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Abstract

We present in this paper a general algorithm for solving first-order formulas in particular
theories called decomposable theories. First of all, using special quantifiers, we give a formal
characterization of decomposable theories and show some of their properties. Then, we
present a general algorithm for solving first-order formulas in any decomposable theory
T . The algorithm is given in the form of five rewriting rules. It transforms a first-order
formula ϕ, which can possibly contain free variables, into a conjunction φ of solved formulas
easily transformable into a Boolean combination of existentially quantified conjunctions of
atomic formulas. In particular, if ϕ has no free variables then φ is either the formula true

or ¬true. The correctness of our algorithm proves the completeness of the decomposable
theories.

Finally, we show that the theory T of finite or infinite trees is a decomposable theory and
give some benchmarks realized by an implementation of our algorithm, solving formulas
on two-partner games in T with more than 160 nested alternated quantifiers.

KEYWORDS: Logical first-order formula, Complete theory, Rewriting rules, Theory of
trees.

1 Introduction

The algebra of (possibly) infinite trees plays a fundamental role in computer science:

it is a model for composed data known as record in Pascal or structure in C. The

construction operation corresponds to the creation of a new record, i.e. of a cell

containing elementary information possibly followed by n cells, each one pointing

to a record. Infinite trees correspond to a circuit of pointers.

As early as 1976, G. Huet gave an algorithm for unifying infinite terms, that

is solving equations in that algebra (Huet 1976). K.L. Clark proposed a complete

axiomatization of the equality theory, also called Clark equational theory CET,

and gave intuitions about a complete axiomatization of the theory of finite trees

(Clark 1978). B. Courcelle has studied the properties of infinite trees in the scope of

recursive program schemes (Courcelle 1983; Courcelle 1986). A. Colmerauer has de-

scribed the execution of Prolog II, III and IV programs in terms of solving equations



2 K. Djelloul

and disequations in that algebra (Colmerauer 1984; Colmerauer 1990; Benhamou

1996).

M. Maher has axiomatized all the cases by complete first-order theories (Maher

1988), i.e. he has introduced the theory T of finite or infinite trees having an infinite

set F of functional symbols. It is this theory which has been the starting point of

our works. After having studied its properties, we have created a new class of

complete theories that we call decomposable theories and have shown that a lot of

theories used in fundamental computer science are decomposable. We can cite for

example: the theory of finite trees, of infinite trees, of finite or infinite trees (Djelloul

2006a), of additive rational or real numbers with addition and subtraction, of linear

dense order without endpoints, of ordered additive rational or real numbers with

addition, subtraction and a linear dense order relation without endpoints, of the

combination of trees and ordered additive rational or real numbers (Djelloul 2005b),

of the construction of trees on an ordered set (Djelloul 2005a), of the extension

into trees of first-order theories (Djelloul 2006b) and many other combinations of

fundamental theories.

T. Dao whose works focused on the theory of finite or infinite trees has given a first

version of a general algorithm solving first order formulas in finite or infinite trees

(Dao 2000) using a basic simplification of quantified conjunctions of tree atomic

formulas. Unfortunately, this simplification holds only in the theory of finite or in-

finite trees and can not be used in theories having completely different properties,

such as the theory of additive rational or real numbers. We have then generalized

this result by introducing the term decomposable theories (Djelloul 2005a; Djelloul

2005b) and by showing that in each decomposable theory T , every quantified con-

junction of atomic formulas can be decomposed into three embedded sequences of

quantifications having very particular properties, which can be expressed with the

help of three special quantifiers denoted by ∃?, ∃!, ∃
Ψ(u)
∞ and called at-most-one,

exactly-one, infinite. While the quantifiers ∃?, ∃! are just convenient notations al-

ready used in other works, the new quantifier ∃
Ψ(u)
∞ , one of the essential keys of

this class of theories, expresses a property which is not expressible at the first-order

level.

On the other hand, we wish to be able to extract from the definition of decompos-

able theory a general algorithm for solving first-order formulas in any decomposable

theory T . For that, we have given an efficient algorithm for solving first-order for-

mulas in finite or infinite trees from which we have deduced a general algorithm for

solving first-order formulas in any decomposable theory T (Djelloul 2006a). Note

that the first part1 of (Djelloul 2006a) was a joint work with T. Dao in which we

improved the algorithm of (Dao 2000) and presented interesting benchmarks on

finite or infinite trees with high performances. By solving a formula ϕ (with or

without free variables) in a decomposable theory T , we mean to transform ϕ into

a conjunction φ of solved formulas, which is equivalent to ϕ in T , does not contain

new free variables and such that: (1) either φ is the formula true, thus ϕ is always

1 The algorithm for solving first-order formulas in finite or infinite trees.
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true in T , (2) or φ is the formula ¬true, thus ϕ is always false in T , (3) or φ has

at least one free variable and is easily transformable into a Boolean combination of

existentially quantified conjunctions of atomic formulas. In particular, if ϕ has no

free variables then φ is either the formula true or ¬true.

Recently, we have also shown that an extension of the model of Prolog III and IV

is possible by allowing the user to incorporate universal and existential quantifiers to

Prolog clauses and to solve any first-order formula, with or without free variables,

in a combination of trees and first-order theories (Djelloul 2006b). For that, we

have first given an automatic way to combine any first-order theory T with the

theory of finite or infinite trees. Note that the two theories can have non-joint

signatures. Then, using the definition of decomposable theories, we have established

simple conditions on T and only on T to get a decomposable combination and

thus a complete combination. These extended theories have an interesting power of

expressiveness and allow us to model complex problems with first-order formulas

in a combination of trees and other first-order theories. We can cite for example

the works of Alain Colmerauer (Colmerauer 1990) who has described the execution

of Prolog III using a combination of trees and rational numbers with addition,

subtraction and linear dense order relation. A full proof of the decomposability of

this hybrid theory can be found in detail in (Djelloul 2005b).

The paper is organized in five sections followed by a conclusion. This introduction

is the first section. The second one introduces the needed elements of first-order logic

and ends with a sufficient condition for the completeness of any first-order theory.

We have built this condition using a syntactic analysis of the general structure of

first-order formulas.

In section 3, we present the vectorial quantifiers ∃?, ∃!, ∃
Ψ(u)
∞ and show some

of their properties. We also give a formal definition of decomposable theories and

show their completeness using the sufficient condition of completeness defined in

section 2. If T is decomposable, we show that each formula is equivalent in T to

a Boolean combination of basic formulas and give a sufficient condition so that T

accepts full elimination of quantifiers. We end this section with two examples of

simple decomposable theories: a simple extension of the Clark equational theory

CET (Clark 1978) and the theory of rational or real numbers with addition and

subtraction.

In section 4, we present our algorithm of resolution in any decomposable theory

T , given in the form of a set of five rewriting rules. The conjunction φ of solved

formulas obtained from an initial formula ϕ is equivalent to ϕ in T and does not

have new free variables. In particular, if ϕ has no free variables then φ is either

the formula true or ¬true. The correctness of our algorithm is another proof of

completeness of the decomposable theories.

Finally, we show in section 5 that the theory T of finite or infinite trees is a

decomposable theory and end with examples and benchmarks done by an imple-

mentation of our algorithm solving formulas on two-partner games in T with more

than 160 nested alternated quantifiers. We compare our results with those of (Djel-

loul 2006a), (Dao 2000) and (Colmerauer 2003) where a dedicated algorithm for

solving finite or infinite tree constraints has been given. We show that we have
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competitive results even if our algorithm is general and holds for any decomposable

theory T . This is a detailed full version with full proofs of our works on decompos-

able theories (Djelloul 2005b; Djelloul 2006a). The infinite quantifier, the properties

of the vectorial quantifiers, the class of the decomposable theories and the algorithm

of resolution in any decomposable theory are our contributions in all these works.

The proof of decomposability of the theory of equality and the theory of additive

rational or real numbers as well as the benchmarks on decomposable theories are

our main contributions in this paper.

2 Formal preliminaries

2.1 Expression

We are given once and for all, an infinite countable set V of variables and the set

L of logical symbols:

=, true, false,¬,∧,∨,→,↔,∀,∃, (, ).

We are also given once and for all, a signature S, i.e. a set of symbols partitioned

into two subsets: the set of function symbols and the set of relation symbols. To

each element s of S is linked a non-negative integer called arity of s. An n-ary

symbol is a symbol with arity n. A 0-ary function symbol is called constant.

As usual, an expression is a word on L∪S ∪ V which is either a term, i.e. of one

of the two forms:

x, ft1 . . . tn, (1)

or a formula, i.e. of one of the eleven forms:

s = t, rt1 . . . tn, true, false,

¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), (ϕ↔ ψ),

(∀xϕ), (∃xϕ).

(2)

In (1), x is taken from V , f is an n-ary function symbol taken from S and the ti’s

are shorter terms. In (2), s, t and the ti’s are terms, r is an n-ary relation symbol

taken from S and ϕ and ψ are shorter formulas. The set of the expressions forms a

first-order language with equality.

The formulas of the first line of (2) are known as atomic, and flat if they are of

one of the following forms:

true, false, x0 = x1, x0 = fx1...xn, rx1...xn,

where all the xi’s are possibly non-distinct variables taken from V , f is an n-ary

function symbol taken from S and r is an n-ary relation symbol taken from S. An

equation is a formula of the form s = t with s and t terms.

An occurrence of a variable x in a formula is bound if it occurs in a sub-formula

of the form (∀xϕ) or (∃xϕ). It is free in the contrary case. The free variables of

a formula are those which have at least one free occurrence in this formula. A

proposition or a sentence is a formula without free variables. If ϕ is a formula, then

we denote by var(ϕ) the set of the free variables of ϕ.



Theory and Practice of Logic Programming 5

The syntax of the formulas being constraining, we allowed ourselves to use infix

notations for the binary symbols and to add and remove brackets when there are

no ambiguities.

We do not distinguish two formulas which can be made equal using the following

transformations of sub-formulas:

ϕ ∧ ϕ =⇒ ϕ, ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),

ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

If I is the set {i1, ..., in}, we call conjunction of formulas and write
∧

i∈I ϕi,

each formula of the form ϕi1 ∧ ϕi2 ∧ ... ∧ ϕin
∧ true. In particular, for I = ∅, the

conjunction
∧

i∈I ϕi is reduced to true. We denote by FL the set of the conjunctions

of flat formulas. We denote by AT the set of the conjunctions of atomic formulas.

A set Ψ of formulas is closed under conjunction if for each formula ϕ ∈ Ψ and each

formula φ ∈ Ψ, the formula ϕ ∧ φ belongs to Ψ. All theses considerations will be

useful for the algorithm of resolution given in section 4.

2.2 Model

A model is a couple M = (M,F), where:

• M, the universe or domain of M , is a nonempty set disjoint from S, its

elements are called individuals of M ;

• F is a family of operations and relations in the set M, subscripted by the

elements of S and such that:

— for every n-ary function symbol f taken from S, fM is an n-ary opera-

tion in M, i.e. an application from Mn in M. In particular, when f is

a constant, fM belongs to M;

— for every n-ary relation symbol r taken from S, rM is an n-ary relation

in M, i.e. a subset of Mn.

Let M = (M,F) be a model. An M -expression ϕ is an expression built on the

signature S ∪M instead of S, by considering the elements of M as 0-ary function

symbols. If for each free variable x of ϕ, we replace each free occurrence of x by a

same element in M, we get an M -expression called instantiation or valuation of ϕ

by individuals of M .

If ϕ is an M -formula, we say that ϕ is true in M and we write

M |= ϕ, (3)

if for any instantiation ϕ′ of ϕ by individuals of M , the set M has the property

expressed by ϕ′, when we interpret the function and relation symbols of ϕ′ by the

corresponding functions and relations of M and when we give to the logical symbols

their usual meaning.

Remark 2.2.1

For every M -formula ϕ without free variables, one and only one of the following

properties holds: M |= ϕ, M |= ¬ϕ.
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Let us finish this sub-section by a convenient notation. Let x̄ = x1...xn be a word

on V and let ī = i1...in be a word on M or V of the same length as x̄. If ϕ(x̄) and

φ are two M -formulas, then we denote by ϕ(̄i), respectively φx̄←ī , the M -formula

obtained by replacing in ϕ(x̄), respectively in φ, each free occurrence of xj by ij

2.3 Theory

A theory is a (possibly infinite) set of propositions called axioms. We say that the

model M is a model of T , if for each element ϕ of T , M |= ϕ. If ϕ is a formula, we

write

T |= ϕ,

if for each model M of T , M |= ϕ. We say that the formulas ϕ and ψ are equivalent

in T if T |= ϕ↔ ψ.

Let T be a theory. A set Ψ of formulas is called T -closed if:

• Ψ ⊆ AT ,

• Ψ is closed under conjunction,

• every flat formula ϕ is equivalent in T to a formula which belongs to Ψ and

does not contain other free variables than those of ϕ.

The sets AT and FL are T -closed in any theory T . This notion of T -closed set

is useful when we need to transform formulas of FL into formulas which belong

to Ψ. The transformation of normalized formulas into working formulas defined at

Section 4.2 illustrates this notion.

A theory T is complete if for every proposition ϕ, one and only one of the following

properties holds: T |= ϕ, T |= ¬ϕ.

Let us now present a sufficient condition for the completeness of any first-order

theory. We will use the abbreviation wnfv for “without new free variables ”. A

formula ϕ is equivalent to a wnfv formula ψ in T means that T |= ϕ ↔ ψ and ψ

does not contain other free variables than those of ϕ.

Property 2.3.1

A theory T is complete if there exists a set of formulas, called basic formulas, such

that:

1. every flat formula is equivalent in T to a wnfv Boolean combination of basic

formulas,

2. every basic formula without free variables is equivalent in T , either to true or

to false,

3. every formula of the form

∃x ((
∧

i∈I ϕi) ∧ (
∧

i∈I′ ¬ϕi)), (4)

where the ϕi’s are basic formulas, is equivalent in T to a wnfv Boolean com-

bination of basic formulas.
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Proof

Let Φ be the set of all the formulas which are equivalent in T to a wnfv Boolean

combination of basic formulas.

Let us show first that every formula ψ belongs to Φ. Let us make a proof by

induction on the syntactic structure of ψ. Without losing generalities we can restrict

ourselves to the cases where ψ contains only flat formulas and the following logical

symbols2: ¬, ∧, ∃. If ψ is a flat formula, then ψ ∈ Φ according to the first condition

of the property. If ψ is of the form ¬ϕ1 or ϕ1 ∧ ϕ2, with ϕ1, ϕ2 ∈ Φ, then ψ ∈ Φ

according to the definition of Φ. If ψ is of the form ∃xϕ, with ϕ ∈ Φ, then according

to the definition of Φ, the formula ϕ is equivalent to a wnfv formula ϕ′, which is

a Boolean combination of basic formulas ϕij . Without losing generalities we can

suppose that ϕ′ is of the form

ϕ′ =
∨

i∈I((
∧

j∈J ϕij) ∧ (
∧

j∈J′ ¬ϕij)). (5)

By distributing the existential quantifier, the formula ∃xϕ′ is equivalent in T to

∨

i∈I(∃x ((
∧

j∈J ϕij) ∧ (
∧

j∈J′ ¬ϕij))), (6)

which, according to the third condition of the property, belongs to Φ. Thus the

formula ∃xϕ, i.e. ψ, belongs to Φ.

Let now ψ be a proposition. According to what we have just shown ψ ∈ Φ. Thus,

the formula ψ is equivalent in T to a Boolean combination of basic formulas without

free variables. According to the second condition of the property, one and only one

of the following properties holds: T |= ψ, T |= ¬ψ. Thus T is a complete theory.

This sufficient condition is interesting in the sense that it reasons on the syntactic

structure of first-order formulas. Informally, the basic formulas are generally for-

mulas of the form ∃x̄α with α ∈ AT . We will use this sufficient condition in Section

3.3 to show the completeness of the decomposable theories.

Corollary 2.3.2

If T satisfies the three conditions of Property 2.3.1 then every formula is equivalent

in T to a wnfv Boolean combination of basic formulas.

This corollary is a consequence of the proof of Property 2.3.1 in which we have

shown that if Φ is the set of all the formulas which are equivalent in T to a wnfv

Boolean combination of basic formulas then every formula ψ belongs to Φ.

