
HAL Id: hal-00202313
https://hal.science/hal-00202313

Submitted on 5 Jan 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of a CHR solver for existentially quantified
conjunctions of equations over trees.
Marc Meister, Khalil Djelloul, Thom Fruehwirth

To cite this version:
Marc Meister, Khalil Djelloul, Thom Fruehwirth. Complexity of a CHR solver for existentially quan-
tified conjunctions of equations over trees.. Recent advances in constraints Lecture notes in computer
science. Revised selected paper csclp 2006., Apr 2007, France. pp.LNAI, Vol 4651. P 139-153.
�hal-00202313�

https://hal.science/hal-00202313
https://hal.archives-ouvertes.fr

Complexity of a CHR Solver for Existentially

Quantified Conjunctions of Equations over Trees

Marc Meister, Khalil Djelloul⋆, and Thom Frühwirth

Fakultät für Ingenieurwissenschaften und Informatik
Universität Ulm, Germany

Abstract. Constraint Handling Rules (CHR) is a concurrent, commit-
ted-choice, rule-based language. One of the first CHR programs is the
classic constraint solver for syntactic equality of rational trees that per-
forms unification. We first prove its exponential complexity in time and
space for non-flat equations and deduce from this proof a quadratic com-
plexity for flat equations. We then present an extended CHR solver for
solving existentially quantified conjunctions of non-flat equations in the
theory of finite or infinite trees. We reach a quadratic complexity by
first flattening the equations and introducing new existentially quantified
variables, then using the classic solver, and finally eliminating particular
equations and quantified variables.

1 Introduction

Constraint Handling Rules (CHR) [3, 5, 14] is a concurrent committed-choice
constraint logic programming language consisting of guarded rules that trans-
form multi-sets of constraints (atomic formulas) into simpler ones until they are
solved. CHR was initially developed for writing constraint solvers, but has ma-
tured into a general-purpose concurrent constraint language over the last decade.
Its main features are a kind of multi-set rewriting combined with propagation
rules. The clean logical semantics of CHR facilitates non-trivial program analysis
and transformation.

One of the first CHR programs is the classic constraint solver for syntac-
tic equality of rational trees (RT) that performs unification [3, 5]. Unification is
concerned with making first order logic terms syntactically equivalent by sub-
stituting terms for variables. For example, the terms h(a, f(Y)) and h(Y, f(a))
can be made syntactically equivalent by substituting the constant a for the vari-
able Y . In 1930, Herbrand [6] gave an informal description of a unification al-
gorithm. Robinson [12] rediscovered a similar algorithm when he introduced the
resolution procedure for first-order logic in 1965. Since the late 1970s, there are
quasi-linear time algorithms for unification. For finite trees (Herbrand terms),
see [9] and [11]. For rational trees, see [7]. These algorithms can be considered
as extensions of the union-find algorithm [15] from constants to trees.

⋆ Funded by the DFG research project GLOB-CON.

Contributions. In this paper we present two new contributions:
(1) The classic RT solver relies on a term order and its complexity (in time

and space) was an open problem for a decade. We first prove its exponential
time and space complexity for non-flat equations using any term order1 and
then show its quadratic time and space complexity for flat equations, i.e. each
equation contains at most one function symbol.

(2) We show that existentially quantified conjunctions of non-flat equations2

can be solved in Maher’s theory T of finite or infinite trees [8] with a quadratic
complexity using an extension of this classic RT solver as well as a notion of
reachable variables and equations. To the best of our knowledge, this is the first
CHR solver for existentially quantified conjunctions of non-flat equations in T
with quadratic complexity.

Organisation of the Paper. We recall the basics of Constraint Handling Rules
(CHR) and present Maher’s theory T of finite or infinite trees [8] in Section 2.

In Section 3 we first introduce the CHR rules of the classic RT solver which
is parametrised by an order of terms and prove its termination for any term
order. We then show exponential worst-case time and space complexity of RT
for any term order in the case of non-flat equations. We end this section showing
its quadratic complexity for flat equations.

Finally, in Section 4, we extend the classic RT solver, so that it can solve
in T existentially quantified conjunctions of non-flat equations in quadratic
complexity. For that, we first show that any existentially quantified conjunc-
tion of non-flat equations can be transformed into an equivalent existentially
quantified conjunction of flat equations in linear time and space complexity.
For example, the formula ∃X h(X, f(Y)) eq h(Y, f(X)) is equivalent in T to
∃ABCX A eq h(X, B) ∧ B eq f(Y) ∧ A eq h(Y, C) ∧ C eq f(X). Then,
we define the notion of reachable variables and equations and use it to remove
particular quantified variables and equations. This extension is done using only
a few CHR rules.

2 Preliminaries

Readers familiar with CHR and the theory of finite or infinite trees can skip this
section.

