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Abstract

We quantize a multidimensional SDE (in the Stratanovich sense) by solving the

related ODE’s in which the Brownian motion has been replaced by the components

of stationary quantizers. We make a connection with rough path theory to show that

such quantizations converge toward the solution of the SDE. In some particular cases,

we show that this procedure provide some rate optimal quantizations of the equation.

Key words: Functional quantization, Stochastic Differential Equations, Stratanovich

stochastic integral, stationary quantizers, rough path theory, p-variation, Hölder norm.

1 Introduction and preliminaries

Quantization is a way to discretize the path space of a random phenomenon: a random

vector in finite dimension, a stochastic process in infinite dimension. Optimal Vector Quan-

tization theory (finite-dimensional) random vectors finds its origin in the early 1950’s in

order to discretize some emitted signal (see [6]). It was further developed by specialists in

Signal processing and later in Information Theory. The infinite dimensional case started

to be extensively investigated in the early 2000’s by several authors (see e.g. [11], [4], [12],

[13], [12], [3], [8], etc).

In a recent paper ([13]), the functional quantization of a class of Brownian diffusions has

been investigated from a constructive viewpoint. The main feature of this class of diffusions

was that the diffusion coefficient was the inverse of the gradient of a diffeomorphism (both

coefficients being smooth). This class contains most (non degenerate) scalar diffusions.

Starting from a sequence of rate optimal quantizers some sequences of quantizers of the

diffusion as the solutions of (non coupled) ODE’s are produced. This approach relied on

the Lamperti transform and was closely related to the Doss-Sussman representation formula

of the flow of a diffusion as a functional of the Brownian motion. In many situations these
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quantizers are rate optimal (or almost rate optimal) i.e. that they quantize the diffusion

at the same rate O((log N)−
1
2 ) as the Brownian motion itself where N denotes the generic

size of the quantizer. In a companion paper ([18]), some cubature formulas based on

some of these quantizers were implemented, namely those obtained from some optimal

product quantizers based on the Karhunen-Loève expansion of the Brownian motion, to

price some Asian options in a Heston stochastic volatility model. Rather unexpectedly in

view of the theoretical rate of convergence, the numerical experiments provided quite good

numerical results for some “small” sizes of quantizers. Note however that these numerical

implementations included some further speeding up procedures based on the stationarity

of the quantizers and the Romberg extrapolation leading to a O((log N)−
3
2 ) rate.

Recently a sharp quantization rate has been established for a class of 1-dimensional

diffusions in a non constructive way (see [3]). Finally, the standard rate O((log N)−
1
2 )

has been extended in [15] to general d-dimensional diffusions (regardless of their ellipticity

properties) and even to Itô processes. This latter approach is constructive as well, although

the resulting quantizers are no longer stationary.

Our aim in this paper is to extend the constructive natural approach initiated in [13]

to general d-dimensional diffusions. To this end, we will need to call upon the rough path

theory to replace the “Doss-Sussman environment”. Namely, we consider a diffusion process

dXt = b(t,Xt) dt + σ(t,Xt) ◦ dWt, X0 = x∈ Rd, t ∈ [0, T ]

in the Stratanovich sense where b : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → Rd×q are contin-

uously differentiable with linear growth (uniformly with respect to t) and W = (Wt)t∈[0,T ]

is a q-dimensional Brownian motion defined on a filtered probability space (Ω,A, P).

Such an SDE admits a unique strong solution denoted Xx = (Xx
t )t∈[0,T ] (the de-

pendency in x will be dropped for convenience). The Rd-valued process X is pathwise

continuous and supt∈[0,T ] |Xt| ∈ Lr(P), r > 0 (where | . | denotes the canonical Euclidean

norm on Rd). In particular X is bi-measurable and can be seen as an Lr(P)-Radon random

variable taking values in the Banach spaces (Lp
T, Rd , | . |Lp

T
) where Lp

T, Rd = Lp
Rd([0, T ], dt)

and |g|Lp
T

=
(∫ T

0 |g(t)|pdt
) 1

p
denotes the usual Lp-norm when p∈ [1,∞).