2 Because each atomic formula is equivalent in the empty theory to a wnfv quantified conjunction
of flat formulas and each formula is equivalent in the empty theory to a wnfv formula which
contains only the logical symbols: ∃, ∧, ¬.
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3 Decomposable theory

3.1 Vectorial quantifiers

Let M be a model and let T be a theory. Let x̄ = x1 . . . xn and ȳ = y1 . . . yn be two

words on V of the same length. Let φ, ϕ and ϕ(x̄) be M -formulas. We write

∃x̄ ϕ for ∃x1...∃xn ϕ,

∀x̄ ϕ for ∀x1...∀xn ϕ,

∃?x̄ ϕ(x̄) for ∀x̄∀ȳ ϕ(x̄) ∧ ϕ(ȳ) →
∧

i∈{1,...,n} xi = yi,

∃!x̄ ϕ for (∃x̄ ϕ) ∧ (∃?x̄ ϕ).

The word x̄, which can be the empty word ε, is called vector of variables. Note that

the formulas ∃?εϕ and ∃!εϕ are respectively equivalent to true and to ϕ in any

model M .

Notation 3.1.1

Let Q be a quantifier taken from {∀,∃,∃!,∃?}. Let x̄ be vector of variables taken

from V . We write:

Qx̄ϕ ∧ φ for Qx̄ (ϕ ∧ φ).

Example 3.1.2

Let I = {1, ..., n} be a finite set. Let ϕ and φi with i ∈ I be formulas. Let x̄ and ȳi

with i ∈ I be vectors of variables. We write:

∃x̄ ϕ ∧ ¬φ1 for ∃x̄ (ϕ ∧ ¬φ1),

∀x̄ ϕ ∧ φ1 for ∀x̄ (ϕ ∧ φ1),

∃!x̄ ϕ ∧
∧

i∈I(∃ȳiφi) for ∃!x̄ (ϕ ∧ (∃ȳ1φ1) ∧ ... ∧ (∃ȳnφn) ∧ true),

∃?x̄ ϕ ∧
∧

i∈I ¬(∃ȳiφi) for ∃?x̄ (ϕ ∧ (¬(∃ȳ1φ1)) ∧ ... ∧ (¬(∃ȳnφn)) ∧ true).

Property 3.1.3

If T |= ∃?x̄ ϕ then

T |= (∃x̄ ϕ ∧ ¬φ) ↔ ((∃x̄ϕ) ∧ ¬(∃x̄ ϕ ∧ φ)). (7)

Proof

Let M be a model of T and let ∃x̄ ϕ′ ∧ ¬φ′ be an instantiation of ∃x̄ ϕ ∧ ¬φ by

individuals of M . Let us denote by ϕ′1 the M -formula (∃x̄ ϕ′ ∧ ¬φ′) and by ϕ′2 the

M -formula (∃x̄ ϕ′)∧¬(∃x̄ϕ′∧φ′). To show the equivalence (7), it is enough to show

that

M |= ϕ′1 ↔ ϕ′2. (8)

If M |= ¬(∃x̄ ϕ′) then M |= ¬ϕ′1 and M |= ¬ϕ′2, thus the equivalence (8) holds.

If M |= ∃x̄ ϕ′. Since T |= ∃?x̄ ϕ′, there exists a unique vector ī of individuals of M

such that M |= ϕ′
x̄←ī

. Two cases arise:

If M |= ¬(φ′
x̄←ī

), then M |= (ϕ′ ∧ ¬φ′)x̄←ī, thus M |= ϕ′1. Since ī is unique

and since M |= ¬(φ′
x̄←ī

), there exists no vector ū of individuals of M such that

M |= (ϕ′ ∧ φ′)x̄←ū. Consequently, M |= ¬(∃x̄ ϕ′ ∧ φ′) and thus M |= ϕ′2. We have

M |= ϕ′1 and M |= ϕ′2, thus the equivalence (8) holds.
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If M |= φ′
x̄←ī

, then M |= (ϕ′ ∧ φ′)x̄←ī and thus M |= ¬ϕ′2. Since ī is unique

and since M |= φ′
x̄←ī

, there exists no vector ū of individuals of M such that M |=

(ϕ′ ∧ ¬φ′)x̄←ū. Consequently, M |= ¬(∃x̄ ϕ′ ∧ ¬φ′) and thus M |= ¬ϕ′1. We have

M |= ¬ϕ′1 and M |= ¬ϕ′2, thus the equivalence (8) holds.

Corollary 3.1.4

If T |= ∃?x̄ ϕ then

T |= (∃x̄ ϕ ∧
∧

i∈I

¬φi) ↔ ((∃x̄ϕ) ∧
∧

i∈I

¬(∃x̄ ϕ ∧ φi)).

Proof

Let ψ be the formula ¬(
∧

i∈I ¬φi). The formula ∃x̄ ϕ ∧
∧

i∈I ¬φi, is equivalent in

T to ∃x̄ ϕ ∧ ¬ψ. Since T |= ∃?x̄ ϕ, then according to Property 3.1.3 the preceding

formula is equivalent in T to (∃x̄ ϕ)∧¬(∃x̄ ϕ∧ψ), which is equivalent in T to (∃x̄ ϕ)∧

¬(∃x̄ ϕ∧¬(
∧

i∈I ¬φi)), thus to (∃x̄ ϕ)∧¬(∃x̄ ϕ∧ (
∨

i∈I φi)), which is equivalent in

T to (∃x̄ ϕ) ∧ ¬(∃x̄ (
∨

i∈I(ϕ ∧ φi))), thus to (∃x̄ ϕ) ∧ ¬(
∨

i∈I(∃x̄ ϕ ∧ φi)), which is

finally equivalent in T to (∃x̄ ϕ) ∧
∧

i∈I ¬(∃x̄ ϕ ∧ φi).

Property 3.1.5

If T |= ∃!x̄ ϕ then

T |= (∃x̄ ϕ ∧ ¬φ) ↔ ¬(∃x̄ ϕ ∧ φ).

Corollary 3.1.6

If T |= ∃!x̄ ϕ then

T |= (∃x̄ ϕ ∧
∧

i∈I

¬φi) ↔
∧

i∈I

¬(∃x̄ ϕ ∧ φi).

3.2 The infinite quantifier

Let M be a model. Let T be a theory. Let ϕ(x) be an M -formula and let Ψ(u)

be a set of formulas having at most u as free variable. Let us now present our

infinite quantifier ∃
Ψ(u)
∞ . The main intuitions behind this quantifier come from an

aim to get a full elimination of quantifiers in complex M -formulas of the form

∃xϕ(x) ∧
∧

j∈{1,...,n} ¬ψj(x) using the fact that the domain of M is infinite.

Definition 3.2.1

We write

M |= ∃Ψ(u)
∞ xϕ(x), (9)

if for every instantiation ∃xϕ′(x) of ∃xϕ(x) by individuals of M and for every finite

subset {ψ1(u), .., ψn(u)} of elements of Ψ(u), the set of the individuals i of M such

that M |= ϕ′(i) ∧
∧

j∈{1,...,n} ¬ψj(i) is infinite.

We write T |= ∃
Ψ(u)
∞ xϕ(x), if for each model M of T we have (9).
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This infinite quantifier holds only for models whose set of individuals is infinite.

Note that if Ψ(u) = {false} then (9) simply means that M contains an infinite set

of individuals i such that ϕ(i). Informally, the notation (9) states that there exists

a full elimination of quantifiers in formulas of the form ∃xϕ(x)∧
∧

j∈{1,...,n} ¬ψj(x)

due to an infinite set of valuations of x in M which satisfy this formula.

Property 3.2.2
Let J be a finite (possibly empty) set. Let ϕ(x) and ϕj(x) with j ∈ J be M -

formulas. If T |= ∃
Ψ(u)
∞ xϕ(x) and if for each ϕj(x), at least one of the following

properties holds:

• T |= ∃?xϕj(x),
• there exists ψj(u) ∈ Ψ(u) such that T |= ∀xϕj(x) → ψj(x),

then

T |= ∃xϕ(x) ∧
∧

j∈J ¬ϕj(x)

Proof
Let M be a model of T and let ∃xϕ′(x) ∧

∧

j∈J ¬ϕ′j(x) be an instantiation of

∃xϕ(x)∧
∧

j∈J ¬ϕj(x) by individuals ofM . Suppose that the conditions of Property

3.2.2 hold and let us show that

M |= ∃xϕ′(x) ∧
∧

j∈J ¬ϕ′j(x). (10)

Let J ′ be the set of the j ∈ J such that M |= ∃?xϕ′j(x) and let m be the cardinality

of J ′. Since for all j ∈ J ′, M |= ∃?xϕ′j(x), then for every set M′ of individuals of

M such that Cardinality(M′) > m, there exists i ∈ M′ such that

M |=
∧

j∈J′

¬ϕ′j(i). (11)

On the other hand, since T |= ∃
Ψ(u)
∞ xϕ(x) and according to Definition 3.2.1 we know

that for every finite subset {ψ1(u), ..., ψn(u)} of Ψ(u), the set of the individuals i of

M such that M |= ϕ′(i) ∧
∧n

k=1 ¬ψk(i) is infinite. Since for all j ∈ J − J ′ we have

M |= ∀xϕj(x) → ψj(x), thus M |= ∀x (¬ψj(x)) → (¬ϕj(x)), then there exists an

infinite set ξ of individuals i of M such that M |= ϕ′(i) ∧
∧

j∈J−J′ ¬ϕ′j(i). Since

ξ is infinite then Cardinality(ξ) > m, and thus according to (11) there exists at

least an individual i ∈ ξ such that M |= ϕ′(i)∧ (
∧

j∈J−J′ ¬ϕ′j(i))∧ (
∧

k∈J′ ¬ϕ′k(i)).

Thus, we have M |= ∃xϕ′(x) ∧
∧

j∈J ¬ϕ′j(x).

Property 3.2.3
If T |= ∃

Ψ(u)
∞ xϕ(x) then T |= ∃

Ψ(u)
∞ x true.

Proof
Let M be a model of T . If T |= ∃

Ψ(u)
∞ xϕ(x) then M |= ∃

Ψ(u)
∞ xϕ(x). According to

Definition 3.2.1 there exists an infinite set of individuals i such that M |= ϕ(i) ∧
∧

j∈J ¬ϕj(i) with ϕj(u) ∈ Ψ(u) for all j ∈ J . Thus there exists an infinite set of

individuals i such that M |= true ∧
∧

j∈J ¬ϕj(i), i.e. M |= ∃
Ψ(u)
∞ x true and thus

T |= ∃
Ψ(u)
∞ x true.
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3.3 Decomposable theory

We present in this section a formal definition of the decomposable theories. In-

formally, this definition simply states that in every decomposable theory T each

formula of the form ∃x̄α with α a T -closed set is equivalent in T to a decom-

posed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)), where the formulas ∃x̄′ α′,

∃x̄′′ α′′ and ∃x̄′′′ α′′′ have elegant properties which can be expressed using vectorial

quantifiers.

Definition 3.3.1

A theory T is called decomposable if there exists a set Ψ(u) of formulas having at

most u as free variable, a T -closed set A and three sets A′, A′′ and A′′′ of formulas

of the form ∃x̄α with α ∈ A such that:

1. Every formula of the form ∃x̄ α ∧ ψ, with α ∈ A and ψ any formula, is

equivalent in T to a wnfv decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′.

2. If ∃x̄′α′ ∈ A′ then T |= ∃?x̄′ α′ and for each free variable y in ∃x̄′α′, at least

one of the following properties holds:

• T |= ∃?yx̄′ α′,

• there exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y).

3. If ∃x̄′′α′′ ∈ A′′ then for each x′′i of x̄′′ we have T |= ∃
Ψ(u)
∞ x′′i α

′′.

4. If ∃x̄′′′α′′′ ∈ A′′′ then T |= ∃!x̄′′′ α′′′.

5. If the formula ∃x̄′α′ belongs to A′ and has no free variables then this formula

is either the formula ∃εtrue or ∃εfalse.

Since A is T -closed, then A is a subset of AT . While the formulas of A′′ and A′′′

accept full elimination of quantifiers according to the properties of the quantifiers

∃! and ∃
Ψ(u)
∞ , the formulas of A′ can possibly not accept elimination of quantifiers.

This is due to the second point of Definition 3.3.1 which states that T |= ∃?x̄′α′.

The computation of the sets A, A′, A′′, A′′′ and Ψ(u) for a theory T depends on

the axiomatization of T . Generally, it is enough to know how to solve a formula of

the form ∃x̄α with α ∈ FL to get a first intuition on the sets A′, A′′, A′′′ and Ψ(u).

Informally, the sets A′, A′′ and A′′′ can be called according to their linked vectorial

quantifier, i.e. A′ is the at most one solution set and contains formulas which accept

at most one solution in T and possibly not accept full elimination of quantifiers, the

set A′′ is the infinite instantiation set and contains formulas that accept an infinite

set of solutions in T . The set A′′′ is the unique solution set and contains formulas

which have one and only solution in T . The set Ψ(u) contains generally simple

formulas of the form ∃x̄α with at most one free variable and α ∈ A. It can also be

reduced for example to the set {false}. Note that the sets A′ and A′′′ are generally

not empty since for every model M of any theory T we have M |= ∃?ε x = y and

M |= ∃!xx = y.
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Property 3.3.2

Let T be a decomposable theory. Every formula of the form ∃x̄ α, with α ∈ A, is

equivalent in T to a wnfv formula of the form ∃x̄′ α′ with ∃x̄′α′ ∈ A′.

Proof

Let ∃x̄ α be a formula with α ∈ A. According to Definition 3.3.1 this formula is

equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′. Since ∃x̄′′′ α′′′ ∈ A′′′ then

according to Definition 3.3.1 we have T |= ∃!x̄′′′α′′′ and thus using Property 3.1.5

(with φ = false) the preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′),

which is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1 ...x
′′
n−1 (∃x′′n α

′′)).

Since ∃x̄′′ α′′ ∈ A′′ then according to Definition 3.3.1 we have T |= ∃
Ψ(u)
∞ x′′n α

′′ and

thus T |= ∃x′′n α
′′. The preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1 ...x
′′
n−1 true),

which is finally equivalent in T to

∃x̄′ α′.

Using Property 3.3.2 and the fifth point of Definition 3.3.1 we get

Corollary 3.3.3

Let T be a decomposable theory. Every formula, without free variables, of the form

∃x̄ α, with α ∈ A, is equivalent in T either to true or to false.

Theorem 3.3.4

If T is decomposable then T is complete.

Proof

Let T be a decomposable theory which satisfies the five conditions of Definition

3.3.1. Let us show that T is complete using Property 2.3.1 and by taking formulas

of the form ∃x̄ α, with α ∈ A, as basic formulas. Note that according to Definition

3.3.1, the sets A′, A′′ and A′′′ contain formulas of the form ∃x̄α with α ∈ A.

Let us show that the first condition of Property 2.3.1 holds, i.e. every flat formula

is equivalent in T to a wnfv Boolean combination of basic formulas. According to

Definition 3.3.1 the set A is T -closed, i.e. (i) every flat formula is equivalent in T

to a wnfv formula which belongs to A. Let α be a flat formula. According to (i) α

is equivalent in T to a wnfv formula β which belongs to A. Since β is equivalent in



Theory and Practice of Logic Programming 13

T to ∃ε β and β ∈ A then α is equivalent in T to a wnfv basic formula3. Thus, the

first condition of Property 2.3.1 holds.

Let us show that the second condition of Property 2.3.1 holds, i.e. every basic

formula without free variables is either equivalent to true or to false in T . Let ∃x̄ α

with α ∈ A be a basic formula without free variables. According to Corollary 3.3.3

either T |= ∃x̄α or T |= ¬(∃x̄ α). Thus, the second condition of Property 2.3.1

holds.