2.1 Constraint Handling Rules

Constraint Handling Rules (CHR) [3, 5, 14] is a concurrent, committed-choice,
rule-based logic programming language. We distinguish between two different
kinds of constraints: built-in (pre-defined) constraints which are solved by a given

1 We pay the elegance of the solver, which consists of just four rules and so is more
concise than most formal specifications of unification, by an exponential complexity.

2 For example, the equation ∃X h(X, f(Y)) eq h(Y, f(X)) is an existentially quanti-
fied non-flat equation with the free variable Y .

constraint solver and CHR (user-defined) constraints which are defined by the
rules in a CHR program. This distinction allows one to embed and utilise existing
constraint solvers as well as side-effect-free host language statements. Built-in
constraint solvers are considered as black-box whose behaviour is trusted and
that do not need to be modified or inspected.

Definition 1. There are two main kinds of rules:

Simplification rule Name @ H ⇔ G | B

Propagation rule Name @ H ⇒ G | B

Name is an optional, unique identifier of a rule, the head H is a non-empty
conjunction of CHR constraints, the guard G is a conjunction of built-in con-
straints, and the body B is a goal. A goal (query, problem) is a conjunction of
built-in and CHR constraints. A trivial guard expression “true |” can be omitted
from a rule.

Since we do not use propagation rules in this paper, it suffices to say that they
are equivalent (in the standard semantics) to a simplification rule of the form
Name @ H ⇔ G | (H ∧ B).

The standard operational semantics of CHR is given by a transition system
where states are conjunctions of constraints. To the constraints in the store,
rules are applied until a fix-point is reached. Note that conjunctions in CHR are
considered as multi-sets of atomic constraints. Any rule that is applicable can be
applied and rule application cannot be undone since CHR is a committed-choice
language. A simplification rule H ⇔ G | B is applicable in state (H ′ ∧C), if the
built-in constraints Cb of C imply that H ′ matches the head H and imply the
guard G (cf. Figure 1).

IF H ⇔ G | B is a copy of a rule H ⇔ G | B with new variables X̄

AND CT |= ∀(Cb → ∃X̄(H = H ′ ∧ G))
THEN (H ′ ∧ C) (B ∧ G ∧ H = H ′ ∧ C)

Fig. 1. State transition for simplification rules

If applied, a simplification rule replaces the matched CHR constraints in the
state by the body of the rule. The number of rule applications in a computation
is called derivation length. A computation terminates in the final state when the
constraint store becomes inconsistent or no rule is applicable3.

2.2 Theory T of Finite or Infinite Trees

The theory T of finite or infinite trees, which is built on an signature containing
an infinite set F of distinct function symbols, has as axioms the infinite set of
propositions of one of the three following forms:

3 To avoid trivial non-termination, propagation is applied to the same constraints only
once.

∀X̄∀Ȳ ¬(f(X̄) eq g(Ȳ)) [A1]
∀X̄∀Ȳ f(X̄) eq f(Ȳ) →

∧

i Xi eq Yi [A2]
∀X̄∃!Z̄

∧

i Zi eq Ti[X̄Z̄] [A3]

where f and g are distinct function symbols taken from F , X̄ is a vector of possi-
bly non-distinct variables Xi, Ȳ is a vector of possibly non-distinct variables Yi,
Z̄ is a vector of distinct variables Zi, and Ti[X̄Z̄] is a term which begins with
an element of F followed by variables taken from X̄ or Z̄.

The forms [A1], [A2], and [A3] are also called schemas of axioms of the the-
ory T . Proposition [A1] – called conflict of symbols – shows that two distinct
operations produce two distinct individuals. Proposition [A2] – called explosion
– shows that the same operation on two distinct individuals produces two dis-
tinct individuals. Proposition [A3] – called unique solution – shows that for a
particular form of conjunction of equations, a unique set of solutions exists in T ,
e.g. the formula ∃Z Z = f(Z) has a unique solution which is the infinite tree
f(f(f(...))).

Maher has axiomatised the theory T and shown its completeness using a deci-
sion procedure which transforms any first-order formula into a Boolean combina-
tion of quantified conjunctions of atomic formulas [8]. A more general decision
procedure was recently given by Djelloul in the frame of decomposable theo-
ries [2]. Maher has also shown that the structure of finite or infinite trees and
the structure of the rational trees are models of T . A rational tree is a finite or
infinite tree whose set of subtrees is finite, e.g. the infinite tree f(f(f(...))) is
rational as its set of subtrees {f(f(f(...)))} is finite.

Note that T does not accept full elimination of quantifiers. For example, in
the formula ∃X Y eq f(X) we cannot remove or eliminate the quantifier ∃X.
This is due to the fact that for each model M of T there exist instantiations Ŷ of
the free variable Y which satisfy the instantiated formula ∃X Ŷ eq f(X) (for ex-
ample f(1)) and others which contradict the instantiated formula ∃X Ŷ eq f(X)
(for example g(1)). As a consequence, the formula ∃X Y eq f(X) is neither true
nor false in T and the quantifier ∃X cannot be eliminated. This makes solving ex-
istentially quantified conjunctions of equations non-trivial. We show in Section 4,
using the notion of reachable variables, how to detect whereas a quantification
can be eliminated.

