ αc.

Property 4.3.1 Every repeated application of the precedent rewriting rules on
an inital working formula terminates and produces an equivalent final working
formula which does not contain new free variables.

Corollary 4.3.2 Every formula is equivalent in T either to true or to false or
to a disjunction of general solved formulas, having at least one free variable,
being equivalent neither to true nor to false in T and where the solutions of the
free variables are expressed in a clear and explicit way.

In fact, solving a constraint ϕ in T proceeds as follows:

1. Transform ϕ into a normalized formula, then into an initial working formula
φ, which is equivalent to ϕ in T .

2. Transform φ into a final working formula ψ using the rewriting rules defined
in the subsection 4.3.

3. Extract from ψ the equivalent disjunction of general solved formulas. If this
disjunction contains the general solved formula true, then it is reduced to
true.

Example: Let ϕ be the following constraint having i, j as free variables:

∃xx = fij ∧ i > 0 ∧ tree x ∧ num i ∧ num j ∧ ¬(∃k j = 2k ∧ num k).

We can see that num j ∧ ¬(∃k j = 2k ∧ num k) is always false in T since for every
variable j, there exists a unique variable k such that j = 2k (axiom 13n). Let us
transform ϕ into an initial working formula (the propagated-constraint sections are
underlined):

¬
6
¬

0(∃xx = fij ∧ i > 0 ∧ tree x ∧ num j ∧ true ∧ ¬
0 (∃k j = 2k ∧ num k ∧ true))

After having applied the rules 24, 15, 16, 15, 19, 21, 22, 23 in this order, we obtain:
¬

7
¬

6(∃xx = fij ∧ i > 0∧ tree x ∧num i ∧num j ∧ true ∧¬
0 (∃k j = 2k ∧num k ∧ true))

The rule 24 being applied changes the formula to:

¬
7
¬

7





i > 0 ∧ num i ∧ num j ∧ true∧

¬
1

[
∃xk x = fij ∧ j = 2k ∧ num k ∧ tree x∧

i > 0 ∧ num i ∧ num j

]





After having applied on the sub-working formula ¬
1(...) the rule 15, 19, 21, 12, 22, 23

¬7¬7





i > 0 ∧ num i ∧ num j ∧ true∧

¬
6

[
∃xk x = fij ∧ j − 2k = 0 ∧ num k ∧ tree x∧

i > 0 ∧ num i ∧ num j

]





The rule 24 is applied then we obtain:

¬
7
¬

7(i > 0 ∧ num i ∧ num j ∧ true ∧ ¬
7 (true ∧ i > 0 ∧ num i ∧ num j))

The rules 25, 26 are applied in this order, giving:

¬
7
¬

7(i > 0 ∧ num i ∧ num j ∧ true ∧ ¬
9 (true ∧ i > 0 ∧ num i ∧ num j))

Finally, by application of the rule 27, we obtain the final working formula ¬
7true, which

is equivalent to the empty disjunction of general solved formulas, i.e. false. Thus, the

initial constraint ϕ is false in T and does not depend on the values of its free variables

i and j. A such phenomena is impossible to detect using a decision procedure instead

of a first-order constraint solver.

5 Conclusion

Quantified formulas over trees and rational numbers provide an expressive con-
straint language that is essential in applications such as program analysis and
model checking. We have presented in this paper a first-order constraint solver
in the theory of the evaluated trees. The algorithm is given in the form of 28
rewriting rules and its correctness implies the completeness of a theory built on
the model of Prolog III. Our aim in this work was not only to decide proposi-
tion i.e. to decide if a formula without free variables is true or false in T but to

express the solutions of any first-order constraint having free variables in a clear
and explicit way.

S. Vorobyov [25] has shown that the problem of deciding if a proposition is
true or not in the theory of trees is non-elementary, i.e. the complexity of all
algorithms which solve it cannot be bound by a tower of powers of 2′s (with a
top down evaluation) with a fixed height. Thus, our algorithm must not escape
this kind of complexity in the worst case. This is why we have used two strategies
in the algorithm: a top down propagation of constraints and a bottom-up elim-
ination of quantifiers and distribution. This technique can quickly detect (using
propagation and local solving) sub-formulas which are equivalent to false and
prevents us from solving a big working formula (i.e. a working formula of huge
depth) which contradicts its top-working formula. We have recently programmed
a similar algorithm only on the theory of finite or infinite trees and in spite of
the high complexity we can solve formulas on two partners games involving 160
nested quantifiers [10].