Let us show now that the third condition of Property 2.3.1 holds, i.e. every

formula of the form

∃x (
∧

i∈I(∃x̄i αi)) ∧ (
∧

j∈J ¬(∃ȳj βj)), (12)

with αi ∈ A for all i ∈ I and βj ∈ A for all j ∈ J , is equivalent in T to a

wnfv Boolean combination of basic formulas, i.e. to a wnfv Boolean combination

of formulas of the form ∃x̄α with α ∈ A. By lifting all the quantifications ∃x̄i after

having possibly renamed the variables4 which appear in each x̄i, the formula (12)

is equivalent in T to a wnfv formula of the form

∃x̄ (
∧

i∈I αi) ∧
∧

j∈J ¬(∃ȳj βj),

with αi ∈ A for all i ∈ I and βj ∈ A for all j ∈ J . According to Definition 3.3.1

the set A is T -closed and thus closed under conjunction. The preceding formula is

equivalent in T to a wnfv formula of the form

∃x̄ α ∧
∧

j∈J ¬(∃ȳj βj),

with α ∈ A and βj ∈ A for all j ∈ J . According to the first point of Definition 3.3.1

the preceding formula is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧
∧

j∈J ¬(∃ȳj βj))),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈ A′′′ and βj ∈ A for all j ∈ J . Since

∃x̄′′′ α′′′ ∈ A′′′ then according to the fourth point of Definition 3.3.1 T |= ∃!x̄′′′ α′′.

Thus, using Corollary 3.1.6 the preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃x̄′′′ α′′′ ∧ (∃ȳj βj))).

By lifting all the quantifies ∃ȳj after having possibly renamed the variables which

appear in each ȳj , the preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃x̄′′′∃ȳj α
′′′ ∧ βj)).

According to Definition 3.3.1 the sets A′, A′′ and A′′′ contain formulas of the form

∃x̄α with α ∈ A, thus α′′′ ∈ A. Since βj ∈ A for all j ∈ J and since A is T -closed

(i.e. closed under conjunction...) then for all j ∈ J the formula α′′′ ∧ βj belongs to

A. Thus, the preceding formula is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃ȳj βj)),

3 Of course a basic formula is a particular case of a Boolean combination of basic formulas.
4 We must rename the variables of x̄i only if they have free occurrences in a formula αk of (12)

with k ∈ I and i 6= k.
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with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, and βj ∈ A for all j ∈ J . According to Property

3.3.2 the preceding formula is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧
∧

j∈J ¬(∃ȳ′j β
′
j)),

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, and ∃ȳ′j β
′
j ∈ A′ for all j ∈ J . Let us denote by J1,

the set of the j ∈ J such that x′′n does not have free occurrences in the formula

∃ȳ′jβ
′
j . Thus, the preceding formula is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1 ...∃x
′′
n−1

[

(
∧

j∈J1
¬(∃ȳ′j β

′
j))∧

(∃x′′n α
′′ ∧

∧

j∈J−J1
¬(∃ȳ′j β

′
j))

]

). (13)

Since ∃x̄′′ α′′ ∈ A′′ and ∃ȳ′j β
′
j ∈ A′ for all j ∈ J , then according to Property 3.2.2

and the points 2 and 3 of Definition 3.3.1, the formula (13) is equivalent in T to

∃x̄′ α′ ∧ (∃x′′1 ...∃x
′′
n−1 (true ∧

∧

j∈J1
¬(∃ȳ′j β

′
j))).

By repeating the three preceding steps (n− 1) times, by denoting by Jk the set of

the j ∈ Jk−1 such that x′′(n−k+1) does not have free occurrences in ∃ȳ′j β
′
j , and by

using (n− 1) times Property 3.2.3, the preceding formula is equivalent in T to

∃x̄′ α′ ∧
∧

j∈Jn
¬(∃ȳ′j β

′
j).

Since ∃x̄′ α′ ∈ A′ then according to the second point of Definition 3.3.1 we have

T |= ∃?x̄′ α′. Thus, using Corollary 3.1.4 the preceding formula is equivalent in T

to

(∃x̄′ α′) ∧
∧

j∈Jn
¬(∃x̄′ α′ ∧ (∃ȳ′j β

′
j)).

By lifting all the quantifies ∃ȳj after having possibly renamed the variables which

appear in each ȳj , the preceding formula is equivalent in T to

(∃x̄′ α′) ∧
∧

j∈Jn
¬(∃x̄′∃ȳ′j α

′ ∧ β′j).

According to Definition 3.3.1 the sets A′, A′′ and A′′′ contain formulas of the form

∃x̄α with α ∈ A. Thus, since ∃x̄′ α′ ∈ A′ and ∃ȳ′j β
′
j ∈ A′ for all j ∈ Jn, then α′ ∈ A

and βj ∈ A for all j ∈ Jn. Since the set A is T -closed, it is closed under conjunction,

then for all j ∈ Jn the formula α′∧β′j belongs to A and thus, the preceding formula

is equivalent in T a wnfv formula of the form

(∃x̄ α) ∧
∧

j∈Jn
¬(∃ȳjβj),

with α ∈ A and βj ∈ A for all j ∈ Jn. This formula is a Boolean combination of

formulas of the form ∃x̄α with α ∈ A, i.e. a Boolean combination of basic formulas.

Thus, the third condition of Property 2.3.1 holds.

Since T satisfies the three conditions of Property 2.3.1, then T is a complete

theory.

According to Theorem 3.3.4 and Corollary 2.3.2, we have the following corollary:

Corollary 3.3.5

If T is decomposable and if for all ∃x̄′α′ ∈ A′ we have x̄′ = ε, then T accepts full

elimination of quantifiers.



Theory and Practice of Logic Programming 15

Proof
Let T be a decomposable theory such that for all ∃x̄′α′ ∈ A′ we have x̄′ = ε. Let ϕ

be a formula which can possibly contain free variables. In the proof of Theorem 3.3.4

we have shown that T satisfies the three conditions of Property 2.3.1 using formulas

of the forms ∃x̄α with α ∈ A as basic formulas. Thus, according to Corollary 2.3.2,

the formula ϕ is equivalent in T to a wnfv Boolean combination of basic formulas,

i.e. Boolean combination of formulas of the form ∃x̄α with α ∈ A. According to

Property 3.3.2 each of these basic formulas is equivalent in T to a wnfv formula of

the form ∃x̄′α′ which belongs to A′. Since for all ∃x̄′α′ ∈ A′ we have x̄′ = ε and

since α′ ∈ A (according to the structure of the set A′ defined in Definition 3.3.1)

then the formula ϕ is equivalent in T to a boolean combination of elements of A.

Since T is decomposable then A is a T -closed set and thus A ⊆ AT . Then, the

formula ϕ is equivalent in T to a boolean combination φ of conjunctions of atomic

formulas. According to the syntax of the atomic formulas defined in Section 2, it is

clear that φ does not contain quantifiers.

This corollary makes the connection between the set A′ and the notion of full

elimination of quantifiers. In fact, if T is decomposable and does not accept full

elimination of quantifiers then it is enough to add axioms to T which enable the

elimination of all the quantifiers of the formulas of A′ to get a theory which accepts

a full elimination of quantifiers. The sets A′′ and A′′′ are not concerned by this

notion since in any decomposable theory T the formulas of A′′ and A′′′ accept full

elimination of quantifiers due to their associated vectorial quantifiers: ∃! and ∃
Ψ(u)
∞ .

On the other hand, if T is a decomposable theory which satisfies Corollary 3.3.5

then we can interest ourselves in getting the smallest subset T ∗ of axioms of T ,

such that T ∗ still accepts full elimination of quantifiers. For that it is enough to

remove axiom by axiom from T and check each time if the theory still satisfies

Corollary 3.3.5. This corollary shows also the fact that a decomposable theory T

does not mean that T accepts full elimination of quantifiers. In fact, the theories of

infinite trees, finite trees and finite or infinite trees as defined by M. Maher (Maher

1988) do not accept full elimination of quantifiers but are decomposable and thus

complete (Djelloul 2006a).

3.4 Simple decomposable theories

We present in this sub-section two examples of simple decomposable theories. The

first one is a simple axiomatization of an infinite set of distinct individuals with

an empty set of function and relation symbols. This theory denoted by Eq can

be seen as a small extension of the Clark equational theory CET (Clark 1978),

even if according to our syntax the equality symbol is considered as a primitive

logical symbol together with its usual properties (commutativity, transitivity ...).

The second theory is the theory of additive rational or real numbers with addition

and subtraction. The goal of these examples is to show the decomposability of simple

theories whose properties are well known and do not need addition of proofs. An

other example of a non-simple decomposable theory (finite or infinite trees) is given

in Section 5 with a detailed study of the properties of this theory.
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Let us assume for all this sub-section that the variables of V are ordered by a

strict linear dense order relation without endpoints denoted by ≻.

Equality theory

Let Eq be a theory together with an empty set of function and relation symbols

and whose axioms is the infinite set of propositions of the following form

(1n) ∀x1...∀xn∃y ¬(x1 = y) ∧ ... ∧ ¬(xn = y), (14)

where all the variables x1...xn are distinct and (n 6= 0). The form (14) is called

diagram of axiom and for each value of n there exists an axiom of Eq. For example

the following property is true in Eq:

Eq |= ∃x¬(x = y) ∧ ¬(x = z).

The theory Eq has as model an infinite set of distinct individuals.

Note that since Eq has an empty set of function and relation symbols, then

AT = FL and thus all the equations of Eq are flat equations. Let x and y be two

distinct variables. We call leader of the equation x = y the variable x. A conjunction

α of flat formulas is called (≻)-solved in Eq if: (1) false is not a sub-formula of α,

(2) if x = y is a sub-formula of α then5 x ≻ y, (3) each equation of α has a distinct

leader which does not occur in the other equations of α.

Property 3.4.1

Every conjunction of flat formulas is equivalent in Eq either to false or to a (≻)-

solved conjunction of equations.

Let x, y and z be variables such that x ≻ y ≻ z. The conjunction x = x ∧ y = z

is not (≻)-solved because in the equation x = x we have x 6≻ x. By the same way,

the conjunction x = y ∧ y = z is not (≻)-solved because y is leader in y = z and

occurs also in x = y. The conjunctions true and x = z ∧ y = z are (≻)-solved. The

computation of a possibly (≻)-solved conjunction of equations from a conjunction

of flat formulas in Eq is evident6 and proceeds using the usual properties of the

equality (commutativity, substitution, transitivity... ) and by replacing each formula

of the form x = x respectively α ∧ false by true respectively by false.

Property 3.4.2

Let α be a (≻)-solved conjunction of equations. Let x̄ be the vector of the leaders

of the equations of α. We have:

1. Eq |= ∃!x̄ α.

2. For all x ∈ V we have Eq |= ∃
{false}
∞ x true.

5 Recall that ≻ is a strict linear dense order relation and thus x 6≻ x. In other terms x = x is not
(≻)-solved.

6

(1) y = x =⇒ x = y. (2) x = y ∧ x = z =⇒ x = y ∧ z = y. (3) x = y ∧ z = x =⇒ x = y ∧ z = y.
(4) false ∧ α =⇒ false. (5) x = x =⇒ true.

The rules (1), (2) and (3) are applied only if x ≻ y.
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3. For all x ∈ var(α) we have Eq |= ∃?xα.

The first point holds because all the leaders of the equations of α are distinct and

have one and only occurrence in α. Thus, for every instantiation of the right hand

sides of each equation, there exists one and only one value for the left hand sides

and thus for the leaders. The second point is a consequence of the diagram of axiom

(14) which states that for every finite set of distinct variables x1...xn there exists

a variable y which is different from all the xi. Thus, in each model of Eq there

exists an infinite set of individuals. Thus according to Definition 3.2.1 we have

Eq |= ∃
{false}
∞ x true. The third point holds since in a (≻)-solved conjunction of

equations we have no formulas of the form x = x (because x 6≻ x). Thus, using the

properties of the equality for every model of Eq and for every instantiation of the

variables of var(α) − {x} either there exists a unique solution of x or there exists

a contradiction in the instantiations and thus there exists no values for x.

Property 3.4.3

The theory Eq is decomposable.

Proof

We show that Eq satisfies the conditions of Definition 3.3.1. The sets A, A′, A′′,

A′′′ and Ψ(u) are chosen as follows:

• A is the set FL.

• A′ is the set of formulas of the form ∃ε α′ where α′ is either a (≻)-solved conjunction

of equations or the formula false.

• A′′ is the set of formulas of the form ∃x̄′′ true.

• A′′′ is the set of formulas of the form ∃x̄′′′α′′′ with α′′′ a (≻)-solved conjunction of

equations and x̄′′′ the vector of the leaders of the equations of α′′′.

• Ψ(u) = {false}.

It is obvious that FL is Eq-closed and A′, A′′ and A′′′ contain formulas of the form

∃x̄ α with α ∈ FL.

Let us show that Eq satisfies the first condition of Definition 3.3.1. Let ψ be any

formula and α ∈ FL. Let x̄ be a vector of variables. Let us choose an order ≻ such

that the variables of x̄ are greater than the free variables of ∃x̄ α. According to

Property 3.4.1 two cases arise:

- If the formula α is equivalent to false in Eq, then the formula ∃x̄α ∧ ψ is

equivalent in Eq to a decomposed formula of the form

∃ε false ∧ (∃ε true ∧ (∃ε true ∧ ψ)).

- If the formula α is equivalent in Eq to a (≻)-solved conjunction β of equations,

then let Xl be the set of the variables of x̄ which are leader in the equations of β

and let Xn be the set of the variables of x̄ which are not leader in the equations of

β. The formula ∃x̄α ∧ ψ is equivalent in Eq to a decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)), (15)

with x̄′ = ε. The formula α′ contains the conjunction of the equations of β whose
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leaders do not belong toXl. The vector x̄′′ contains the variables ofXn. The formula

α′′ is the formula true. The vector x̄′′′ contains the variables of Xl. The formula α′′′

is the conjunction of the equations of β whose leaders belong to Xl. According to

our construction it is clear that ∃x̄′α′ ∈ A′, ∃x̄′′α′′ ∈ A′′ and ∃x̄′′′α ∈ A′′′. Let us

show that (15) and ∃x̄α∧ψ are equivalent in Eq. Let X, X ′, X ′′ and X ′′′ be the sets

of the variables of the vectors7 x̄, x̄′, x̄′′ and x̄′′′. If α is equivalent to false in Eq then

the equivalence of the decomposition is evident. Else β is a (≻)-solved conjunction

of equations and thus according to our construction we have: X = X ′ ∪X ′′ ∪X ′′′,

X ′ ∩ X ′′ = ∅, X ′ ∩ X ′′′ = ∅, X ′′ ∩ X ′′′ = ∅, X ′ = ∅, for all x′′i ∈ X ′′ we have

x′′i 6∈ var(α′) and for all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′ ∧ α′′). This is due to

the definition of the (≻)-solved conjunction of flat formulas and the order ≻ which

has been chosen such that the quantified variables of ∃x̄ α are greater than the free

variables of ∃x̄ α. On the other hand, each equation in β occurs in α′ ∧ α′′ ∧ α′′′

and each equation in α′ ∧α′′ ∧α′′′ occurs in β and thus Eq |= β ↔ (α′ ∧α′′ ∧α′′′).

We have shown that the vectorial quantifications are coherent and the equivalence

Eq |= β ↔ α′ ∧ α′′ ∧ α′′′ holds. According to Property 3.4.1 we have Eq |= α ↔ β

and thus, the decomposition keeps the equivalence in Eq. Let us decompose for

example

∃xyz v = w ∧ z = z ∧ z = x ∧ v = y.

Let us choose the order ≻ such that x ≻ y ≻ z ≻ v ≻ w. Note that the quantified

variables are greater than the free variables. Let us now (≻)-solve the conjunction

v = w ∧ z = z ∧ z = x ∧ v = y. Thus the preceding formula is equivalent in Eq to

∃xyz v = w ∧ x = z ∧ y = w.

We have Xl = {x, y} and Xn = {z}. Thus, the preceding formula is equivalent in

Eq to the following decomposed formula

∃ε v = w ∧ (∃z true ∧ (∃xy x = z ∧ y = w)).