3 Rational Tree Equation Solver

The CHR rational tree equation solver (RT solver) given in Subsection 3.1 is
one of the first published CHR programs. However, this elegant solver depends
on an order of terms. In Subsection 3.2 we first show its termination for any
term order. We then prove its exponential worst-case time and space complexity
for any term order in the case of non-flat equations (cf. Subsection 3.3), which
was an open problem for a decade, and deduce from this proof its quadratic
complexity for flat equations in Subsection 3.4.

3.1 The CHR Rational Tree Solver

The CHR program in Figure 2 solves rational tree equations [3, 5]. This solver
dates back to late 1993 and was revised in 1998 [14]. The underlying algorithm
is similar to the one in [1], but unlike this and most other unification algorithms
it uses variable elimination (substitution) only in a very limited way, if it can-
not be avoided. As a consequence, the algorithm has to rely on an order on
terms for termination. However, this makes termination and complexity analysis
considerably harder.

reflexivity @ X eq X <=> var(X) | true.

orientation @ T eq X <=> var(X), X≺T | X eq T.

decomposition @ T1 eq T2 <=> nonvar(T1), nonvar(T2) |

same functions(T1,T2).
confrontation @ X eq T1, X eq T2 <=> var(X), X≺T1, T1�T2 |

X eq T1, T1 eq T2.

Fig. 2. CHR Rational tree equation solver (RT solver)

We describe the RT solver where T , T1, T2 are meta-variables that range
over arbitrary terms: Auxiliary built-ins allows the solver to be independent of
the representation of terms. Besides true and false, we have var(T) iff T is a
variable and nonvar(T) iff T is a function term. We rely on a total pre-order �
on terms4 which fulfils three properties (defined in Subsection 3.2). As usual, we
write T1 ≺ T2, iff T1 � T2 and T2 6� T1. The auxiliary same functions(T1, T2)
leads to false if T1 and T2 have not the same function symbol and the same arity
(this is called clash), otherwise a constraint lists2eq(L1, L2) pairwise equates
the lists of arguments L1 and L2 of the two terms using a simple recursion:

lists2eq([HL1|TL1],[HL2|TL2]) <=> HL1 eq HL2, lists2eq(TL1,TL2).

lists2eq([],[]) <=> true.

We now explain application of each CHR rule of the solver:

reflexivity removes trivial equations between identical variables.
orientation reverses the arguments of an equation so that the (smaller) vari-

able comes first.
decomposition applies to equations between two function terms. When there

is a clash, same functions leads to false. Otherwise, the initial equation is
replaced by equations between the corresponding arguments of the terms.

confrontation replaces the variable X in the second equation X eq T2 by T1

from the first equation X eq T1. It performs a limited amount of variable
elimination (substitution) by only considering the l.h.s.’ of equations. This
rule duplicates the term T1 and the guard makes sure that T1 is not larger
than T2.

4 A pre-order is reflexive and transitive, however it may not be antisymmetric, i.e.
from T1 � T2 and T2 � T1 we cannot conclude that T1 and T2 are equal. A pre-order
becomes an order on the classes of indifferent terms w.r.t. �.

Due to the confrontation rule, the complexity of the solver is worse than
linear. The intricate interaction between the decomposition rule and the con-

frontation rule in the case of infinite terms (cyclic terms) makes it hard to
prove termination (cf. Subsection 3.2) and to determine the worst-case time
complexity of the solver (cf. Subsection 3.3).

Example 1. Here is the derivation for a simple example involving infinite rational
trees that shows that one of the equations is redundant, for X ≺ f(X) ≺ f(f(X)).

X eq f(X), X eq f(f(X))

confrontation X eq f(X), f(X) eq f(f(X))

decomposition
∗ X eq f(X), X eq f(X)

confrontation X eq f(X), f(X) eq f(X)

decomposition
∗ X eq f(X), X eq X

reflexivity X eq f(X)

3.2 Term Order and Termination

We define a generic term order � and prove our conjecture from [10] that the
RT solver terminates when used with �.

Definition 2 (Term order). A term order � is a total pre-order on terms
which has the following three properties5:
(i) For different variables X and Y , either X≺Y or Y ≺X.
(ii) Any variable is smaller than any function term.
(iii) Subterms are smaller than the terms that properly contain them.

This term order subsumes orders found in the literature, e.g. term-size order
which is based on term size.

Definition 3 (Term size and term-size order). The term size #T of a
term T is the number of occurrences of variables and function symbols. A term-
size order �s must respect properties (i) and (ii) of Definition 2 and is based on
term size by S �s T iff #S ≤ #T for two function terms.