For for every integer N ≥ 1, we can investigate for X the level N (Lr, Lp
T
)-quantization

problem for this process X, namely solving the minimization of the Lr(P)-mean Lp
T,Rd-

quantization error

eN,r(X,Lp) := min
{
eN,r(α,X,Lp), α ⊂ Lp

T,Rd, |α| ≤ N
}

(1.1)

where eN,r(α,X,Lp) denotes the Lr-man quantization error induced by α, namely

eN,r(α,X,Lp) :=
(
E min

a∈α
|X − a|rp

) 1
r

=

∥∥∥∥min
a∈α

|X − a|Lp

T,Rd

∥∥∥∥
Lr(P)

.

The use of “min” in (1.1) is justified by the existence of an optimal quantizer to that

problem as shown in [2, 9] in this infinite dimensional setting.

In finite dimension (when considering Rd-valued random vectors instead of Lp
T,Rd-valued

processes) the answer is provided by the so-called Zador Theorem which says (see [6]) that
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if E|X|r+δ < +∞ for some δ > 0 and if g denotes the absolutely continuous part of its

distribution then

N
1
d eN,r(X, Rd) → J̃r,d‖g‖

1
r

d
d+r

as N → ∞ (1.2)

where J̃r,d is finite positive real constant obtained as the limit of te normalized quantization

error when X
d
= U([0, 1]). This constant is unknown except when d = 1 or d = 2.

A non asymptotic version of Zador’s Theorem can be found e.g. in [15]: for every r, δ >

there exists a universal constant Cr,δ > 0 and an integer Nr,δ ≥ such that

∀N ≥ Nr,δ, N
1
d eN,r(X, Rd) ≤ Cr,δ‖X‖r+δ .

In infinite dimension, the case of Gaussian processes was the first to have been exten-

sively investigated, first in the purely quadratic case (r = p = 2): sharp rates have been

established for a wide family of Gaussian processes including the Brownian motion, the

fractional Brownian motions (see [11, 12]). For these two processes sharp rates are also

known for p∈ [1,∞] and r ∈ (0,∞) (see [3]). More recently, a connection between mean

regularity of t 7→ Xt (from [0, T ] into Lr(P)) and the quantization rate has been established

(see [15]): if the above mapping is µ-Hölder for an index µ∈ (0, 1], then

eN,r(X,Lp) = O((log N)−µ), p∈ (0, r).

Based on this result, some universal quantization rates have been obtained for general

Lévy processes with or without Brownian component some of them turning out to be

optimal, once compared with the lower bound estimates derived from small deviation theory

(see e.g. [7] or [4]). One important feature of interest of the purely quadratic case is that

it is possible to construct from the Karhunen-Loève expansion of the process two families

of rate optimal (stationary) quantizers, relying on

– Some sequences (α(N,prod))N≥1 of optimal product quantizers which are rate optimal

i.e. such that eN,r(α
(N),X,L2) = O(eN,2(X,L2)) (although not with a sharp optimal rate).

– Some sequences of true optimal quantizers (or at least some good numerical approx-

imations) (α(N,∗))N≥1 i.e. such that eN,r(α
(N,∗),X,L2) = eN,2(X,L2).

We refer to Section 1.1 below for further insight on these objects (both being available

on the website www.quantize.math-fi.com).

The main objective of this paper is the following: let (αN )N≥1 denote a sequence of

rate optimal stationary quadratic quantizers of a q-dimensional standard Brownian motion

W = (W 1, . . . ,W d). Define the sequence xN = (xN
n )n=1,...,N , N ≥ 1, of solutions of the

ODE’s

xN
n = x +

∫ t

0
b(xN

n (s))ds +

∫ t

0
σ(xN

n (s))dαN
n (s), n = 1, . . . , N.