The theory Eq satisfies the second condition of Definition 3.3.1 according to the

third point of Property 3.4.2 and using the fact that x̄′ = ε. The theory Eq satisfies

the third condition of Definition 3.3.1 according to the second point of Property

3.4.2. The theory Eq satisfies the fourth condition of Definition 3.3.1 according

to the first point of Property 3.4.2. The theory Eq satisfies the last condition of

Definition 3.3.1 because A′ is of the form ∃ε α′ where α′ is either the formula false

or a (≻)-solved conjunction of equations. Thus, if ∃ε α′ has no free variables, then

either α′ = true or α′ = false.

Note that Eq accepts full elimination of quantifiers. In fact Corollary 3.3.5 illus-

trates this result since for all ∃x̄′α′ ∈ A′ we have x̄′ = ε.

7 Of course if x̄ = ε then X = ∅
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Additive rational or real numbers theory

Let F = {+,−, 0, 1} be a set of function symbols of respective arities 2, 1, 0, 0. Let

R = ∅ be an empty set of relation symbols. Let Ra be the theory of additive rational

or real numbers together with addition and subtraction.

Notation 3.4.4
Let a be a positive integer and t1, ..., tn terms. We denote by:

• Z the set of the integers.
• t1 + t2, the term +t1t2.
• t1 + t2 + t3, the term +t1(+t2t3).
• 0.t1, the term 0.
• −a.t1, the term (−t1) + · · · + (−t1)

︸ ︷︷ ︸

a

.

• a.t1, the term t1 + · · · + t1
︸ ︷︷ ︸

a

.

•
∑n

i=1 ti, the term t1 + t2 + ...+ tn + 0, where t1 + t2 + ...+ tn is the term

t1 + t2 + ... + tn in which we have removed all the ti’s which are equal to 0.

For n = 0 the term
∑n

i=1 ti is reduced to the term 0.

The axiomatization of Ra is the set of propositions of one of the 8 following

forms:

1 ∀x∀y x+ y = y + x,

2 ∀x∀y∀z x+ (y + z) = (x+ y) + z,

3 ∀xx+ 0 = x,

4 ∀xx+ (−x) = 0,

5n ∀xn.x = 0 → x = 0,

6n ∀x∃!y n.y = x,

7 ∀x∀y∀z (x = y) ↔ (x+ z = y + z),

8 ¬(0 = 1).

with n an non-null integer. This theory has two usual models: rational numbers Q

with addition and subtraction in Q and real numbers R with addition and subtrac-

tion in R.

We call block every conjunction α of formulas of the form: true, false,
∑n

i=1 ai.xi =

a0.1 with x1, ..., xn distinct variables and ai ∈ Z for all i ∈ {0, 1, ..., n}. We call

leader of an equation of the form
∑n

i=1 ai.xi = a0.1 the greatest variables xk

(k ∈ {1, ..., n}) according to the order ≻ such that ak 6= 0. A block α is called

(≻)-solved in Ra if (1) each equation of α has a distinct leader which does not

occur in the other equations of α and (2) α does not contain sub-formulas of the

form 0 = a0.1 or false with a0 ∈ Z. According to the axiomatization of Ra we show

easily that:

Property 3.4.5
For all k ∈ {1, ..., n} we have:

Ra |=
n∑

i=1

ai.xi = a0.1 ↔ ak.xk =

n∑

i=1,i 6=k

(−ai).xi + a0.1



20 K. Djelloul

Property 3.4.6

Every block is equivalent in Ra either to false or to a (≻)-solved block.

Let x, y and z be variables such that x ≻ y ≻ z. The block 2.x+y = (−1).1∧2.z+y =

2.1 is not (≻)-solved because y is leader in the second equation and occurs also in the

first one. By the same way, the block x+y = 3.1∧0 = 0.1 is not (≻)-solved because

0 = 0.1 occurs in it. The blocks true and x + 2.z = 4.1 ∧ 3.y + 2.z = 3.1 are (≻)-

solved. The computation of a possibly (≻)-solved block is evident8 and proceeds

using Property 3.4.5 and a usual technique of substitution and simplification by

replacing each equation of the form 0 = a0.1 by false if a0 6= 0 and by true otherwise

and each formula of the form false ∧ α by false.

Property 3.4.7

Let α be a (≻)-solved block and x̄ be the vector of the leaders of the equations of

α. We have:

1. Ra |= ∃!x̄ α.

2. For all x ∈ V we have Ra |= ∃
{false}
∞ x true.

3. For all x ∈ var(α) we have Ra |= ∃?xα.

The first point holds because all the leaders are distinct and do not occur in the

other equations. Thus, if we transform each equation of the form
∑n

i=1 ai.xi = a0.1

using Property 3.4.5 into a formula of the form ak.xk =
∑n

i=1,i 6=k(−ai).xi + a0.1

with xk the leader of this equation, then we get a conjunction of equations whose

left hand sides are distinct and do not occur in the right hand sides. Thus, for each

instantiation of the right hand sides of these equations there exists one and only

value for the left hand sides and thus for the leaders according to axiom 6 of Ra.

The second point holds because according to axiom 8 we have Ra |= ¬(0 = 1)

thus using axiom 7 we have Ra |= ¬(0 + 1 = 1 + 1). Then using axiom 3 we get

Ra |= ¬(1 = 1+1). Thus using the transitivity of the equality we have Ra |= ¬(0 =

1 + 1). If we repeat the preceding steps n times we get n different individuals in all

models of Ra. Thus for every model of Ra there exists an infinite set of individuals.

Thus according to Definition 3.2.1 we have Ra |= ∃
{false}
∞ x true. The third point

is evident according to the form of the blocks and the definition of the (≻)-solved

block.

Property 3.4.8

The theory Ra is decomposable.

8

(1) 0 = 0.1 =⇒ true. (2) 0 = a0.1 =⇒ false. (3) false ∧ α =⇒ false.

(4)

[∑
n

i=1
ai.xi = a0.1∧

∑
n

i=1
bi.xi = b0.1

]

=⇒

[∑
n

i=1
ai.xi = a0.1∧

∑
n

i=1
(bkai − akbi).xi = (bka0 − akb0).1

]

.

In the rule (2) a0 6= 0. In the rule (4) xk is the leader of the block
∑

n

i=1
ai.xi = a0.1 and

bk 6= 0.
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Proof

We show that Ra satisfies the conditions of Definition 3.3.1. The sets A, A′, A′′,

A′′′ and Ψ(u) are chosen as follows:

• A is the set of blocks.

• A′ is the set of formulas of the form ∃ε α′ where α′ is either a (≻)-solved block or

the formula false.

• A′′ is the set of formulas of the form ∃x̄′′ true.

• A′′′ is the set of formulas of the form ∃x̄′′′α′′′ with α′′′ a (≻)-solved block and x̄′′′

the vector of the leaders of the equations of α′′′.

• Ψ(u) = {false}.

Let us denote by BL the set of the blocks. It is clear that A′, A′′ and A′′′ contain

formulas of the form ∃x̄ α with α ∈ BL. Let us show that BL is Ra-closed: (i)

According to the definition of BL we have BL ⊆ AT . (ii) BL is closed under

conjunction. (iii) Let α be a flat formula. If α is the formula true, false, x = 0 or

x = 1 then it is a block9. Else the following transformations transform α to a block

x = y =⇒ x+ (−1).y = 0.1

x = −y =⇒ x+ y = 0.1

x = y + z =⇒ x+ (−1).y + (−1).z = 0.1

From (i), (ii) and (iii) BL is Ra-closed. Let us show that Ra satisfies the first

condition of Definition 3.3.1. Let ψ be any formula and α ∈ BL. Let x̄ be a vector

of variables. Let us choose an order ≻ such that the variables of x̄ are greater than

the free variables of ∃x̄ α. According to Property 3.4.6 two cases arise:

- If α is equivalent to false in Ra, then the formula ∃x̄α ∧ ψ is equivalent in Ra

to a decomposed formula of the form

∃ε false ∧ (∃ε true ∧ (∃ε true ∧ ψ)).

- If α is equivalent in T to a (≻)-solved block β, then let Xl be the set of the

variables of x̄ which are leader in the equations of β and let Xn be the set of the

variables of x̄ which are not leader in the equations of β. The formula ∃x̄α ∧ ψ is

equivalent in T to a decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)), (16)

with x̄′ = ε. The formula α′ contains the conjunction of the equations of β whose

leaders do not belong toXl. The vector x̄′′ contains the variables ofXn. The formula

α′′ is the formula true. The vector x̄′′′ contains the variables of Xl. The formula

α′′′ is the conjunction of the equations of β whose leaders belong to Xl. According

to our construction it is clear that ∃x̄′α′ ∈ A′, ∃x̄′′α′′ ∈ A′′ and ∃x̄′′′α ∈ A′′′. Let

us show that (16) and ∃x̄α∧ψ are equivalent in Ra. Let X, X ′, X ′′ and X ′′′ be the

sets of the variables of the vectors x̄, x̄′, x̄′′ and x̄′′′. If α is equivalent to false in Ra

then the equivalence of the decomposition is evident. Else β is a (≻)-solved block

9 The formulas x = 0 and x = 1 are blocks because the notations 1.x, 0.1 and 1.1 denote the
terms x, 0 and 1 according to Notation 3.4.4
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and thus according to our construction we have: X = X ′ ∪X ′′ ∪X ′′′, X ′ ∩X ′′ = ∅,

X ′ ∩X ′′′ = ∅, X ′′ ∩X ′′′ = ∅, X ′ = ∅, for all x′′i ∈ X ′′ we have x′′i 6∈ var(α′) and for

all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′∧α′′). This is due to the definition of (≻)-solved

blocks and the order ≻ which has been chosen such that the quantified variables of

∃x̄ α are greater than the free variables of ∃x̄ α. On the other hand, each equation

of β occurs in α′ ∧α′′ ∧α′′′ and each equation in α′ ∧α′′ ∧α′′′ occurs in β and thus

Ra |= β ↔ (α′ ∧ α′′ ∧ α′′′). We have shown that the vectorial quantifications are

coherent and the equivalence Ra |= β ↔ α′∧α′′∧α′′′ holds. According to Property

3.4.6 we have Ra |= α ↔ β and thus, the decomposition keeps the equivalence in

Ra. Let us decompose for example

∃xyz 2.v + w = 3.1 ∧ v + x = 2.1 ∧ v + x+ 2.z = 4.1

Let us choose the order ≻ such that x ≻ y ≻ z ≻ v ≻ w. Note that the quantified

variables are greater than the free variables. Let us now (≻)-solve the block 2.v+w =

3.1 ∧ v + x = 2.1 ∧ v + x + 2.z = 4.1. Thus the preceding formula is equivalent in

Ra to

∃xyz 2.v + w = 3.1 ∧ 2.x+ (−1).w = 1 ∧ z = 1

We have Xl = {x, z} and Xn = {y} thus the preceding formula is equivalent in Ra

to the following decomposed formula

∃ε 2.v + w = 3.1 ∧ (∃y true ∧ (∃xz 2.x+ (−1).w = 1 ∧ z = 1)).

The theory Ra satisfies the second condition of Definition 3.3.1 according to the

third point of Property 3.4.7 and using the fact that x̄′ = ε. The theory Ra satisfies

the third condition of Definition 3.3.1 according to the second point of Property

3.4.7. The theory Ra satisfies the fourth condition of Definition 3.3.1 according

to the first point of Property 3.4.7. The theory Ra satisfies the last condition of

Definition 3.3.1 because A′ is of the form ∃ε α′ where α′ is either a (≻)-solved block

or the formula false. Thus, if α′ does not contain free variables then according to

the definition of the (≻)-solved blocks α′ does not contain formulas of the form

0 = a01 and thus α′ is either the formula true or the formula false.

Note that Ra accepts full elimination of quantifiers. In fact Corollary 3.3.5 illus-

trates this result since for all ∃x̄′α′ ∈ A′ we have x̄′ = ε.

4 A general algorithm for solving first-order formulas in a

decomposable theory T

Let T be a decomposable theory together with its set of function symbols F and

its set of relation symbols R. The sets Ψ(u), A, A′, A′′ and A′′′ are now known and

fixed.

4.1 Normalized formula
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Definition 4.1.1

A normalized formula ϕ of depth d ≥ 1 is a formula of the form

¬(∃x̄ α ∧
∧

i∈I

ϕi), (17)

with I a finite (possibly empty) set, α ∈ FL and the ϕ′is are normalized formulas

of depth di with d = 1+max{0, d1, ..., dn} and all the quantified variables of ϕ have

distinct names and different from the names of the free variables.

Example 4.1.2

Let f and g be two 1-ary function symbols which belong to F . The formula

¬

[

∃εtrue ∧

[
¬(∃x y = fx ∧ x = y ∧ ¬(∃ε y = gx))∧

¬(∃ε x = z)

]]

is a normalized formula of depth equals to three. The formulas ¬(∃ε true) and

¬(∃ε false) are two normalized formulas of depth 1. The smallest value of a depth

of a normalized formula is 1. Normalized formulas of depth 0 are not defined and

do not exist.

Property 4.1.3

Every formula ϕ is equivalent in T to a wnfv normalized formula of depth d ≥ 1.

Proof

It is easy to transform any formula to a wnfv normalized formula, it is enough for

example to follow the followings steps:

1. Introduce a supplement of equations and existentially quantified variables to trans-

form the conjunctions of atomic formulas into conjunctions of flat formulas.

2. Express all the quantifiers, constants and logical connectors using only the logical

symbols ¬, ∧ and ∃. This can be done using the following transformations10 of

sub-formulas:

(ϕ ∨ φ) =⇒ ¬(¬ϕ ∧ ¬φ),

(ϕ→ φ) =⇒ ¬(ϕ ∧ ¬φ),

(ϕ↔ φ) =⇒ (¬(ϕ ∧ ¬φ) ∧ ¬(φ ∧ ¬ϕ)),

(∀xϕ) =⇒ ¬(∃x¬ϕ).

3. If the formula ϕ obtained does not start with the logical symbol ¬, then replace it

by ¬(∃ε true ∧ ¬ϕ).

4. Name the quantified variables by distinct names and different from the names of

the free variables.

5. Lift the quantifier before the conjunction, i.e. ϕ ∧ (∃x̄ ψ) or (∃x̄ ψ) ∧ ϕ, becomes

∃x̄ ϕ ∧ ψ because the free variables of ϕ are distinct from those of x̄.

6. Group the quantified variables into a vectorial quantifier, i.e. ∃x̄(∃ȳ ϕ) or ∃x̄∃ȳ ϕ

becomes ∃xy ϕ.

10 These equivalences are true in the empty theory and thus in any theory T .
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7. Insert empty vectors and formulas of the form true to get the normalized form using

the following transformations of sub-formulas:

¬(
∧

i∈I

¬ϕi) =⇒ ¬(∃ε true ∧
∧

i∈I

¬ϕi), (18)

¬(α ∧
∧

i∈I

¬ϕi) =⇒ ¬(∃ε α ∧
∧

i∈I

¬ϕi), (19)

¬(∃x̄
∧

j∈J

¬ϕj) =⇒ ¬(∃x̄ true ∧
∧

j∈J

¬ϕj). (20)

with α ∈ FL, I a finite (possibly empty) set and J a finite non-empty set.

If the starting formula does not contain the logical symbol ↔ then this transfor-

mation will be linear, i.e. there exists a constant k such that n2 ≤ kn1, where n1 is

the size of the starting formula and n2 the size of the normalized formula. We show

easily by contradiction that the final formula obtained after application of these

steps is normalized.

Example 4.1.4

Let f be a 2-ary function symbol which belongs to F . Let us apply the preced-

ing steps to transform the following formula into a normalized formula which is

equivalent in T :

(fuv = fwu ∧ (∃xu = x)) ∨ (∃u ∀wu = fvw).

Note that the formula does not start with ¬ and the variables u and w are free in

fuv = fwu ∧ (∃xu = x) and bound in ∃u ∀wu = fvw.

Step 1: Let us first transform the equations into flat equations. The preceding

formula is equivalent in T to

(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∨ (∃u ∀wu = fvw). (21)

Step 2: Let us now express the quantifier ∀ using ¬, ∧ and ∃. Thus, the formula

(21) is equivalent in T to

(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∨ (∃u¬(∃w¬(u = fvw))).

Let us also express the logical symbol ∨ using ¬, ∧ and ∃. Thus, the preceding

formula is equivalent in T to

¬(¬(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∧ ¬(∃u¬(∃w¬(u = fvw)))). (22)

Step 3: The formula starts with ¬, then we move to Step 4.