Similarly to a term-size order �s, we can define a term-depth order �d which
is based on the nesting depths of the terms. Note that term-size and term-
depth order are not compatible, e.g. f(f(a)) ≺s f(a, a, a) in term-size order but
f(a, a, a) ≺d f(f(a)) in term-depth order. In previous work [10] we introduced
the term-measure order �m which is also not compatible to term-size order �s.

A conjunction of atomic constraints is solved (or in solved normal form) if
it is either false or if it is of the form

∧n

i=1 Xi eq Ti with pairwise distinct
variables X1, . . . , Xn and arbitrary terms T1, . . . , Tn for n ∈ N. We require Xi

to be different to Tj for 1 ≤ i ≤ j ≤ n, i.e. if a variable occurs on the l.h.s.
of an equation, it does neither occur as its r.h.s. nor as the l.h.s. or r.h.s. of

5 We write T1 ≺ T2, i.e. term T1 is smaller than term T2, iff T1 � T2 and T2 6� T1.
Recall, that a term that is not a variable is a function term.

any subsequent equation. By Definition 2, we can restate the conditions for the
solved normal form to Xi ≺ Xi+1 (for 1 ≤ i < n) and Xi ≺ Ti (for 1 ≤ i ≤ n).

The RT solver computes the solved form, as can be shown by contradiction:
As long as a conjunction of constraints is not in solved from, at least one rule is
applicable. If it is in solved form, no rule is applicable.

We now show termination of the RT solver for any term order.

Theorem 1 (Termination). The derivation length of the RT solver, used with
any term order �, and for any given conjunction of equations is finite.

Proof. We abstract constraints into five disjunct sorts and study the effects of
rule applications.

Sort bi for the built-ins false or true,

Sort vv for equations X eq Y with two variables X and Y ,

Sort vt for equations X eq T with variable X and function term T ,

Sort tv for equations T eq X with function term T and variable X, and

Sort tt for equations T1 eq T2 with two function terms T1 and T2.

We give the sort transition graph of the RT solver in Figure 3: Each arrow
visualises the effect of a rule application by removing one equation of a given sort
and introducing constraints of other sorts. As the solved normal form contains
only constraints of the Sorts bi, vv, or vt we indicate this with doubled-rimmed
boxes. The built-in constraints of Sort bi are treated by the host language, they
are never removed, and there is no arrow from Sort bi. We study the effects of
each rule application in turn.

or reco co

or

de

co
bivvvttvtt

Fig. 3. Sort transition graph for the RT solver for non-flat terms

Application of reflexivity replaces the redundant equation X eq X by
true. We visualise this by the arrow from Sort vv to Sort bi, labelled with re,
in the right part of Figure 3.

Application of orientation is possible to equations of two different sorts and
hence two arrows are labelled with or. First, an equation of Sort tv can be
changed into an equation of Sort vt, i.e. T eq X X eq T for a variable X

and a function term T . Second, when replacing Y eq X by X eq Y for two
variables X ≺ Y , both the removed and the inserted equation are of Sort vv.
This is visualised by the self-loop labelled or attached to Sort vv.

Application of decomposition produces equations between the arguments of
the function terms of the initial equations (or false for different functors).
By the subterm property (iii) of �, the arguments or the new equations
are smaller than the initial arguments. We visualise this with dashed-dotted
arrows, labelled de, from Sort tt to all five Sorts. The non-solid arrow-heads
indicate that more than one constraint can be inserted.

Application of confrontation replaces one occurrence of the variable X by
the value of T1. The guard ensures that X ≺ T1 � T2. As long as T1 is a
variable, it gets closer from below to T2 but can never exceed it.
– For two variables T1 � T2, application of confrontation removes the

equation X eq T2 of Sort vv and inserts the equation T1 eq T2 of
Sort vv. This is indicated by a self-loop of Sort vv labelled by co.

– Similarly, for a variable T1 and a function term T2, confrontation re-
moves and inserts an equation of Sort vt, indicated by a self-loop of
Sort vt labelled by co.

If T1 is a function term, then so must be T2, and we replace equation X eq T2

of Sort vt with T1 eq T2 of Sort tt. As the guard requires T1 � T2 we
visualise this with a dashed arrow, labelled co.

Because Figure 3 contains all possible sort transitions, we show that all pos-
sible derivation paths, which are given by chaining the sort transitions for all
equations in a given problem, are finite. First note, that the number of variables
is bounded by the initial number of variables v of the problem because the solver
introduces no new variables throughout the derivation.

Clearly, rule reflexivity applies at most once to a given equation. Also,
rule orientation can apply at most once for a given equation by properties (i)
and (ii) of �. By property (i) of �, rule confrontation can apply v times when
term T1 is a variable for a given equation. It remains to prove that no infinite
derivation exists along the loop through Sort tt and Sort vt, respectively the
number of (interleaved) rule applications of decomposition and confrontation

are limited: Equations T1 eq T2 of Sort tt, that are created by confrontation,
must be eventually decomposed because there is no other possible sort transition
and the solved normal form contains no equations of Sort tt. As we have T1 � T2

for equations of Sort tt which are generated by application of confrontation,
subsequent application of decomposition on T1 eq T2 produces terms which
are smaller than T2.