Then, the finitely valued-process defined by

X̃N =
N∑

n=1

xN
n 1{W∈Cn(α(N))}
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converges in p-variation toward X (and consequently for the sup norm) as N → ∞ i.e.

Varp,[0,T ](X − X̂) → 0

in probability where

V arp,[0,T ](x) := sup





(
k−1∑

ℓ=0

|x(tℓ+1) − x(tℓ)|p
) 1

p

, 0 ≤ t0 ≤ t1 ≤ . . . ≤ tk ≤ T, k ≥ 1



 .

We also provide some results with respect to the Hölder norm.

Notation: • For every d ≥ 1, one denotes ξ = (ξ1, . . . , ξd) a row vector of Rd.

• | . | denotes the canonical Euclidean norm on Rd.

• One denotes by (FX
t )t≥0 the augmented natural filtration of a process X = (Xt)t≥0 (so

that it satisfies the usual conditions).

• For a bounded function f : [0, T ] → Rd, ‖ f ‖sup := supt∈[0,T ] |f(t)|. If f is a Borel function

‖f‖Lp

T,Rd
:=
(∫ T

0 |f(t)|pdt
) 1

p
.

• For an Rd-valued bi-measurable process, we denote ‖X‖p := ‖ |X|Lp

T,Rd
‖p =

(
E
∫ T
0 |Xt|pdt

)1/p
.

1.1 Some background on functional quantization

Functional quantization of stochastic processes can be seen as a discretization of the path-

space of a process and the approximation (or coding) of a process by finitely many deter-

ministic functions from its path-space. In a Hilbert space setting this reads as follows.

Let (H,< ·, · >) be a separable Hilbert space with norm | · | and let X : (Ω,A, P) → H

be a random vector taking its values in H with distribution PX . Assume the integrability

condition

E |X|2 < +∞. (1.3)

For N ≥ 1, the L2-optimal N -quantization problem for X consists in minimizing

(
E min

a∈α
|X − a|2

)1/2
= ‖min

a∈α
|X − a|‖L2(P)

over all subsets α ⊂ H with card(α) ≤ N . Such a set α is called N -codebook or N -quantizer.

The minimal N th quantization error of X is then defined by

e
N

(X,H) := inf
{

(E min
a∈α

|X − a|2)1/2 : α ⊂ H, card(α) ≤ N
}

. (1.4)

For a given N -quantizer α one defines an associated nearest neighbour projection

πα :=
∑

a∈α

a1Ca(α)

and the induced α-(Voronoi) quantization of X by setting

X̂α := πα(X), (1.5)
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where {Ca(α) : a ∈ α} is a Voronoi partition induced by α, that is a Borel partition of H

satisfying

Ca(α) ⊂ {x ∈ H : |x − a| = min
b∈α

|x − b|} (1.6)

for every a ∈ α. Then one easily checks that, for any random vector X
′
: Ω → α ⊂ H,

E |X − X
′ |2 ≥ E |X − X̂α|2 = E min

a∈α
|X − a|2

so that finally

en(X) = inf
{

(E |X − X̂|2)1/2 : X̂ = f(X), f : H → H Borel measurable, card(f(H)) ≤ N
}

= inf
{

(E |X − X̂|2)1/2 : X̂ : Ω → H random vector, card(X̂(Ω)) ≤ N
}

. (1.7)

A typical setting for functional quantization is H = L2
T

:= L2([0, 1], dt) (equipped

with < f, g >2:=
∫ T
0 fg(t)dt and |f |L2

T
:=

√
< f, f >). Thus any (bi-measurable) process

X = (Xt)t∈[0,T ] defined on a probability space (Ω,A, P) such that

∫ T

0
E(X2

t )dt < +∞

is a random variable X : (Ω,A, P) → L2
T
. But this Hilbert setting is not the only possible

one for functional quantization (see e.g. [14], [8], [4], etc) since natural Banach spaces like

Lp([0, T ], dt) or C([0, T ]) are natural path-spaces.