Step 4: The occurrences of the quantified variables u and w in (∃u¬(∃w¬(u =

fvw))) must be renamed. Thus, the formula (22) is equivalent in T to

¬(¬(∃u1 u1 = fuv ∧ u1 = fwu ∧ (∃xu = x)) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))).

Step 5: By lifting the existential quantifier ∃x, the preceding formula is equivalent

in T to

¬(¬(∃u1 ∃xu1 = fuv ∧ u1 = fwu ∧ u = x) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))).
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Step 6: Let us group the two quantified variables x and u1 into a vectorial quantifier.

Thus, the preceding formula is equivalent in T to

¬(¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x) ∧ ¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))).

Step 7: Let us introduce empty vectors of variables and formulas of the form true

to get the normalized formula. According to the rule (18), the preceding formula is

equivalent in T to

¬

[

∃ε true ∧

[
¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x)∧

¬(∃u2 ¬(∃w1 ¬(u2 = fvw1)))

]]

,

which using the rule (19) with I = ∅ is equivalent in T to

¬

[

∃ε true ∧

[
¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x)∧

¬(∃u2 ¬(∃w1 ¬(∃ε u2 = fvw1)))

]]

,

which using the rule (20) is equivalent in T to

¬

[

∃ε true ∧

[
¬(∃u1xu1 = fuv ∧ u1 = fwu ∧ u = x)∧

¬(∃u2 true ∧ ¬(∃w1 true ∧ ¬(∃ε u2 = fvw1)))

]]

.

This is a normalized formula of depth 4.

4.2 Working formula

Definition 4.2.1

A working formula ϕ of depth d ≥ 1 is a formula of the form

¬(∃x̄ α ∧
∧

i∈I

ϕi), (23)

with I a finite (possibly empty) set, α ∈ A and the ϕ′is are working formulas of

depth di with d = 1 + max{0, d1, ..., dn} and all the quantified variables of ϕ have

distinct names and different from the names of the free variables. Working formulas

of depth 0 are not defined and do not exist.

Property 4.2.2

Every formula is equivalent in T to a wnfv working formula.

Proof

Let ϕ be a formula. According to Property 4.1.3, ϕ is equivalent in T to a wnfv

normalized formula φ of the form

¬(∃x̄ α ∧
∧

i∈I

ϕi), (24)

with α ∈ FL, I a finite possibly empty set and all the ϕi are normalized formulas.

Let us show by recurrence on the depth d of (24) that the formula (24) is equivalent

in T to a working formula.

(1) Let us show first that the recurrence is true for d = 1, i.e. every normalized

formula of the form ¬(∃x̄ α) with α ∈ FL is equivalent in T to a working formula.
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Since T is decomposable then according to Definition 3.3.1 the set A is T -closed,

i.e. (i) A ⊆ AT , (ii) A is closed under conjunction and (iii) every flat formula is

equivalent in T to a formula which belongs to A. Since α ∈ FL, then according to

(iii) α is equivalent in T to a conjunction β of elements of A. According to (ii) β

belongs to A. Thus, the formula ¬(∃x̄ α) is equivalent in T to ¬(∃x̄ β) with β ∈ A

which is a working formula of depth 1.

(2) Let us suppose now that the recurrence is true for d ≤ n and let us show that

it is true for d = n+ 1. Let

¬(∃x̄ α ∧
∧

i∈I

ϕi), (25)

be a normalized formula of depth n+ 1 with α ∈ FL and all the ϕi are normalized

formulas of depth di ≤ n. According to the hypothesis of recurrence the preceding

formula is equivalent in T to a formula of the form

¬(∃x̄ α ∧
∧

i∈I

ϕi), (26)

with α ∈ FL and all the ϕi are working formulas. Since T is decomposable then

according to Definition 3.3.1 the set A is T -closed, i.e. (i) A ⊆ AT , (ii) A is closed

under conjunction and (iii) every flat formula is equivalent in T to a formula which

belongs to A. Since α ∈ FL, then according to (iii) α is equivalent in T to a

conjunction β of elements of A. According to (ii) β belongs to A. Thus, the formula

(26) is equivalent in T to

¬(∃x̄ β ∧
∧

i∈I

ϕi),

with β ∈ A and all the ϕi are working formulas. The preceding formula is a working

formula. From (1) and (2) our recurrence is true.

Example 4.2.3

In the theory Ra of additive rational numbers, the formula

¬

[

∃ε true ∧

[
¬(∃x y = −z ∧ z = x+ y)∧

¬(∃ true ∧ ¬(∃w true ∧ ¬(∃ε z = w)))

]]

,

is a normalized formula of depth 4 which is equivalent in Ra to the following working

formula

¬

[

∃ε true ∧

[
¬(∃x y + z = 0.1 ∧ z + (−1).x+ (−1).y = 0.1)∧

¬(∃ true ∧ ¬(∃w true ∧ ¬(∃ε z + (−1).w = 0.1)))

]]

.

Definition 4.2.4

A solved formula is a working formula of the form

¬(∃x̄′ α′ ∧
∧

i∈I

¬(∃ȳ′i β
′
i)), (27)

where I is a finite (possibly empty) set, ∃x̄′α′ ∈ A′, ∃ȳ′iβ
′
i ∈ A′ for all i ∈ I, α′ is

different from the formula false and all the β′i are different from the formulas true

and false.
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Property 4.2.5

Let ϕ be a conjunction of solved formulas without free variables. The conjunction

ϕ is either the formula ¬true or the formula true.

Proof

Recall first that we write
∧

i∈I ϕi, and call conjunction each formula of the form

ϕi1 ∧ ϕi2 ∧ ... ∧ ϕin
∧ true. Let ϕ be a conjunction of solved formulas without free

variables. According to Definition 4.2.4, ϕ is of the form

(
∧

i∈I

¬(∃x̄′iα
′
i ∧

∧

j∈Ji

¬(∃ȳ′ijβ
′
ij))) ∧ true (28)

with

1. I a finite (possibly empty) set,

2. (∃x̄′iα
′
i) ∈ A′ for all i ∈ I,

3. (∃ȳ′ijβ
′
ij) ∈ A′ for all i ∈ I and j ∈ Ji,

4. α′i different from false for all i ∈ I,

5. β′ij different from true and false for all i ∈ I and j ∈ Ji.

Since these solved formulas don’t have free variables and since T is a decomposable

theory then according to the fifth point of Definition 3.3.1 of a decomposable theory

and the conditions 2 and 3 of (28) we have:

(*) each formula ∃x̄′iα
′
i and each formula ∃ȳ′ijβ

′
ij is either the formula ∃εtrue or

∃εfalse.

According to (*) and the condition 5 of (28), all the sets Ji must be empty, thus ϕ

is of the form

(
∧

i∈I

¬(∃x̄′iα
′
i)) ∧ true (29)

According to (*) and (29), the formula ϕ is of the form

(
∧

i∈I′

¬(∃εfalse)) ∧ (
∧

j∈I−I′

¬(∃εtrue)) ∧ true

According to the condition 4 of (28), the set I ′ must be empty and thus ϕ is of the

form

(
∧

i∈I

¬(∃εtrue)) ∧ true

If I = ∅ then ϕ is the formula true. Else, according to our assumptions, we do not

distinguish two formulas which can be made equal using the following transforma-

tions of sub-formulas:

ϕ ∧ ϕ =⇒ ϕ, ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),

ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

Thus ϕ is the formula

¬true
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Property 4.2.6

Every solved formula is equivalent in T to a wnfv Boolean combination of elements

of A′.

Proof

Let ϕ be a solved formula. According to Definition 4.2.4, the formula ϕ is of the

form

¬(∃x̄′ α′ ∧
∧

i∈I

¬(∃ȳ′i β
′
i)),

with ∃x̄′α′ ∈ A′ and ∃ȳ′iβ
′
i ∈ A′ for all i ∈ I. Since ∃x̄′α′ ∈ A′ then according

to Definition 3.3.1 we have T |= ∃?x̄′α′ and thus according to Corollary 3.1.4, the

preceding formula is equivalent in T to the following wnfv formula

¬((∃x̄′ α′) ∧
∧

i∈I

¬(∃x̄′ α′ ∧ (∃ȳ′i β
′
i))).

According to the definition of working formula, all the quantified variables have

distinct names and different from the names of the free variables, thus the preceding

formula is equivalent in T to the wnfv formula

¬((∃x̄′ α′) ∧
∧

i∈I

¬(∃x̄′ȳ′i α
′ ∧ β′i)).

Since ∃x̄′α′ ∈ A′ and ∃ȳ′iβ
′
i ∈ A′ for all i ∈ I, then α′ ∈ A and β′i ∈ A. Since A

is T -closed then it is closed under conjunction and thus α′ ∧ β′i ∈ A for all i ∈ I.

According to Property 3.3.2 the preceding formula is equivalent in T to a wnfv

formula of the form

¬((∃x̄′ α′) ∧
∧

i∈I

¬(∃z̄′i δ
′
i)),

with ∃x̄′α′ ∈ A′ and ∃z̄′iδ
′
i ∈ A′ for all i ∈ I. Which is finally equivalent in T to

(¬(∃x̄′ α′)) ∨
∨

i∈I

(∃z̄′i δ
′
i).

4.3 The rewriting rules

We present now the rewriting rules which transform a working formula ϕ of any

depth d into a wnfv conjunction φ of solved formulas which is equivalent to ϕ in

T . To apply the rule p1 =⇒ p2 to the working formula p means to replace in p, a

sub-formula p1 by the formula p2, by considering that the connector ∧ is associative

and commutative.
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(1) ¬

[
∃x̄ α ∧ ϕ∧

¬(∃ȳ true)

]

=⇒ true

(2) ¬
[

∃x̄ false ∧ ϕ
]

=⇒ true

(3) ¬

[
∃x̄ α∧
∧

i∈I ¬(∃ȳi βi)

]

=⇒ ¬

[
∃x̄′x̄′′ α′ ∧ α′′∧
∧

i∈I ¬(∃x̄′′′ȳi α
′′′ ∧ βi)

∗

]

(4) ¬

[
∃x̄ α∧
∧

i∈I ¬(∃ȳ′i β
′
i)

]

=⇒ ¬

[
∃x̄′ α′∧
∧

i∈I′ ¬(∃ȳ′i β
′
i)

]

(5) ¬







∃x̄ α ∧ ϕ∧

¬

[
∃ȳ′ β′∧
∧

i∈I ¬(∃z̄′i δ
′
i)

]







=⇒

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧
∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ)∗

]

with α ∈ A, ϕ a conjunction of working formulas and I a finite (possibly empty)

set. In the rule (3), the formula ∃x̄ α is equivalent in T to a decomposed formula

of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈

A′′′ and ∃x̄′′′ α′′′ different from ∃ε true. All the βi’s belong to A. The formula

(∃x̄′′′ȳi α
′′′ ∧ βi)

∗ is the formula (∃x̄′′′ȳi α
′′′ ∧ βi) in which we have renamed the

variables of x̄′′′ by distinct names and different from the names of the free variables.

In the rule (4), the formula ∃x̄ α is not an element of A′ and is equivalent in T to

a decomposed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with ∃x̄′ α′ ∈ A′

and ∃x̄′′ α′′ ∈ A′′. Each formula ∃ȳ′i β
′
i is an element of A′. I ′ is the set of the i ∈ I

such that ∃ȳ′iβ
′
i does not have free occurrences of any variable of x̄′′. In the rule (5),

I 6= ∅, ∃ȳ′ β′ ∈ A′ and ∃z̄′i δ
′
i ∈ A′ for all i ∈ I. The formula (∃x̄ȳ′z̄′i α∧β′ ∧ δ′i ∧ϕ)∗

is the formula (∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ) in which we have renamed the variables of x̄

and ȳ′ by distinct names and different from the names of the free variables.

Property 4.3.1

Every repeated application of the preceding rewriting rules on any working for-

mula ϕ, terminates and produces a wnfv conjunction φ of solved formulas which is

equivalent to ϕ in T .

Proof, first part: The application of the rewriting rules terminates. Let us consider

the 3-tuple (n1, n2, n3) where the ni’s are the following positive integers:

• n1 = α(p), where the function α is defined as follows:

— α(true) = 0,

— α(¬(∃x̄ a ∧ ϕ)) = 2α(ϕ),
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— α(
∧

i∈I ϕi) =
∑

i∈I α(ϕi),

with a ∈ A, ϕ a conjunction of working formulas and the ϕi’s working formu-

las. Note that if α(p2) < α(p1) then α(p[p2]) < α(p) where p[p2] is the formula

obtained from p when we replace the occurrence of the formula p1 in p by p2.

This function has been introduced in (Vorobyov 1996) and (Colmerauer 2003)

to show the non-elementary complexity of all algorithms solving propositions

in the theory of finite or infinite trees. It has also the property to decrease if

the depth of the working formula decreases after application of distributions

as it is done in our rule (5).

• n2 = β(p), where the function β is defined as follows:

— β(true) = 0,

— β(¬(∃x̄ a ∧
∧

i∈I ϕi)) =

{

4
1+

∑

i∈I
β(ϕi) if ∃x̄′′′α′′′ 6= ∃εtrue,

1 +
∑

i∈I β(ϕi) if ∃x̄′′′α′′′ = ∃εtrue

}

with the ϕi’s working formulas and T |= (∃x̄α) ↔ (∃x̄′α′ ∧ (∃x̄′′α′′ ∧

(∃x̄′′′α′′′))).

We show that:

β(¬(∃x̄ α ∧
∧

i∈I

¬(∃ȳi λi))) > β(¬(∃z̄δ ∧
∧

i∈I

¬(∃wi γi)))

where I is a finite possibly empty set, the formula ∃x̄ α is equivalent in T to a

decomposed formula of the form ∃x̄′α′ ∧ (∃x̄′′α′′ ∧ (∃x̄′′′ α′′′)) with ∃x̄′′′ α′′′ 6=

∃ε true, the formula ∃z̄ δ is equivalent in T to a decomposed formula of the

form ∃z̄′ δ′ ∧ (∃z̄′′ δ′′ ∧ (∃ε true)) and all the λi and γi belong to A and have

no particular conditions.

• n3 is the number of sub-formulas of the form ¬(∃x̄α ∧ ϕ) with ∃x̄α 6∈ A′ and

ϕ a conjunction of working formulas.

For each rule, there exists an integer i such that the application of this rule decreases

or does not change the values of the nj ’s, with 1 ≤ j < i, and decreases the value

of ni. This integer i is equal to: 1 for the rules (1), (2) and (5), 2 for the rule (3)

and 3 for the rule (4). To each sequence of formulas obtained by a finite application

of the preceding rewriting rules, we can associate a series of 3-tuples (n1, n2, n3)

which is strictly decreasing in the lexicographic order. Since the ni’s are positive

integers, they cannot be negative, thus this series of 3-tuples is a finite series and

the application of the rewriting rules terminates.

Proof, second part: Let us show now that for each rule of the form p =⇒ p′ we have

T |= p ↔ p′ and the formula p′ remains a conjunction of working formulas. It is

clear that the rules (1) and (2) are correct.
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Correctness of the rule (3):

¬

[
∃x̄ α∧
∧

i∈I ¬(∃ȳi βi)

]

=⇒ ¬

[
∃x̄′x̄′′ α′ ∧ α′′∧
∧

i∈I ¬(∃x̄′′′ȳi α
′′′ ∧ βi)

]

where the formula ∃x̄ α is equivalent in T to a decomposed formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈ A′′′ and

∃x̄′′′ α′′′ different from ∃ε true.

Let us show the correctness of this rule. According to the conditions of application

of this rule, the formula ∃x̄ α is equivalent in T to a decomposed formula of the

form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′)) with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′, ∃x̄′′′ α′′′ ∈ A′′′

and ∃x̄′′′ α′′′ different from ∃ε true. Thus, the left formula of this rewriting rule is

equivalent in T to the formula

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧ (∃x̄′′′α′′′ ∧
∧

i∈I

¬(∃ȳi βi)))).