Since both the number of subterms in a given problem and the number of
variables v are finite, and since the term order is thus well-founded, the number
of confrontation/decomposition cycles is bounded. ⊓⊔

3.3 Exponential Complexity for Non-flat Equations

A closer look at Figure 3 allows us to prove that the derivation length is (at most)
exponential in the problem size for any term order. By giving an exponential
witness query, we also show that this result is tight for (at least) the term-size
order �s, term-depth order �d, and the measure-order �m of [10]. Therefore,

worst-case space and (hence) time complexity of the classic CHR constraint
solver for unification is exponential.

Definition 4. The problem size #C of a problem C =
∧n

i=1 Si eq Ti is given
by #C :=

∑n

i=1 #Si + #Ti.

Before proving our first main result, we present a simple, yet basic insight
on the number of occurrences of function subterms.

Property 1. A problem containing n occurrences of function symbols contains n

occurrences of function subterms.

We now study the multi-set of function subterms for a given problem: Ap-
plication of decomposition removes two function subterms and confrontation

adds function subterms when replacing a variable X by a function term T1.
Application of confrontation in the case of a variable T1 as well as applica-
tion of reflexivity or orientation are invariant to the multi-set of function
subterms. As the RT solver only decomposes and copies terms, we have:

Property 2. All function subterms during a computation are function subterms
of the initial problem.

Let S1 � · · · � Sn be an ascending chain of all occurrences of function
subterms of a problem C. The multiplicities vector 〈#S1, . . . ,#Sn〉 is defined by
the current number of occurrences of subterms during the computation, e.g. a �
a � f(a) � g(a) is an ascending chain for the problem X eq f(a) ∧ X eq g(a)
and 〈1, 1, 1, 1〉, 〈2, 0, 1, 1〉, and 〈0, 2, 1, 1〉 are valid initial multiplicities vectors.

Property 3. The number of confrontation/decomposition cycles, i.e. applica-
tions of confrontation with generation of an equation of Sort tt with subse-
quent removal by decomposition (along the dashed arrow in Figure 3), for a
problem with n occurrences of function symbols is bounded by 2n.

Replacing variable X of an equation X eq T2 by a function term T1 by
application of confrontation adds one copy of each function subterm occurrence
of term T1 to the problem. Subsequent application of decomposition on equation
T1 eq T2 removes one occurrence of both T1 and T2 from the problem.

Because the newly created equation T1 eq T2 of Sort tt can only be removed
by decomposition, no occurrences of function subterms of T1 eq T2 are effected
by intermediate applications of other rules and we do not need to manifest the
temporarily addition of T1 to the problem and can restrict ourselves to all proper
function subterms of T1. Summarising, one confrontation/decomposition cy-
cle adds one copy of each proper function subterm occurrence of term T1 and
removes one occurrence of the function subterm T2 from the problem, hence
some entries of the multiplicities vector which are left to T1’s position increase
by one and T2’s entry decreases by one.

Starting from the (canonical) initial multiplicities vector 〈1, . . . , 1〉, the num-
ber of cycles is bounded by the number required to make 〈1, . . . , 1〉 equal to

〈0, . . . , 0〉 (as then neither confrontation nor decomposition can apply). Fur-
thermore, we use an upper bound for each cycle by increasing all multiplicities to
the left of T2’s entry by one (and not only the effected entries of proper subterms
of T1) and reduce T2’s entry by one. As we increase entries to the left of a given
position in the multiplicities vector, starting form the right side yields the max-
imal number of possible cycles: From 〈1, . . . , 1〉, we arrive at 〈2, . . . , 2, 0〉 after
one cycle and another two cycles bring us (via 〈3, . . . , 3, 1, 0〉) to 〈4, . . . , 4, 0, 0〉.

Altogether at most
∑n−1

i=0 2i ≤ 2n many cycles suffice.

Theorem 2. The derivation length of a problem C with problem size #C of the
RT solver using any term order is bounded by O(2#C).

Proof. Consider a problem C of initial size #C = v + n with v (occurrences of)
variables and n (occurrences of) function symbols.

As only the transition from Sort tv to Sort tt by application of confronta-
tion (along the dashed arrow in Figure 3) increases the problem size, the max-
imal number of applications is bounded by O(2n) = O(2#C), cf. Property 3.
Each time a variable is replaced by a term, the problem size increases by less
than #C. Hence, the maximal problem size during the computation is bounded
by O(#C 2#C) = O(2#C) and the confrontation/decomposition cycle pro-
duces no more than O(2#C) many equations.