In the purely Hilbert setting the existence of (at least) one optimal N -quantizer for

every integer N ≥ 1 is established so that the infimum in (1.4) holds as a minimum.

This existence property holds true in any reflexive Banach space and L1-spaces (see [8] for

details).

1.2 Constructive aspects of functional quantization of the Brownian mo-

tion

One considers a scalar Brownian motion (Wt)t∈[0,T ] on a probability space (Ω,A, P). The

two main classes of rate optimal quantizers of the Brownian motion are the product opti-

mal quantizers and the true optimal quantizers. Both are based on the Karhunen-Loève

expansion of the Brownian motion given by

Wt =
∑

k≥1

√
λk ξk eW

k (t) (1.8)

where, for every k ≥ 1,

λk =

(
T

π(k − 1/2)

)2

and eW
k (t) =

√
2

T
sin

(
t√
λk

)
(1.9)

and

ξk =
(W | eW

k )2√
λk

=

√
2

T

∫ T

0
Wt sin(t/

√
λk)

dt√
λk

.
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The sequence (eW
k )k≥1 is an orthonormal basis of L2

T
. The system (λk, e

W
k )k≥1 can be

characterized as the eigensystem of the symmetric positive trace covariance operator of

f 7→ (t 7→
∫ T
0 (s ∧ t) f(s)ds) ≡ (t 7→ E(< f |W >2 Wt). In particular this implies that the

Gaussian sequence (ξk)k≥1 is pairwise uncorrelated hence i.i.d., N (0; 1)-distributed. The

Karhunen-Loève expansion of W plays the role of PCA of the process: it is the fastest way

to exhaust the variance of W among all expansions on an ortho-normal basis.

The convergence of the series in the right hand side of (1.8) holds in L2
T

for every ω∈ Ω

and P(dω)-a.s. for every t∈ [0, T ]. In fact this convergence also holds in L2(P) and P(dω)-

a.s. for the sup norm over [0, T ]. The first convergence follows from Theorem 2.1(a) further

on applied with X = W and GN = σ(ξ1, . . . , ξN
) and the second one follows e.g. from [14]

P(dω)-a.s.. In particular the convergence holds in L2(dP ⊗ dt) or equivalently in L2
L2

T

(P).

1.2.1 Optimal product quantization

A product N -quantization of W is defined by

Ŵ
(N1,...,N

L
)

t :=

√
2

T

L∑

k=1

√
λk ξ̂Nk

k sin

(
t√
λk

)
(1.10)

where N1, . . . , N
L

are non zero integers satisfying N1 · · ·NL ≤ N and ξ̂Nk
1 , . . . , ξ̂

N
L

L are

optimal quadratic quantizations of ξ1, . . . , ξL
. An optimal product N -quantization Ŵ N,prod

is obtained as a solution to the following integral bit allocation optimization problem for

the sequence (Nk)k≥1:

min
{
‖W − Ŵ (N1,...,N

L
)‖2 , N1, . . . , N

L
≥ 1, N1 · · ·NL ≤ N, L ≥ 1

}
(1.11)

(see [11] for further details and [18] for the numerical aspects). It is established in [11] (as

a special case of a more general result on Gaussian processes) that

1

T
‖W − Ŵ N,prod‖2 ≍ (log N)−

1
2 (1.12)

Furthermore, the critical dimension L = LW (N) satisfies LW (N) ∼ log N . Numerical

experiments carried out in [18] show that 1
T ‖W − Ŵ N,prod‖2 ≈ c

W
(log N)−

1
2 with c

W
≈ 0.5

(N ≤ 10000).

It is possible to get a closed form for the underlying optimal product quantizers αN .