Since ∃x̄′′′ α′′′ ∈ A′′′, then according to the fourth point of Definition 3.3.1 we have

T |= ∃!x̄′′′α′′′, thus using Corollary 3.1.6 the preceding formula is equivalent in T

to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧

i∈I

¬(∃x̄′′′α′′′ ∧ (∃ȳi βi))))

According to the definition of the working formula the quantified variables have

distinct names and different from the names of the free variables, thus we can lift

the quantifications and then the preceding formula is equivalent in T to

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧

i∈I

¬(∃x̄′′′ȳi α
′′′ ∧ βi)))

i.e. to

¬(∃x̄′x̄′′ α′ ∧ α′′ ∧
∧

i∈I

¬(∃x̄′′′ȳi α
′′′ ∧ βi)

∗),

where the formula (∃x̄′′′ȳi α
′′′ ∧ βi)

∗ is the formula (∃x̄′′′ȳi α
′′′ ∧ βi) in which we

have renamed the variables of x̄′′′ by distinct names and different from the names

of the free variables. Thus, the rewriting rule (3) is correct in T .

Correctness of the rule (4):

¬

[
∃x̄ α∧
∧

i∈I ¬(∃ȳ′i β
′
i)

]

=⇒ ¬

[
∃x̄′ α′∧
∧

i∈I′ ¬(∃ȳ′i β
′
i)

]

where the formula ∃x̄ α is not an element of A′ and is equivalent in T to a de-

composed formula of the form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with ∃x̄′ α′ ∈ A′ and

∃x̄′′ α′′ ∈ A′′. Each formula ∃ȳ′i β
′
i is an element of A′. I ′ is the set of the i ∈ I such

that ∃ȳ′iβ
′
i does not have free occurrences of any variable of x̄′′.

Let us show the correctness of this rule. According to the conditions of application

of this rule, the formula ∃x̄ α is equivalent in T to a decomposed formula of the
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form ∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃ε true)) with ∃x̄′ α′ ∈ A′ and ∃x̄′′ α′′ ∈ A′′. Moreover,

each formula ∃ȳ′i β
′
i belongs to A′. Thus, the left formula of this rewriting rule is

equivalent in T to the formula

¬(∃x̄′ α′ ∧ (∃x̄′′α′′ ∧
∧

i∈I

¬(∃ȳ′i β
′
i)))

Let us denote by I1, the set of the i ∈ I such that x′′n does not have free occurrences

in the formula ∃ȳ′iβ
′
i, thus the preceding formula is equivalent in T to

¬(∃x̄′α′ ∧ (∃x′′1 ...∃x
′′
n−1

[
(
∧

i∈I1
¬(∃ȳ′iβ

′
i))∧

(∃x′′n α
′′ ∧

∧

i∈I−I1
¬(∃ȳ′iβ

′
i))

]

)). (30)

Since ∃x̄′′α′′ ∈ A′′ and ∃ȳ′iβ
′
i ∈ A′ for every i ∈ I − I1, then according to Property

3.2.2 and the conditions 2 and 3 of Definition 3.3.1, the formula (30) is equivalent

in T to

¬(∃x̄′α′ ∧ (∃x′′1 ...∃x
′′
n−1 (true ∧

∧

i∈I1
¬(∃ȳ′iβ

′
i)))). (31)

By repeating the three preceding steps (n− 1) times, by denoting by Ik the set of

the i ∈ Ik−1 such that x′′(n−k+1) does not have free occurrences in ∃ȳ′iβ
′
i, and by

using (n− 1) times Property 3.2.3, the preceding formula is equivalent in T to

¬(∃x̄′α′ ∧
∧

i∈In
¬(∃ȳ′iβ

′
i)),

Thus, the rule (4) is correct in T .

Correctness of the rule (5):

¬







∃x̄ α ∧ ϕ∧

¬

[
∃ȳ′ β′∧
∧

i∈I ¬(∃z̄′i δ
′
i)

]







=⇒

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧
∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ β′ ∧ δ′i ∧ ϕ)∗

]

where I 6= ∅ and the formulas ∃ȳ′ β′ and ∃z̄′i δ
′
i are elements of A′ for all i ∈ I.

Let us show the correctness of this rule. Since ∃ȳ′β′ ∈ A′ then according to the

second point of Definition 3.3.1 we have T |= ∃?ȳ′β′, thus using Corollary 3.1.4 the

preceding formula is equivalent in T to

¬

[
∃x̄ α ∧ ϕ∧

¬
[

(∃ȳ′ β′) ∧
∧

i∈I ¬(∃ȳ′ β′ ∧ (∃z̄′i δ
′
i))

]

]

According to the definition of working formula the quantified variables have distinct

names and different from the names of the free variables, thus we can lift the

quantifications and then the preceding formula is equivalent in T to

¬

[
∃x̄ α ∧ ϕ∧

¬
[

(∃ȳ′ β′) ∧
∧

i∈I ¬(∃ȳ′z̄′i β
′ ∧ δ′i)

]

]

thus to

¬

[
∃x̄ α ∧ ϕ∧
[

(¬(∃ȳ′ β′)) ∨
∨

i∈I(∃ȳ
′z̄′i β

′ ∧ δ′i)
]

]
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After having distributed the ∧ on the ∨ and lifted the quantification ∃ȳ′z̄′i we get

¬

[
(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∨
∨

i∈I(∃x̄ȳ
′z̄′i α ∧ ϕ ∧ β′ ∧ δ′i)

]

which is equivalent in T to

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧
∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ δ′i)

]

(32)

In order to satisfy the definition of the working formulas we must rename the

variables of x̄ and ȳ′ by distinct names and different from the names of the free

variables. Let us denote by (∃x̄ȳ′z̄′i α∧ϕ∧β
′∧δ′i)

∗ the formula (∃x̄ȳ′z̄′i α∧ϕ∧β
′∧δ′i)

in which we have renamed the variables of x̄ and ȳ′ by distinct names and different

from the names of the free variables. Thus, the formula (32) is equivalent in T to

[
¬(∃x̄ α ∧ ϕ ∧ ¬(∃ȳ′ β′))∧
∧

i∈I ¬(∃x̄ȳ′z̄′i α ∧ ϕ ∧ β′ ∧ δ′i)
∗

]

Thus, the rule (5) is correct in T .

Proof, third part: Every finite application of the rewriting rules on a working formula

produces a wnfv conjunction of solved formulas.

Recall that we write
∧

i∈I ϕi, and call conjunction each formula of the form

ϕi1 ∧ ϕi2 ∧ ... ∧ ϕin
∧ true. In particular, for I = ∅, the conjunction

∧

i∈I ϕi is

reduced to true. Moreover, we do not distinguish two formulas which can be made

equal using the following transformations of sub-formulas:

ϕ ∧ ϕ =⇒ ϕ, ϕ ∧ ψ =⇒ ψ ∧ ϕ, (ϕ ∧ ψ) ∧ φ =⇒ ϕ ∧ (ψ ∧ φ),

ϕ ∧ true =⇒ ϕ, ϕ ∨ false =⇒ ϕ.

Let us show first that every substitution of a sub-working formula of a conjunction

of working formulas by a conjunction of working formulas produces a conjunction

of working formulas. Let
∧

i∈I ϕi be a conjunction of working formulas. Let ϕk with

k ∈ I be an element of this conjunction of depth dk. Two cases arise:

1. We replace ϕk by a conjunction of working formulas. Thus, let
∧

j∈Jk
φj be

a conjunction of working formulas which is equivalent to ϕk in T . The con-

junction of working formulas
∧

i∈I ϕi is equivalent in T to

(
∧

i∈I−{k}

ϕi) ∧ (
∧

j∈Jk

φj)

which is clearly a conjunction of working formulas.

2. We replace a strict sub-working formula of ϕk by a conjunction of working

formulas. Thus, let φ be a sub-working formula of ϕk of depth dφ < dk (thus
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φ is different from ϕk). Thus, ϕk has a sub-working formula11 of the form

¬(∃x̄α ∧ (
∧

l∈L

ψl) ∧ φ),

where L is a finite (possibly empty) set and all the ψl are working formulas.

Let
∧

j∈J φj be a conjunction of working formulas which is equivalent to φ in

T . Thus the preceding sub-working formula of ϕk is equivalent in T to

¬(∃x̄α ∧ (
∧

l∈L

ψl) ∧ (
∧

j∈J

φj)),

which is clearly a sub-working formula and thus ϕk is equivalent to a working

formula and thus
∧

i∈I ϕi is equivalent to a conjunction of working formulas.

From 1 and 2 we deduce that (i) every substitution of a sub-working formula of a

conjunction of working formulas by a conjunction of working formulas produces a

conjunction of working formulas.

Since each rule transforms a working formula into a conjunction of working for-

mulas, then according to (i) every finite application of the rewriting rules on a

working formula produces a conjunction of working formulas. Let us show now that

each of these final working formulas is solved.

Let ϕ be a working formula. According to all what we have shown, every finite

application of our rules on ϕ produces a conjunction φ of working formulas. Suppose

that the rules terminate and one of the working formulas of φ is not solved. Let ψ

be this formula, two cases arise:

Case 1: ψ is a working formula of depth greater than 2. Thus, ψ has a sub-

formula of the form

¬

[
∃x̄ α ∧ ψ1∧

¬
[
∃ȳ β ∧

∧

i∈I ¬(∃z̄i δi)
]

]

where ψ1 is a conjunction of working formulas, I is a nonempty set and α, β and δi
are elements of A for all i ∈ I. Let (∃ȳ′β′∧ (∃x̄′′β′′∧ (∃ȳ′′′β′′′))) be the decomposed

formula in T of ∃ȳβ and let (∃z̄′iδ
′
i∧(∃z̄′′i δ

′′
i ∧(∃z̄′′′i δ

′′′
i ))) be the decomposed formula

in T of ∃z̄iδi. If ∃ȳ′′′β′′′ is not the formula ∃εtrue then the rule (3) can still be applied

which contradicts our supposition. Thus, suppose that

∃ȳ′′′β′′′ = ∃εtrue (33)

If there exists k ∈ I such that ∃z̄′′′k δ
′′′
k is not the formula ∃εtrue then the rule (3)

can be still applied (with I = ∅) which contradicts our supposition. Thus, suppose

that

∃z̄′′′i δ
′′′
i = ∃εtrue (34)

for all i ∈ I. If there exists k ∈ I such that ∃z̄kδk is not an element of A′ then since

we have (34), the rule (4) can still be applied (with I = ∅) which contradicts our

11 By considering that the set of the sub-formulas of any formula ϕ contains also the whole formula
ϕ.
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supposition. Thus, suppose that

∃z̄iδi ∈ A′ (35)

for all i ∈ I. If ∃ȳβ is not an element of A′ then since we have (33) and (35), the

rule (4) can still be applied which contradicts our supposition. Thus, suppose that

∃ȳβ ∈ A′ (36)

Since we have (35) and (36) then the rule (5) can still be applied which contradicts

all our suppositions.

Case 2: ψ is a working formula of the form

¬(∃x̄ α ∧
∧

i∈I

¬(∃ȳi βi))

where at least one of the following conditions holds:

1. α is the formula false,

2. there exists k ∈ I such that βk is the formula true or false,

3. there exists k ∈ I such that ∃ȳkβk 6∈ A′,

4. ∃x̄α 6∈ A′.

If the condition (1) holds then the rule (2) can still be applied which contradicts

our suppositions. If the condition (2) holds then the rules (1) and (2) can still be

applied which contradicts our suppositions. If the condition (3) holds then the rule

(3) or (4) (with I = ∅) can still be applied which contradicts our suppositions. If the

condition (4) holds then according to the preceding point ∃ȳiβi ∈ A′ for all i ∈ I

and thus the rule (3) or (4) can still be applied which contradicts our suppositions.

From Case 1 and Case 2, our suppositions are always false thus ψ is a solved

formula and thus φ is a conjunction of solved formulas.

4.4 The algorithm of resolution

Having any formula ψ, the resolution of ψ proceeds as follows:

1. Transform the formula ψ into a normalized formula and then into a working

formula ϕ which is wnfv and equivalent to ψ in T .

2. Apply the preceding rewriting rules on ϕ as many time as possible. At the

end we obtain a conjunction φ of solved formulas.

According to Property 4.3.1, the application of the rewriting rules on a formula ψ

without free variables produces a conjunction φ of solved formulas which is equiv-

alent to ψ in T and does not contain free variables. According to Property 4.2.5, φ

is either the formula true or ¬true, thus either T |= ψ or T |= ¬ψ and thus T is a

complete theory. We can now present our main result:

Corollary 4.4.1

If T is a decomposable theory then every formula is equivalent in T either to true

or to false or to a Boolean combination of elements of A′ which has at least one

free variable.
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Remark 4.4.2
There exists another way to solve the first-order formulas in T specially in the case

where there exists at least one free variable in the initial formula ψ and when the

goal of the resolution is to have explicit and understanding solutions of these free

variables in ψ. In this case it is better to run the preceding algorithm on ¬ψ. Let

then
∧

i∈I

¬(∃x̄′i α
′
i ∧

∧

j∈Ji

¬(∃ȳ′ij β
′
ij))

be the conjunction of solved formulas obtained by application of the preceding rules

on ¬ψ. The formula
∨

i∈I

(∃x̄′i α
′
i ∧

∧

j∈Ji

¬(∃ȳ′ij β
′
ij))

is a wnfv disjunction of formulas which is equivalent to ψ in T . It is more easy to

understand the solutions of the free variables of this disjunction of solved formulas

than those of a conjunction of solved formulas.

5 The theory T of finite or infinite trees

5.1 The axioms

The theory T of finite or infinite trees built on an infinite set F of distinct function

symbols has as axioms the infinite set of propositions of one of the three following

forms:

∀x̄∀ȳ ¬fx̄ = gȳ [1]

∀x̄∀ȳ f x̄ = fȳ →
∧

i xi = yi [2]

∀x̄∃!z̄
∧

i zi = ti[x̄z̄] [3]

where f and g are distinct function symbols taken from F , x̄ is a vector of possibly

non-distinct variables xi, ȳ is a vector of possibly non-distinct variables yi, z̄ is a

vector of distinct variables zi and ti[x̄z̄] is a term which begins with an element of

F followed by variables taken from x̄ or z̄. Note that this theory does not accept full

elimination of quantifiers. In fact, in the formula ∃x y = f(x) we can not remove or

eliminate the quantifier ∃x.

5.2 Properties of T

Suppose that the variables of V are ordered by a strict linear dense order relation

without endpoints denoted by ≻.

Definition 5.2.1
A conjunction α of flat equations is called (≻)-solved if all its left-hand sides are

distinct and α does not contain equations of the form x = x or y = x, where x and

y are variables such that x ≻ y.

Property 5.2.2
Every conjunction α of flat formulas is equivalent in T either to false or to a (≻)-

solved conjunction of flat equations.
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Proof

To prove this property we introduce the following rewriting rules:

(1) false ∧ α =⇒ false,

(2) x = fy1...ym ∧ x = gz1...zn =⇒ false,

(3) x = fy1...yn ∧ x = fz1...zn =⇒ x = fy1...yn ∧
∧

i∈{1,...,n} yi = zi,

(4) x = x =⇒ true

(5) y = x =⇒ x = y

(6) x = y ∧ x = fz1...zn =⇒ x = y ∧ y = fz1...zn

(7) x = y ∧ x = z =⇒ x = y ∧ y = z

with α any formula and f and g two distinct function symbols taken from F . The

rules (5), (6) and (7) are applied only if x ≻ y. This condition prevents infinite

loops.

Let us prove now that every repeated application of the preceding rewriting rules

on any conjunction α of flat formulas, is terminating and producing either the for-

mula false or a (≻)-solved conjunction of flat equations which is equivalent to α in

T .

Proof, first part: The application of the rewriting rules terminates. Since the vari-

ables which occur in our formulas are ordered by the strict linear order relation

without endpoints “ ≻ ”, we can number them by positive integers such that

x ≻ y ↔ no(x) > no(y),

where no(x) is the number associated to the variable x. Let us consider the 4-tuple

(n1, n2, n3, n4) where the ni’s are the following positive integers:

• n1 is the number of occurrences of sub-formulas of the form x = fy1...yn, with

f ∈ F ,

• n2 is the number of occurrences of atomic formulas,

• n3 is the sum of the no(x)’s for all occurrences of a variable x,

• n4 is the number of occurrences of formulas of the form y = x, with x ≻ y.