As application of decomposition strictly decreases the problem size, it can
apply at most O(2#C) many times. For each equation, the self-loops can apply
at most v times, altogether O(3v 2#C) = O(2#C) many rule applications, and
the transition from Sort tv to Sort vt and from Sort vv to Sort bi can happen
only once for each equation, altogether O(2#C) many rule applications.

The derivation length is hence bounded by O(4 2#C) = O(2#C). ⊓⊔

We now present a witness query with exponential space complexity (for de-
tails see [10]): We apply confrontation between selected equations exhaustively
before application decomposition to yield a maximal number or generated con-
straints. For mutually recursively defined terms

Ui :=

{

X if i = 0

f(Li−1, X) otherwise
Li :=

{

X if i = 0

f(X,Ui−1) otherwise

the problem C(n) = (
∧n

i=1 X eq Li) ∧ X eq Un ∧ X eq Ln has quadratic
size #C(n) = O(n2). For any term order which satisfies that Li and Ui are
indifferent (this includes �s, �d, and �m) there exists a derivation which pro-
duces exponentially many equations. Precisely 2n+1 many equations X eq X

are produced.

Our first main result is that the RT solver using any term order has expo-
nential space and (hence) exponential time complexity. The derivation length is
(at most) exponential for any term order (and this result is even tight, e.g. for
the standard term-size order).

3.4 Quadratic Complexity for Flat Equations

We can improve the worst-case time and space complexity of the CHR rational
tree solver from exponential to quadratic by simply requiring that equations are
in flat form when the problem is given. For flat terms, property (ii) automatically
implies (iii) of the term order.

Definition 5. A conjunction of equations is in flat form if each equation con-
tains at most one function symbol.

For a conjunction of equations in flat form, application of decomposition
yields equations of Sort vv (or false for different functors) as all proper subterms
for flat terms are variables. Hence we can remove the arrows from Sort tt to
Sorts tt, tv, and vt from Figure 3 and the sort transition graph for the flat
problem, given in Figure 4, lacks the intricate interaction of confrontation

and decomposition.

or reco co

or

de

co
bivvvttvtt

Fig. 4. Sort transition graph for the RT solver for flat terms

Theorem 3. The derivation length of the RT solver using any term order for
a flat problem C with problem size #C is bounded by O(#2C).

Proof. For each initial equations of Sort vt, rule confrontation can apply at
most #C times (as the number of variables is also bounded by #C) and is hence
bounded by #2C. The sort transition from Sort vt to Sort tt at most doubles
the size of each equation and subsequent application of decomposition on the
at most #C equations generates at most #C equations of Sort vv. Together
with initial equations of Sort vv, rule confrontation applies at most #C times
for each of the at most #C times many equations between two variables. ⊓⊔

4 Solving Existentially Quantified Conjunctions of

Non-flat Equations in T

We extend the preceding RT solver for solving existentially quantified conjunc-
tions of non-flat equations in the theory T of finite or infinite trees with a
quadratic complexity. Solving a quantified conjunction ϕ of non-flat equations
in T means to transform ϕ into an equivalent existentially quantified conjunc-
tion φ of flat equations such that φ is either the formula true or the formula
false or a formula having at least one free variable, being neither true nor false

in T and where the solutions of the free variables are expressed in a clear and
explicit way. In particular, if ϕ has no free variables then φ is either the formula
true or the formula false. Due to lack of space we could not present in this paper
all the CHR rules of our extended solver. Our full implementation is available
online at http://www.informatik.uni-ulm.de/pm/index.php?id=139.

4.1 Flattening Non-flat Equations in T

The following property is easily shown in T .

Property 4. For a conjunction of constraints
∧n

i=1 Si eq Ti and new quantified
variables X1, . . . , Xn we have

T |=

(

n
∧

i=1

Si eq Ti

)

↔ ∃X1...∃Xn

n
∧

i=1

(

Xi eq Si ∧ Xi eq Ti

)

.

For an atomic constraint X eq T , with a function term T = f(T1, . . . , Tn) and
new quantified variables X1, . . . , Xn we have

T |= X eq T ↔ ∃X1...∃Xn X eq f(X1, . . . , Xn) ∧

(

n
∧

i=1

Xi eq Ti

)

.

This property shows that a conjunction of non-flat equations can be trans-
formed into an existentially quantified conjunction of flat equations by adding
new existentially quantified variables. In our CHR implementation, we traverse
the equations of the problem once and replace each nested function symbol
by a new existentially quantified variable and a new equation with that vari-
able. For example, the formula ∃X h(X, f(Y)) eq h(Y, f(X)) is flattened to
∃ABCX A eq h(X, B) ∧ B eq f(Y) ∧ A eq h(Y, C) ∧ C eq f(X).

In previous work [10] we showed:

Property 5. The size of the flattened problem #[C] is linear in the problem size,
i.e. #[C] = O(#C). The number of new existentially quantified variables and
the number of new equations is linear in the problem size. The flattening of a
problem C can be done in linear time and space w.r.t. the problem size #C.