First, note that the normal distribution on the real line being log-concave, there is exactly

one stationary quadratic quantizer of full size M for every M ≥ 1 (hence it is the optimal

one). So, let N ≥ 1 and let (Nk)k≥1 denote its optimal integral bit allocation for the

Brownian motion W . For every Nk ≥ 1, we denote by β(Nk) := {β(Nk)
ik

, 1 ≤ ik ≤ Nk} the

unique optimal quantizer of the normal distribution: thus α(0) = {0} by symmetry of the

normal distribution. Then, the optimal quadratic product N -quantizer αN,prod (of “true

size” N1 × · · · × NLW (N) ≤ N) can be described using a multi-indexation as follows:

αN,prod
(n1,...,nk,...)(t) =

∑

k≥1

β(Nk)
nk

√
λke

W
k (t), nk∈ {1, . . . , Nk}, k ≥ 1.
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These sums are in fact all finite so that the functions αN,prod
(i1,...,in,...) all are C∞ with finite

variation on every interval of R+.

Explicit optimal integral bit allocations as well as optimal quadratic quantizations

(quantizers and their weights) of the scalar normal distribution are available on the web-

site [19]. Note for practical applications that this optimal product quantization is based on

1-dimensional quantizations of small size of the scalar normal distribution N (0; 1). This

kind of functional quantization has been applied in [18] to price Asian options in a Heston

stochastic volatility model.

1.2.2 Optimal quantization

It is established in [11] (Theorem 3.2) that the quadratic optimal quantization of the

Brownian motion reads

Ŵ N,opt
t =

√
2

T

dW (N)∑

k=1

√
λk (ζ̂N

dW (N))
k sin

(
t√
λk

)
(1.13)

where ζdW (N) = Proj⊥Ed(N)
(W ) ∼ N

(
0;Diag(λ1, . . . , λdW (N))

)
with

EdW (N) := R-span
{
sin
(
./
√

λ1

)
, . . . , sin

(
./
√

λdW (N)

)}
and ζ̂N

dW (N) is an optimal quadratic

quantization of ζdW (N) of size N .

If one considers an optimal quadratic N -quantizer βN = {βN
n , n = 1, . . . , N} ⊂ RdW (N)

of the distribution N
(
0;Diag(λ1, . . . , λdW (N))

)
(a priori not unique)

αN,opt
n (t) =

dW (N)∑

k=1

(β(N)
n )k

√
λk eW

k (t), n = 1, . . . , N.

Once again this defines a C∞ function with finite variation on every interval of R+.

The resulting optimal quantization error satisfies

1

T
‖W − Ŵ N,opt‖2 ∼ copt

W
(log N)−

1
2 as N → ∞ (1.14)

where copt
W

=
√

2
π ≈ 0.4502.

The true value for dW (N) is unknown. A conjecture supported by numerical evidences

is that dW (N) ∼ log N (what is proved is that dW (N) = Ω(log(N))).

Large scale computations of optimal quadratic quantizers of the Brownian motion have

been carried out (up to N = 10000 and d = 10). They are available on the website [19].

1.2.3 Stationary functional quantizations, Wiener like integral

Both types of quantizations defined above share an important property of quantizers: self-

stationarity.

Definition 1.1 Let α ⊂ L2
T
. The quantizer α is stationary for the Brownian motion if

there is a Voronoi quantization Ŵ := Ŵ α induced by α such that

Ŵ = E(W |σ(Ŵ )) a.s. (1.15)
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where E( . |G) denotes the functional conditional expectation given the σ-field G on L2
L2

T

(P)

(see Annex).

In the case of product quantization Ŵ N,prod, this follows from the stationarity property

of the optimal quadratic quantization of the marginals ξn (see [11] or [18]). In the case of

optimal quadratic quantization Ŵ N,opt this follows from the optimality of the quantization

of ζdW (N).

We will see that it is possible to define a kind of Wiener integral with respect to a

stationary quantization.