For each rule, there exists an integer i such that the application of this rule decreases

or does not change the values of the nj ’s, with 1 ≤ j < i, and decreases the value

of ni. This integer i is equal to: 2 for the rule (1), 1 for the rules (2) and (3), 3 for

the rules (4), (6) and (7), 4 for the rule (5). To each sequence of formulas obtained

by a finite application of the preceding rewriting rules, we can associate a series of

4-tuples (n1, n2, n3, n4) which is strictly decreasing in the lexicographic order. Since

the ni’s are positive integers, they cannot be negative, thus this series of 4-tuples

is a finite series and the application of the rewriting rules terminates.

Proof, second part: The rules preserve equivalence in T . The rule (1) is evident in

T . The rules (2) preserves the equivalence in T according to the axiom 1. The rule

(3) preserves the equivalence in T according to the axiom 2. The rules (4), (5), (6)

and (7) are evident in T .

Proof, third part: The application of the rewriting rules terminates either by false
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or by a (≻)-solved conjunction of flat equations. Suppose that the application of

the rewriting rules on a conjunction α of flat formulas terminates by a formula β

and at least one of the following conditions holds:

1. β is not the formula false and has at least a sub-formula of the form false,

2. β has two equations with the same left-hand side,

3. β contains equations of the form x = x or y = x with x ≻ y.

If the condition 1 holds then the rule (1) can still be applied which contradicts

our supposition. If the condition 2 holds then the rules (2), (3), (6) and (7) can

still be applied which contradicts our supposition. If the condition 3 holds then the

rules (4) and (5) can still be applied which contradicts our supposition. Thus, the

formula β according to Definition 5.2.1 is either the formula false or a (≻)-solved

conjunction of flat equations.

Let us introduce now the notion of reachable variable and reachable equation.

Definition 5.2.3

The equations and variables reachable from the variable u in the formula

∃x̄
n∧

i=1

vi = ti

are those who occur in at least one of its sub-formulas of the form
∧m

j=1 vkj
= tkj

,

where vk1
is the variable u and vkj+1 occurs in the term tkj

for all j ∈ {1, ..,m}.

The equations and variables reachable of this formula are those who are reachable

from a variables which does not occur in x̄.

Example 5.2.4

In the formula

∃uvw z = fuv ∧ v = gvu ∧ w = fuv,

the equations z = fuv and v = gvu and the variables u and v are reachable. On

the other hand the equation w = fuv and the variable w are not reachable.

According to the axioms [1] and [2] of T we have the following property

Property 5.2.5

Let α be a conjunction of flat equations. If all the variables of x̄ are reachable in

∃x̄ α then T |= ∃?x̄ α.

According to the axiom 3 we have:

Property 5.2.6

Let α be a (≻)-solved conjunction of flat equations and let x̄ be the vector of its

left-hand sides. We have T |= ∃!x̄ α.

5.3 T is decomposable
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Property 5.3.1

T is a decomposable theory.

Let us show that T satisfies the conditions of Definition 3.3.1.

5.3.2 Choice of the sets Ψ(u), A, A′, A′′ and A′′′

Let F0 be the set of the 0-ary function symbols of F . The sets Ψ(u), A, A′, A′′ and

A′′′ are chosen as follows:

• Ψ(u) is the set {false} if F − F0 = ∅, else it contains formulas of the form

∃ȳ u = fȳ with f ∈ F − F0,

• A is the set FL,

• A′ is the set of formulas of the form ∃x̄′α′ such that

— α′ is either the formula false or a (≻)-solved conjunction of flat equations

where the order ≻ is such that all the variables of x̄′ are greater than

the free variables of ∃x̄′α′,

— all the variables of x̄′ and all the equations of α′ are reachable in ∃x̄′α′,

• A′′ is the set of formulas of the form ∃x̄′′ true,

• A′′′ is the set of formulas of the form ∃x̄′′′α′′′ such that α′′′ is a (≻)-solved

conjunction of flat equations and x̄′′′ is the vector of the left-hand sides of the

equations of α′′′.

It is clear that FL is T -closed and A′, A′′ and A′′′ contain formulas of the form

∃x̄ α with α ∈ FL. Let us now show that T satisfies the five condition of Definition

3.3.1

5.3.3 T satisfies the first condition

Let us show that every formula of the form ∃x̄ α ∧ ψ, with α ∈ FL and ψ any

formula, is equivalent in T to a wnfv formula of the form

∃x̄′ α′ ∧ (∃x̄′′ α′′ ∧ (∃x̄′′′ α′′′ ∧ ψ)), (37)

with ∃x̄′ α′ ∈ A′, ∃x̄′′ α′′ ∈ A′′ and ∃x̄′′′ α′′′ ∈ A′′′.

Let us choose the order ≻ such that all the variables of x̄ are greater than the

free variables of ∃x̄α. According to Property 5.2.2 two cases arise:

Either α is equivalent to false in T . Thus, x̄′ = x̄′′ = x̄′′′ = ε, α′ = false and

α′′ = α′′′ = true.

Or, α is equivalent to a (≻)-solved conjunction β of flat equations. Let X be the

set of the variables of the vector x̄. Let Yrea be the set of the reachable variables

of ∃x̄β. Let Lhs be the set of the variables which occur in a left-hand side of an

equation of β. We have:

− x̄′ contains the variables of X ∩ Yrea.

− x̄′′ contains the variables of (X − Yrea) − Lhs.

− x̄′′′ contains the variables of (X − Yrea) ∩ Lhs.

− α′ is the conjunction of the reachable equations of ∃x̄β.
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− α′′ is the formula true.

− α′′′ is the conjunction of the unreachable equations of ∃x̄β.

According to our construction it is clear that ∃x̄′α′ ∈ A′, ∃x̄′′α′′ ∈ A′′ and

∃x̄′′′α ∈ A′′′. Let us show that (37) and ∃x̄α ∧ ψ are equivalent in T . Let X ′,

X ′′ and X ′′′ be the sets of the variables of the vectors x̄′, x̄′′ and x̄′′′. If α is

equivalent to false in T then the equivalence of the decomposition is evident. Else

β is a conjunction of flat equations and thus according to our construction we have:

X = X ′ ∪X ′′ ∪X ′′′, X ′ ∩X ′′ = ∅, X ′ ∩X ′′′ = ∅, X ′′ ∩X ′′′ = ∅, for all x′′i ∈ X ′′ we

have x′′i 6∈ var(α′) and for all x′′′i ∈ X ′′′ we have x′′′i 6∈ var(α′ ∧α′′). Moreover each

equation of β occurs in α′∧α′′∧α′′′ and each equation in α′∧α′′∧α′′′ occurs in β and

thus T |= β ↔ (α′∧α′′∧α′′′). We have shown that the vectorial quantifications are

coherent and the equivalence T |= β ↔ α′ ∧ α′′ ∧ α′′′ holds. According to Property

5.2.2 we have T |= α↔ β and thus, the decomposition keeps the equivalence in T .

Example 5.3.4

Let us decompose the following formula ϕ

∃xyv z = fxy ∧ z = fxw ∧ v = fz.

First, since w and z are free in ϕ then the order ≻ will be chosen as follows:

x ≻ y ≻ v ≻ w ≻ z.

Note that the quantified variables are greater than the free variables. Then, using

the rewriting rules of Property 5.2.2 we transform the conjunction of equations to a

(≻)-solved formula. Thus, the formula ϕ is equivalent in T to the following formula

ψ

∃xyv z = fxy ∧ y = w ∧ v = fz.

Since the variables x, y, w and the equations z = fxy, y = w are reachable in ψ

then ψ is equivalent in T to the following decomposed formula

∃xy z = fxy ∧ y = w ∧ (∃ε true ∧ (∃v v = fz)).

It is clear that (∃xy z = fxy ∧ y = w) ∈ A′, (∃ε true) ∈ A′′ and (∃v v = fz) ∈ A′′′.

5.3.5 T satisfies the second condition

Let us show that if ∃x̄′α′ ∈ A′ then T |= ∃?x̄′α′. Since ∃x̄′α′ ∈ A′ and according to

the choice of the set A′, either α′ is the formula false and thus we have immediately

T |= ∃?x̄′α′ or α′ is a (≻)-solved conjunction of flat equations and the variables of

x̄′ are reachable in ∃x̄′α′. Thus, using Property 5.2.5 we get T |= ∃?x̄′α′.

Let us show now that if y is a free variable of ∃x̄′α′ then T |= ∃?yx̄′ α′ or there

exists ψ(u) ∈ Ψ(u) such that T |= ∀y (∃x̄′ α′) → ψ(y). Let y be a free variable of

∃x̄′α′. It is clear that α′ can not be in this case the formula false. Thus, four cases

arise:

If y occurs in a sub-formula of α′ of the form y = t(x̄′, z̄′, y), where z̄′ is the set

of the free variables of ∃x̄′α′ which are different from y and where t(x̄′, z̄′, y) is a
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term which begins by an element of F − F0 followed by variables taken from x̄′

or z̄′ or {y}, then the formula ∃x̄′α′ implies in T the formula ∃x̄′ y = t(x̄′, z̄′, y),

which implies in T the formula ∃x̄′z̄′w y = t(x̄′, z̄′, w), where y = t(x̄′, z̄′, w) is the

formula y = t(x̄′, z̄′, y) in which we have replaced every free occurrence of y in the

term t(x̄′, z̄′, y) by the variable w. According to the choice of the set Ψ(u), the

formula ∃x̄′z̄′wu = t(x̄′, z̄′, w) belongs to Ψ(u).

If y occurs in a sub-formula of α′ of the form y = f0 with f0 ∈ F0 then according

to the third axiom of T we have T |= ∃!y y = f0. Thus (i) T |= ∃?y α′. On the other

hand, since α′ is (≻)-solved, y has no occurrences in an other left-hand side of an

equation of α′, thus since the variables of x̄ are reachable in ∃x̄′α′ (according to

the choice of the set A′), all the variables of x̄′ keep reachable in ∃x̄′y α′ and thus

using (i) and Property 5.2.5 we get T |= ∃?x̄′y α′.

If y occurs in a sub-formula of α′ of the form y = z then:

1. According to the choice of the set A′, the order ≻ is such that all the variables

of x̄′ are greater than the free variables of ∃x̄′α′.

2. According to Definition 5.2.2 of the (≻)-solved formula, we have y ≻ z.

From (1) and (2), we deduce that z is a free variable in ∃x̄′α′. Since α′ is (≻)-solved,

y has no occurrences in an other left-hand side of an equation of α′, thus since the

variables of x̄ are reachable in ∃x̄′α′ (according to the choice of the set A′), all the

variables of x̄′ keep reachable in ∃x̄′y α′. More over, for each value of z there exists

at most a value for y. Thus, using Property 5.2.5 we get T |= ∃?x̄′y α′.

If y occurs only in the right-hand sides of the equations of α′ then according

to the choice of the set A′, all the variables of x̄′ and all the equations of α′ are

reachable in ∃x̄′α′. Thus, since y does not occur in a left-hand side of an equation

of α′, the variable y and the variables of x̄′ are reachable in ∃x̄′y α′ and thus using

Property 5.2.5 we get T |= ∃?x̄′y α′. In all cases T satisfies the second condition of

Definition 3.3.1.

5.3.6 T satisfies the third condition

First, we present a property which hold in any model M of T . This property results

from the axiomatization of T (more exactly from axioms 1 and 2) and the infinite

set F of function symbols.

Property 5.3.7

Let M be a model of T and let f be a function symbol taken from F −F0. The set

of the individuals i of M , such that M |= ∃x i = fx, is infinite.

Let ∃x̄′′α′′ be a formula which belongs to A′′. According to the choice of A′′, this

formula is of the form ∃x̄′′ true. Let us show that, for every variable x′′j of x̄′′ we

have T |= ∃
Ψ(u)
∞ xj true. Two cases arise:

If F − F0 = ∅ then Ψ(u) = {false} and F0 is infinite since the theory is defined

on an infinite set of function symbols. According to axiom 1 of T , for all distinct

constants f and g correspond two distinct individuals in all models of T . Thus,
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since F0 is infinite there exists an infinite set of individuals in all models of T and

thus according to Definition 3.2.1 we have: T |= ∃
{false}
∞ xj true.

If F−F0 6= ∅ then Ψ(u) contains formulas of the form ∃z̄ u = fz̄ with f ∈ F−F0.

Let M be a model of T . Since the formula ∃x′′j true does not have free variables,

it is already instantiated, and thus according to Definition 3.2.1 it is enough to

show that there exists an infinity of individuals i of M which satisfy the following

condition:

M |= ¬ψ1(i) ∧ · · · ∧ ¬ψn(i), (38)

with ψj(u) ∈ Ψ(u), i.e. of the form ∃z̄ u = fz̄ with f ∈ F − F0. Two cases arise:

• If F − F0 is a finite set then F0 is infinite because the theory is defined on

infinite set of function symbols. Thus, there exists an infinity of constants fk

which are different from all the function symbols of all the ψj(u) of (38) and

thus using axiom 1 of T there exists an infinity of distinct individuals i such

that (38).

• If F−F0 is infinite then there exists a formula ψ(u)∗ ∈ Ψ(u) which is different

from all the ψj(u) of (38), i.e. which has a function symbol which is different

from the function symbols of all the ψ1(u) · · ·ψn(u). According to Property

5.3.7 there exists an infinity of individuals i such that M |= ψ(i)∗. Since this

ψ(u)∗ is different from all the ψj(u), then according to axiom 1 of T there

exists an infinite set of individuals i such thatM |= ψ(i)∗∧¬ψ1(i)∧· · ·∧¬ψn(i)

and thus such that (38).

5.3.8 T satisfies the fourth condition

Let us show that if ∃x̄′′′α′′′ ∈ A′′′ then T |= ∃!x̄′′′ α′′′. Let ∃x̄′′′α′′′ be an element of

A′′′. According to the choice of the set A′′′ and Property 5.2.6 we get immediately

T |= ∃!x̄′′′α′′′.

5.3.9 T satisfies the fifth condition

Let us show that if the formula ∃x̄′α′ belongs to A′ and has no free variables then

this formula is either the formula ∃εtrue or ∃εfalse. Let ∃x̄′α′ be a formula, without

free variables, which belongs to A′. We have

1. According to the choice of the set A′, all the variables and equations of ∃x̄′α′

are reachable in ∃x̄′α′ and α′ is either the formula false or a (≻)-solved con-

junction of flat equations.

2. Since the formula ∃x̄′α′ has no free variables and according to Definition 5.2.3

there exists in this case neither variables nor equations reachable in ∃x̄′α′,

Thus, From (1) and (2), x̄′ is the empty vector, i.e. ε and α′ is either the formula

true or false.
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5.4 Solving first-order formulas in T

Since T is decomposable we can apply our general algorithm and solve any first-

order formula. Let us first recall the related works about the resolution of tree

constraints: the unification of finite terms, i.e. the resolution of conjunctions of

equations in the theory of finite trees has first been studied by A. Robinson (Robin-

son 1965). Some better algorithms with better complexities has been proposed after

by M.S. Paterson and M.N.Wegman (Paterson 1978) and A. Martelli and U. Mon-

tanari (Matelli 1982). The resolution of conjunctions of equations in the theory of

infinite trees has been studied by G. Huet (Huet 1976), by A. Colmerauer (Colmer-

auer 1982; Colmerauer 1984) and by J. Jaffar (Jaffar 1984). The resolution of con-

junctions of equations and disequations in the theory of finite or infinite trees has

been studied by A. Colmerauer (Colmerauer 1984) and H.J. Brckert (Burkert 1988).

An incremental algorithm for solving conjunctions of equations and disequations

on rational trees has been proposed after by V.Ramachandran and P. Van Henten-

ryck (Ramachandran 1993). The resolution of universally quantified disequations

on finite trees has been also developed by A. Smith (Smith 1991). We will find a

general synthesis on this subject in the work of H. Comon (Comon 1991). M. Maher

has also shown that every formula is equivalent in T to a Boolean combination of

existentially quantified solved conjunctions of elementary equations (Maher 1988).

Note that we get the same result using Corollary 4.4.1.