4.2 Reachable Variables and Equations

The theory T does not accept full elimination of quantifiers. Hence elimination of
existentially quantified variables from a conjunction of equations is not evident.
We present the notion of reachable variables and use it to detect if a quantified
variable can be eliminated or not.

Definition 6. A basic formula is a conjunction of equations in flat form in
which all the left hand sides of the equations are variables. Let X̄ be a vector of
variables6 and let α be a basic formula. The formula ∃X̄ α is called formatted if

6 This includes the empty vector ε. Recall also that an empty conjunction of equations
is always reduced to true.

(i) α does not contain equations of the form Z eq Z or Y eq X with Z a
variable, X an element of X̄, and Y a free variable of ∃X̄ α;

(ii) all the left hand sides of the equations of α are distinct variables.

Let us now introduce the notion of reachable variable:

Definition 7. Let ∃X̄ α be a formatted formula. The reachable variables and
equations of α from a variable X0 (the variable X0 can possibly belong to X̄) are
those which occur in a sub-formula of α of the form

X0 = T0[X1] ∧ X1 = T1[X2] ∧ ... ∧ Xn−1 = Tn−1[Xn] ,

where the variable Xi+1 occurs in the term Ti[Xi+1]. The reachable variables
and equations of ∃X̄ α are those which are reachable in α from the free variables
of ∃X̄ α.

Example 2. In the following formatted formula with free variable Z

∃UV WX Z eq f(U, V) ∧ V eq g(V) ∧ W eq f(U, V,X) , (1)

the equations Z eq f(U, V) and V eq g(V) and the variables Z, U , and V

are reachable. The equation W eq f(U, V,X) and the variables W and X are
not reachable. Note that the quantifications ∃UV cannot be eliminated since the
existence of valid instantiations of U and V in any model M of T depends on the
instantiations of the free variable Z. In fact, if Z is instantiated by g(0, 0) then
the preceding formula is false in M and if Z is instantiated by f(1, g(g(g(...))))
then the preceding formula is true in M . On the other hand, the quantification
∃WX can be removed. In fact, according to axiom [A3] of T we have T |=
∃W W eq f(U, V,X). Thus, (1) is equivalent in T to ∃UV X Z eq f(U, V) ∧
V eq g(V), which is equivalent to ∃UV Z eq f(U, V) ∧ V eq g(V).

Example 2 can help the reader to understand the following property:

Property 6. Let ∃X̄ α be a formatted formula. We have

T |= (∃X̄ α) ↔ (∃X̄ ′ α′)

where (i) X̄ ′ is the vector of the variables of X̄ which are reachable in ∃X̄ α and
(ii) α′ is the conjunction of the reachable equations of ∃X̄ α.

This property simply states that non-reachable variables and equations of ∃X̄ α

can be eliminated while the other quantified variables are linked to the instan-
tiations of the free variables. The formatted formula ∃X̄ ′ α′ is called final solved
form of ∃X̄ α.

4.3 Reachability in CHR

The CHR implementation of Property 6 consists of the following CHR rules.

r0 @ free(X), X eq T ==> reach(X).

r1 @ reach(X), X eq T <=> nonvar(T) | reachargs(T), reach(X), X sol_eq T.

r2 @ reach(X), X eq Y <=> var(Y) | reach(Y), reach(X), X sol_eq Y.

r3 @ reach(X), exists(X) <=> sol_exists(X), reach(X).

We create CHR constraints sol_exists and sol_eq for the reachable existen-
tially quantified variables and the reachable equations of any formatted for-
mula ∃X̄ α. Recall that ∃X̄ α is a formatted formula (cf. Definition 6) for termi-
nation and correctness.

Initially, free variables of the formatted formula ∃X̄ α are stored in CHR
constraints free and existentially quantified ones in exists. All free variables
which occur as l.h.s. of an equation of the formatted formula ∃X̄ α are marked
as reachable by rule r0. Rules r1 and r2 mark the reachable equations. For a
flat term T , the built-in reachargs(T) of rule r1 marks all arguments of T as
reachable, by a simple recursion for an auxiliary constraint with rules similar to
the ones for lists2eq of the RT solver. Rule r3 marks the reachable quantified
variables.

The complexity of this algorithm is bounded by O(vq) where v is the number
of distinct variables in the formatted formula ∃X̄ α and q is the number of equa-
tions of α. Since the left hand sides of α are distinct variables (cf. Definition 6)
we have q ≤ v from which we deduce the following property:

Property 7. The derivation length of reachability is bounded by O(v2), where v

is the number of distinct variables in the formatted formula.

4.4 The Solving Algorithm

To solve an existentially quantified conjunction ∃X̄ α of non-flat equations we
apply the following algorithm.

(1) Transform ∃X̄ α into an equivalent existentially quantified conjunction
∃Ȳ β of flat equations.