First, we must have in mind that if W is a (Ft)-Brownian motion, then one can define the

Wiener stochastic integral (on [0, T ]) of any process ϕ∈ L2([0, T ]×Ω,W([0, T ])⊗F0 , dt⊗dP)

with respect to W . One can see it as a special case of Itô stochastic integral or as an extended

Wiener integral: If ϕ(t, ω) denotes an elementary process of the form

ϕ(t, .) :=

n∑

k=1

ξk1(sk ,sk+1], 0 = s0 < s1 < · · · < sn−1 < sn = T.

where ξi are F0-measurable (hence independent of W ). Set IT (ϕ) :=

n∑

k=1

ξk(Wsk+1
− Wsk

).

Then, I
T

is an isometry from L2
L2

T

(P) into L2(F
T
, P). Furthermore, one checks that

E

(∫ T

0
ϕ(s, .)dWs | FW

T

)
=

∫ T

0
E
(
ϕ(s, .) | FW

T

)
dWs

where FW
T

denotes the augmented filtration of W at time T . We follow the same lines to

define the stochastic integral with respect to a stationary quantizer. Set for an elementary

process ϕ

Î
T
(ϕ) =

n∑

k=1

ξk(Ŵsk+1
− Ŵsk

)

so that

Î
T
(ϕ) =

n∑

k=1

ξiE(Wsk+1
− Wsk

) | Ŵ )

=

n∑

k=1

Eξk(Wsk+1
− Wsk

) | F0 ∨ σ(Ŵ ))

= E

(∫ T

0
ϕ(t, .)dWt | F0 ∨ σ(Ŵ )

)

where we used that the σ-fields σ(Ŵ ) and F0 are independent. It follows that

‖ÎT (ϕ)‖2
2
≤ ‖IT (ϕ)‖2

2
= ‖ |ϕ|L2

T
‖2

2
.

Hence the linear transformation Î
T

extends to a linear continuous mapping on L2
L2

T

(F0, P).

Furthermore, one checks, first on elementary processes, then on the whole L2
L2

T

(F0, P) by

continuity of the (functional) conditional expectation that

E

(
I

T
(ϕ) | F0 ∨ σ(Ŵ )

)
= Î

T
(ϕ).
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We will denote from now on

ÎT (ϕ)(ω) :=

∫ T

0
ϕ(t, ω)dŴt(ω).

Now set for every t∈ [0, T ],

∫ t

0
ϕ(s, ω)dŴs(ω) :=

∫ T

0
1[0,t](s)ϕ(s, ω)dŴs(ω).

One checks using Jensen and Doob Inequality that,

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
ϕ(s, .)dŴs

∣∣∣∣
2

≤ E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
ϕ(s, .)dWs

∣∣∣∣
2

≤ CE

∫ T

0
ϕ2(s, .) ds. (1.16)

On the other hand, as soon as the stationary quantizer α (such that Ŵ = Ŵ α) has pathwise

continuous elements, it follows that if ϕ is an elementary process,
∫ t

0
ϕ(t, .) dWt =

n∑

k=1

ξk(Ŵsk+1∧t − Ŵsk∧t)

admits a continuous modification in t ∈ [0, T ]. One classically derives by combining this

result with (1.16) and the everywhere density of elementary processes that, for every ϕ∈
L2

L2
T

(F0, P), the process

(∫ t

0
ϕ(s, .)dŴs

)

t∈[0,T ]

admits a continuous modification.

This is always this modification that will be considered from now on. Furthermore, using

the characterization of functional conditional expectation (see Annex), it follows that

E

(∫ .

0
ϕ(s, .)dŴs , | F0 ∨ σ(Ŵ )

)
=

∫ .

0
ϕ(s, .)dŴs. (1.17)

1.2.4 Extension to multi-dimensional brownian motions

To quantize a standard d-dimensional Brownian motion one uses a kind of product-quantization

of each of its components with marginal rate optimal quantizers of size [N
1
d ]. Such quan-

tizers share the same properties as the above ones defined in the scalar case.