In what follows, we first show how to solve some simple formulas without free

variables in order to understand the application of the rewriting rules and the role

of each rule in T ,then we give some benchmarks representing real situations on two

partner games by full first-order formulas with free variables.

Simple examples

Example 5.4.1
Let us solve the following formula ϕ1 in T :

∃x∀y ((∃zwv y = fz ∧ y = fx ∧ w = gzv) ∨ (x = fy ∧ x = fx))

Using Property 4.1.3 we first transform the preceding formula into the following

normalized formula

¬(∃ε true ∧ ¬(∃x true ∧ ¬





∃y true∧

¬(∃zwv y = fz ∧ y = fx ∧ w = gzv)∧

¬(∃ε x = fy ∧ x = fx)



)) (39)

Since A = FL then the preceding normalized formula is a working formula. Let us

decompose the sub-formula

∃zwv y = fz ∧ y = fx ∧ w = gzv. (40)

According to Section 5.3.3, the order ≻ is chosen such that z ≻ w ≻ v ≻ y ≻ x.

Using the rewriting rules of Property 5.2.2, the sub-formula y = fz ∧ y = fx∧w =

gzv is equivalent in T to the (≻)-solved formula y = fz ∧ z = x ∧ w = gzv, and

thus according to Section 5.3.3 the decomposed formula of (40) is

∃z y = fz ∧ z = x ∧ (∃v true ∧ (∃ww = gzv))



44 K. Djelloul

Since (∃ww = gzv) 6= (∃ε true) we can apply the rule (3) with I = ∅, thus the

formula (39) is equivalent in T to

¬(∃ε true ∧ ¬(∃x true ∧ ¬





∃y true∧

¬(∃zv y = fz ∧ z = x)∧

¬(∃ε x = fy ∧ x = fx)



)) (41)

The sub-formula ∃zv y = fz ∧ z = x is not an element of A′ and is equivalent in T

to the decomposed formula ∃z y = fz ∧ z = x ∧ (∃v true ∧ (∃ε true)), thus we can

apply the rule (4) with I = ∅ and the formula (41) is equivalent in T to

¬(∃ε true ∧ ¬(∃x true ∧ ¬





∃y true∧

¬(∃z y = fz ∧ z = x)∧

¬(∃ε x = fy ∧ x = fx)



)) (42)

Let us decompose now the sub-formula

∃ε x = fy ∧ x = fx (43)

Using the rewriting rules of Property 5.2.2, the sub-formula x = fy ∧ x = fx is

equivalent in T to the (≻)-solved formula x = fy ∧ y = x and thus according to

Section 5.3.3 the decomposed formula of (43) is

∃ε x = fy ∧ y = x ∧ (∃ε true ∧ (∃ε true))

Since (∃ε x = fy ∧ x = fx) 6∈ A′ then we can apply the rule (4) with I = ∅ and

thus the formula (42) is equivalent in T to

¬(∃ε true ∧ ¬(∃x true ∧ ¬





∃ytrue∧

¬(∃z y = fz ∧ z = x)∧

¬(∃ε x = fy ∧ y = x)



)) (44)

According to Section 5.3.3 the formula ∃ε true ∧ (∃y true ∧ (∃ε true)) is the de-

composed formula of ∃y true. Since ∃y true 6∈ A′, (∃z y = fz ∧ z = x) ∈ A′ and

(∃ε x = fy ∧ y = x) ∈ A′ then we can apply the rule (4) and thus the formula (44)

is equivalent in T to

¬(∃ε true ∧ ¬(∃ε true ∧ ¬(∃ε true)) (45)

Finally, we can apply the rule (1) thus the formula (45) is equivalent in T to

¬(∃ε true). Thus ϕ1 is false in T .

Example 5.4.2
Let us solve the following formula ϕ2 in T :

∃x∀y ((∃z y = fz ∧ z = x) ∨ (∃ε x = fy ∧ y = x) ∨ ¬(x = fy)) (46)

Using Property 4.1.3 we first transform the preceding formula into the following

normalized formula

¬(∃ε true ∧ ¬(∃x true ∧ ¬





∃y x = fy∧

¬(∃z y = fz ∧ z = x)∧

¬(∃ε x = fy ∧ y = x)



)) (47)
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Since A = FL then the preceding normalized formula is a working formula in T .

Since (∃y x = fy) ∈ A′, (∃z y = fz ∧ z = x) ∈ A′ and (∃ε x = fy ∧ y = x) ∈ A′

then we can apply the rule (5), thus the formula (47) is equivalent in T to

¬







∃ε true∧

¬(∃x true ∧ ¬(∃y x = fy))∧

¬(∃x1y1z x1 = fy1 ∧ y1 = fz ∧ z = x1)∧

¬(∃x2y2 x2 = fy2 ∧ x2 = fy2 ∧ y2 = x2)







(48)

According to Section 5.3.3 the formula ∃ε true ∧ (∃x true ∧ (∃ε true)) is the decom-

posed formula of ∃x true. Since (∃x true) 6∈ A′ and (∃y x = fy) ∈ A′ then we can

apply the rule (4) and thus the formula (48) is equivalent in T to

¬







∃ε true∧

¬(∃ε true)∧

¬(∃x1y1z x1 = fy1 ∧ y1 = fz ∧ z = x1)∧

¬(∃x2y2 x2 = fy2 ∧ x2 = fy2 ∧ y2 = x2)







(49)

Finally we can apply the rule (1), thus the formula (49) is equivalent in T to true.

Thus ϕ2 is true in T .

Benchmarks: Two partner games

Let (V,E) be a directed graph, with V a set of vertices and E ⊆ V ×V a set of edges.

The sets V and E may be empty and the elements of E are also called positions. We

consider a two-partner game which, given an initial position x0, consists, one after

another, in choosing a position x1 such that (x0, x1) ∈ E, then a position x2 such

that (x1, x2) ∈ E and so on. The first one who cannot play any more has lost and

the other one has won. For example the two following infinite graphs correspond to

the two following games:

Game 1 A non-negative in-

teger i is given and, one af-

ter another, each partner sub-

tracts 1 or 2 from i, but keep-

ing i non-negative. The first

person who cannot play any

more has lost.

Game 2 An ordered pair (i, j) of non-negative in-

tegers is given and, one after another, each partner

chooses one of the integers i, j. Depending on the

fact that the chosen integer u is odd or even, he

then increases or decreases the other integer v by

1, but keeping v non-negative. The first person who

cannot play any more has lost.
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Let x be a position in a game and suppose that it is the turn of person A to play.

The position x is said to be k-winning if, no matter the way the other person B

plays, it is always possible for A to win in making at most k moves. It is easy to

show that

winningk(x) =













∃ymove(x, y) ∧ ¬(

∃xmove(y, x) ∧ ¬(

...

∃ymove(x, y) ∧ ¬(

∃xmove(y, x) ∧ ¬(

false )...)
︸︷︷︸

2k













where move(x, y) means : “ starting from the position x we play one time and

reach the position y”. By moving down the negations, we get an embedding of

2k alternated quantifiers. We represent this two games in the algebra of finite or

infinite trees (A,F ), where each position is represented by a tree.

If we take as input of our solver the formula winningk(x) we will get as output

a formula which represents all the k-winning positions.

Game 1: Suppose that F contains the 0-ary functional symbol 0 and the 1-ary

functional symbol s. We code the vertices i of the game graph by the trees si(0)12

The relation move(x, y) is defined as follows:

move(x, y)
def
↔ x = s(y) ∨ x = s(s(y)) ∨ (¬(x = 0) ∧ ¬(∃ux = s(u)) ∧ x = y)

For winning1(x) our algorithm give the following solved formula:

¬

[

∃ε true ∧

[
¬(∃ux = s(u) ∧ u = 0)∧

¬(∃u1u2 x = s(u1) ∧ u1 = s(u2) ∧ u2 = 0)

] ]

which corresponds to the solution x = s(0) ∨ x = s(s(0)).

Game 2: Suppose that F contains the functional symbols 0, f , g, c of respective

arities 0, 1, 1, 2. We code the vertices (i, j) of the game graph by the trees c(̄i, j̄)

with ī = (fg)i/2(0) if i is even, and ī = g(i− 1) if i is odd.13 The relation move(x, y)

is defined as follows:

move(x, y)
def
↔ transition(x, y) ∨ (¬(∃uv x = c(u, v)) ∧ x = y)

12 Of course s0(x) = x and si+1(x) = s(si(x)).
13 (fg)0(x) = x and (fg)i+1(x) = f(g((fg)i(x))).
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with

transition(x, y)
def
↔












∃uvw
[

(x = c(u, v) ∧ y = c(u,w))∨

(x = c(v, u) ∧ y = c(w, u))

]

∧
[

(∃i u = g(i) ∧ succ(v, w))∨

(¬(∃i u = g(i)) ∧ pred(v, w))

]












succ(v, w)
def
↔

[
(∃j v = g(j) ∧ w = f(v))∨

(¬(∃j v = g(j)) ∧ w = g(v))

]

pred(v, w)
def
↔









(∃j v = f(j) ∧

[
(∃k j = g(k) ∧ w = j)∨

(¬(∃k j = g(k)) ∧ w = v)

]

)∨

(∃j v = g(j) ∧

[
(∃k j = g(k) ∧ w = v)∨

(¬(∃k j = g(k)) ∧ w = j)

]

)∨

(¬(∃j v = f(j)) ∧ ¬(∃j v = g(j)) ∧ ¬(v = 0) ∧ w = v)









For winning1(x) our algorithm give the following solved formula:

¬

[

∃ε true ∧

[
¬(∃u1u2u3 x = c(u1, u2) ∧ u1 = g(u3) ∧ u2 = 0 ∧ u3 = 0)∧

¬(∃u1u2u3 x = c(u1, u2) ∧ u2 = g(u3) ∧ u1 = 0 ∧ u3 = 0)

] ]

which corresponds to the solution x = c(g(0), 0) ∨ x = c(0, g(0)).

The times of execution (CPU time in milliseconds) of the formulas winningk(x)

are given in the following table as well as a comparison with those of (Djelloul

2006a). The algorithm was programmed in C++ and the benchmarks are performed

on a 2.5Ghz Pentium IV processor, with 1024Mb of RAM.

k (Game 1) 0 1 2 4 10 20 40 80

Our alg 0 0 5 11 178 2630 59430 2553746

(Djelloul 2006a) 0 0 5 10 150 2130 45430 1920110

k (Game 2) 0 1 2 4 10 20 40 80

Our alg 0 79 209 508 3830 162393 − −

(Djelloul 2006a) 0 75 180 420 3040 123025 − −

These benchmarks were first introduced by A. Colmerauer and T. Dao. in (Colmer-

auer 2003) where the first results of the algorithm of T. Dao (Dao 2000) were pre-

sented. We used the same benchmarks in a joint work with T. Dao (Djelloul 2006a)

where we gave a more efficient algorithm for solving first-order formulas in finite

or infinite trees with better performances. The algorithm (Djelloul 2006a) uses two

strategies: (1) a top-down propagation of constraints: where all the super-formulas

are propagated to the sub-formulas, then locally solved and finally restored and
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so on. (2) A bottom-up distribution of sub-formulas to decrease the depth of the

formulas. The restorations of constraints defined in the first point uses a particular

property which holds only for the theory of finite or infinite trees. This algorithm

(Djelloul 2006a) gives good performances and the first step enables us to obtain

quickly the solved formulas without losing time with solving sub-formulas which

contradict their super-formulas. On the other hand our general algorithm defined

in this paper can not use these strategies since it handles general decomposable

theories. The main idea is to decompose at each level a quantified conjunction of

atomic formulas and to propagate only the third section A′′′ into the sub-formulas

(rule 3). Then, the rule (4) decreases the size of the conjunction of sub-formulas

and eliminates some quantifiers. Finally, the rule (5) decreases the depth of the

working formulas using distribution. This algorithm computes the k-winning posi-

tions with the same bounds of performances for the values of k as those of (Djelloul

2006a) but takes 5%-30% more time to compute them. This is due to the specific

treatments used in (Djelloul 2006a). Unfortunately, this rate (5%-30%) grows with

the size of k and thus with the size of the initial working formula. Anyway, it must

be noted that we were able to compute the k-winning positions of game 1 with k

= 80, which corresponds to a formula involving an alternated embedding of more

than 160 quantifiers with a non-specific algorithm for finite of infinite trees.

6 Discussion and conclusion

We defined in this paper a new class of theories that we call decomposable theories

and showed their completeness using a sufficient condition for the completeness

of first-order theories. Informally, a decomposable theory is a theory where each

quantified conjunction of atomic formulas can be decomposed into three embedded

sequences of quantifications having particular properties, which can be expressed

with the help of ∃?, ∃
Ψ(u)
∞ and ∃!. We deduced from this definition a sufficient

condition so that a theory accepts full elimination of quantifiers and showed that

there is a strong relation between the set A′ and the notion of full elimination of

quantifiers. We have also given a general algorithm for solving first-order formulas

in any decomposable theory T . This algorithm is given in the form of a set of five

rewriting which transform a working formula ϕ to a wnfv conjunction φ of solved

formulas. In particular if ϕ is a proposition, then φ is either the formula true or

¬true.

On the other hand S. Vorobyov (Vorobyov 1996) has shown that the problem

of deciding if a proposition is true or not in the theory of finite or infinite trees

is non-elementary, i.e. the complexity of all algorithms solving propositions is not

bounded by a tower of powers of 2′s (top down evaluation) with a fixed height.

A. Colmerauer and T. Dao (Colmerauer 2003) have also given a proof of non-

elementary complexity of solving constraints in this theory. As a consequence, the

complexity of our algorithm and the size of our solved formulas are of this order.

We can easily show that the size of our solved formulas is bounded above by a

top down tower of powers of 2′s, whose height is the maximal depth of nested

negations in the initial formula. The function α(ϕ) used to show the termination
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of our rules illustrates this result. However, despite this high complexity, we have

implemented our algorithm and solved some benchmarks in T with formulas having

long nested alternated quantifiers (up to 160). This algorithm has given competitive

results in term of maximal depth of formulas that can be solved, compared with

those of (Djelloul 2006a) but took more time to compute the solved formulas. As a

consequence, we are planning with Thom Fruehwirth (Fruehwirth 2002) to add to

CHR a general mechanism to treat our normalized formulas. This will enable us to

implement quickly and easily other versions of our algorithms in order to get better

performances.

Currently, we are trying to find a more abstract characterization and/or a model

theoretical characterization of the decomposable theories. The current definition

gives only an algorithmic insight into what it means for a theory to be complete.

We expect to add new vectorial quantifiers in the decomposition such as ∃n which

means there exists n and ∃
Ψ(u)
0,∞ which means there exists zero or infinite, in order to

increase the size of the set of decomposable theories and may be get a much more

simple definition than the one defined in this paper. Another interesting challenge

is to find which special quantifiers must be added to the decomposable theories

to get an equivalence between complete theory and decomposable theory. A first

attempt on this subject is actually in progress using the quantifiers ∃n and ∃
Ψ(u)
0,∞ .

It would be also interesting to show if these new quantifiers are enough to prove

that every theory which accepts elimination of quantifiers is decomposable.

We have also established a long list of decomposable theories. We can cite for

example: the theory of finite trees, of infinite trees, of finite or infinite trees (Djelloul

2006a), of additive rational or real numbers with addition and subtraction, of linear

dense order without endpoints, of ordered additive rational or real numbers with

addition, subtraction and a linear dense order relation without endpoints, of the

combination of tress and ordered additive rational numbers (Djelloul 2005b), of the

construction of trees on an ordered set (Djelloul 2005a), of the extension into trees

of first-order theories (Djelloul 2006b). It would also be interesting to build some

theories that can be decomposed using two completely different sets of A, A′, A′′,

A′′′ and Ψ(u) and find syntactic or semantic relations between these sets.

Currently, we are showing the decomposability of other fundamental theories

such as: theory of lists using a combination of particular trees, theory of queues

as done in (Rybina 2001), and the combination of trees and real numbers together

with addition, subtraction, multiplication and a linear dense order relation without

endpoints. We are also trying to find some formal methods to get easily the sets

ψ(u), A, A′, A′′ and A′′′ for any decomposable theory T .
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