(2) Apply the RT solver on β using a term-order where the variables of Ȳ

are smaller than the free variables of ∃Ȳ β. Let δ be the obtained formula.

(3) If δ is different from false7 then ∃Ȳ δ is a formatted formula whose final
solved form is obtained using our CHR reachability rules.

7 Note that CHR terminates immediately when false is inserted in the store.

Example 3. Let us solve the following formula with free variables X and V

∃Y Z f(X) eq f(g(X, Y)) ∧ Z eq f(V) ∧ Z eq f(f(Y))

After flattening we get

∃Y ZABCD A eq f(X) ∧ B eq f(D) ∧ A eq B ∧ D eq g(X, Y)∧

Z eq f(V) ∧ Z eq f(C) ∧ C eq f(Y) .

The RT-solver returns the following formatted formula

∃Y ZABCD B eq f(X) ∧ D eq X ∧ A eq B ∧ X eq g(X, Y) ∧ C eq V ∧

Z eq f(C) ∧ V eq f(Y) .

We now compute the reachable variables X, V , and Y . We can then eliminate
the quantifications ∃ABCDZ and the equations B eq f(X), D eq X, A eq B,
C eq V , Z eq f(C). The final solved form of the preceding formatted formula
is

∃Y X eq g(X, Y) ∧ V eq f(Y) .

Note that the solutions of the free variables X and V are expressed in clear and
explicit way. Moreover the quantifier ∃Y could not be eliminated since Y is a
reachable variable, i.e. it depends on the instantiations of X and V .

From Theorem 3, Property 7, and Property 5 we have

Theorem 4. The derivation length of an existentially quantified non-flat prob-
lem C with problem size #C of the extended RT solver is bounded by O(#2C).

5 Conclusion

The complexity of the classic CHR rational tree equation solver [3, 5, 14] was an
open problem for more than a decade. We showed in this paper its termination
and exponential complexity in time and space for any term order when handling
non-flat equations, as well as its quadratic complexity for flat equations. This
part of our new results extends those given in [10], which were limited to an
artificial term-measure order.

Moreover we extended the solver to handle existentially quantified conjunc-
tions of non-flat equations in quadratic time and space complexity. For that, we
first flatten the equations by introducing new quantified variables, then solve
the flat problem by the classic RT solver, and finally remove particular quanti-
fiers and equations. Our new results extend those given in [10] by introducing
existentially quantified variables and removing unnecessary quantified variables
and equations using reachability. We are now able to express the solutions of any
existentially quantified conjunction of non-flat equations in a short, clear, and
explicit way in all models of the theory T .

To the best of our knowledge, this is the first CHR solver for existentially
quantified conjunctions of non-flat equations in T with quadratic complexity.
Future work aims to reach a linear complexity solver by combining both the
RT solver and our reachability computation with the union-find algorithm in
CHR [13, 4].

Acknowledgements. We thank the anonymous reviewers for their comments
which helped us to improve this paper.

References

1. A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-A. Tärnlund,
editors, Logic Programming, pages 231–251. Academic Press, London, 1982.

2. K. Djelloul. Decomposable theories. J. Theory and Practice of Logic Programming,
to appear.

3. T. Frühwirth. Theory and Practice of Constraint Handling Rules. J. Logic Pro-

gramming, 37(1-3):95–138, 1998.
4. T. Frühwirth. Parallelizing union-find in Constraint Handling Rules using conflu-

ence. In ICLP 2005, volume 3668 of LNCS, pages 113–127. Springer, 2005.
5. T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.

Springer, 2003.
6. J. Herbrand. Recherches sur la théorie de la demonstration. PhD thesis, Université

de Paris, France, 1930.
7. G. Huet. Confluent reductions: Abstract properties and applications to term rewrit-

ing systems. J. ACM, 27(4):797–821, 1980.
8. M. J. Maher. Complete axiomatizations of the algebras of finite, rational, and

infinite trees. In LICS’88, pages 348–357, Los Alamitos (CA), USA, 1988.
9. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Trans.

Program. Lang. Syst., 4(2):258–282, 1982.
10. M. Meister and T. Frühwirth. Complexity of the CHR rational tree equation solver.

In CHR 2006, volume 452 of Report CW, pages 77–92. K.U. Leuven, Belgium, 2006.
11. M. S. Paterson and M. N. Wegman. Linear unification. J. Computer and System

Sciences, 16(2):158–167, 1978.
12. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.

ACM, 12(1):23–41, 1965.
13. T. Schrijvers and T. Frühwirth. Optimal union-find in Constraint Handling Rules.

J. Theory and Practice of Logic Programming, 6(1&2):213–224, 2006.
14. T. Schrijvers et al. Constraint Handling Rules (CHR) web page, 2007. http:

//www.cs.kuleuven.ac.be/~dtai/projects/CHR/.
15. R. E. Tarjan and J. Van Leeuwen. Worst-case analysis of set union algorithms. J.

ACM, 31(2):245–281, 1984.