Currently, we are trying to find other classes of theories Ti such that we can
apply a similar technique to solve first-order constraints in the hybrid theories
Ti +Trees. We are also working on a possibly CHR (Constraint Handling Rules)
implementation of our solver.

Acknowledgements We thank Alain Colmerauer for our many discussions and
his help in this work. We dedicate to him this paper.

References

1. Benhamou F, Colmerauer , Van Caneghem M. Le manuel de Prolog IV , PrologIA,
France, 1996.

2. Bürckert H. Solving disequations in equational theories. In Proc. 9th Conf. on Au-
tomated Deduction, LNCS 310, p 517-526. 1988.

3. Colmerauer A. An introduction to Prolog III. Communication of the ACM, 33(7):68–
90,1990.

4. Colmerauer A. Equations and disequations on finite and infinite trees. In Proc of
the 5th conf on generation of computer systems Tokyo, 1984. P. 85–99.

5. Colmerauer, A. 1982. Prolog and infinite trees. In K.L. Clark and S-A. Tarnlund,
editors, Logic Programming. Academic Press. pp. 231–251.

6. Comon H. Résolution de contraintes dans des algèbres de termes. Rapport
d’Habilitation, Université de Paris Sud, 1992.

7. Courcelle B. Fundamental Properties of Infinite Trees, TCS vol. 25, no 2, 1983, pp.
95–169.

8. Dao, T. and Djelloul, K. Solving first-order constraints in evaluated trees.
Technical report, Laboratoire d’informatique fondamentale d’Orlans, RR-2006-05,
http://www.univ-orleans.fr/lifo/rapports.php. Full version of this paper with full
proofs.

9. Djelloul, K. About the combination of trees and rational numbers in a complete
first-order theory. 2005. Proceeding of the 5th International workshop on frontiers
of combining systems (FroCoS’05). Lecture Notes in Artificial Intelligence, LNAI,
vol 3717, pp. 106–122.

10. Djelloul, K. and Dao, T. 2006. Solving First-Order formulas in the Theory of Finite
or Infinite Trees. Proceeding of the 21st ACM Symposium on Applied Computing
(SAC’06). ACM press, pp. 7–14.

11. Djelloul, K. and Dao, T. 2006. Extension into trees of first order theories. Pro-
ceeding of the 8th International conference on artificial intelligence and symbolic
computation (AISC’06). Lecture notes in artificial intelligence. LNAI, vol 4120, pp.
53–67.

12. Djelloul, K. 2006. Decomposable Theories. Journal of Theory and practice of Logic
Programming. (to appear)

13. Huet G. Resolution d’equations dans les langages d’ordre 1, 2,. . .ω. These d’Etat,
Universite Paris 7. France,1976.

14. Jaffar J. Efficient unification over infinite terms. New Generation Computing,
2(3):207-219, 1984.

15. Jouannaud, J.P. and Kirchner, C. 1991. Solving Equations in Abstract Algebras: A
Rule-Based Survey of Unification. Computational Logic - Essays in Honor of Alan
Robinson, MIT press, pp: 257-321.

16. Lassez, J., Maher, M. and Marriott, K. 1986. Unification revisited. In proceedings
of the workshop on the foundations of deductive database and logic programming,
pp. 587-625.

17. Lassez, J. and Marriott, K. 1987. Explicit representation of terms defined by
counter examples. Journal of automated reasonning. 3:301-317.

18. Lassez, J. and McAloon, K. 1989. Independence of negative constraints. In pro-
ceedings of TOPSOFT, LNCS 351, pp. 19-27.

19. Maher M. Complete axiomatization of the algebra of finite, rational and infinite
trees. Technical report, IBM - T.J.Watson Research Center, 1988.

20. Maher, M. and Stuckey, P. 1995. On inductive inference of cyclic structures. Annals
of mathematics and artificial intelligence, 15(2):167-208.

21. Martelli A. and Montanari U. An efficient unification algorithm. ACM Trans. on
Languages and Systems, 4(2):258-282, 1982.

22. Paterson M and Wegman N. Linear unification. Journal of Computer and Systems
Science, 16:158-167, 1978.

23. Ramachandran V. and Van Hentenryck P. Incremental algorithms for constraint
solving and entailment over rational trees. In Proc. of the 13th Conf. Foundations
of Software Technology. LNCS 761, 205-217, 1993.

24. Robinson J.A. A machine-oriented logic based on the resolution principle. JACM,
12(1):23-41, 1965.

25. Vorobyov S. An Improved Lower Bound for the Elementary Theories of Trees,
Proceeding of the 13th Conf on Automated Deduction (CADE’96). LNAI 1104, pp.
275- 287, 1996.