Proposition 1.1 Let W =: (W 1, . . . ,W d) denote a d-dimensional standard Brownian mo-

tion and Ŵ := (Ŵ 1, . . . , Ŵ d) a pathwise continuous stationary quantization of W . Then,

for every i 6= j, i, j∈ {1, . . . , d},

E

(∫ .

0
W i

sdW j
s |σ(Ŵ i, Ŵ j)

)
=

∫ .

0
Ŵ i

sdŴ j
s .

Proof. The stochastic integral
∫ .
0 W i

sdW j
s coincides with the (extended) Wiener integral

defined with respect to the filtration Gj
i,t := σ(FW i

T
,FW j

t ) (it is clear that W j is a Gj
i,t-

standard Brownian motion). The result is then a straightforward consequence of (1.17). ♦

Remark. The above result still holds true if one considers an additional “0” component

to the Brownian motion W 0
t = t (with Ŵ 0

t = t).
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2 Kolmogorov criterion and convergence in p-variation

The aim of this section is to investigate the connections between the celebrated Kolmogorov

criterion and the tightness of some classes of sequences of processes for the topology of p-

variation convergence. In fact this connection is somehow the starting point of the rough

path theory, but we will look at ti in a slightly different way. Namely if X satisfies the Kol-

mogorov criterion and (GN )N≥1 denotes a sequence of sub-σ-algebras of A then a sequence

of processes defined by

XN := E(X | GN ), N ≥ 1,

is (C-tight and) tight for a whole family of topologies induced by convergence in p-variation

(the conditional expectation is considered in the functional sense).

First let us define the p-variation (semi-)norm (and Hölder semi-norm).

Definition 2.1 (a) Let x : [0, T ] → Rd be a continuous function and let p∈ [1,∞). One

defines the p-variation semi-norm by

V arp,[0,T ](x) := sup





(
k−1∑

ℓ=0

|x(tℓ+1) − x(tℓ)|p
) 1

p

, 0 ≤ t0 ≤ t1 ≤ . . . ≤ tk ≤ T, k ≥ 1



 .

(b) The 1
p-Hölder semi-norm is closely connected to the p-variation semi-norm defined for

every continuous function x : [0, T ] → Rd by

‖x‖p,Hol = sup
s,t∈[0,T ]

|x(t) − x(s)|
|t − s|

1
p

.

Remark. Indeed, it is clear that

V arp,[0,T ](x) ≤ ‖x‖p,Hol. (2.1)

Although already appearing in one of the seminal papers of rough path theory (see [16]),

its interest has been emphasized in [5].

When p ≥ 1, one defines a norm on Vp := {x ∈ C([0, T ]), V arp,[0,T ](x) < +∞} by

setting

V ar0
p,[0,T ](x) := |x(0)| + V arp,[0,T ](x).

One proceeds likewise with the Hölder semi-norm.

Definition 2.2 Let p ≥ 1, θ > 0. A process X = (Xt)t∈[0,T ] satisfies the Kolmogorov

criterion (Kp,θ) if there is a real constant C > 0 such that

∀ s, t∈ [0, T ], E|Xt − Xs|p ≤ C |t − s|1+θ and X0∈ Lp(P).

Theorem 2.1 Let X := (Xt)t∈[0,T ] be a pathwise continuous process defined on (Ω,A, P)

satisfying the Kolmogorov criterion (Kp,θ). Let (GN )N≥1 be a sequence of sub-σ-fields of A.

For every N ≥ 1 set

XN := E(X | GN ).
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For every N ≥ 1, XN has a pathwise continuous version. Furthermore, if one of the

following conditions is satisfied

(a) GN ⊂ GN+1,

(b) There exists a subset D ⊂ [0, T ] such that XN
t

P−→ Xt, t∈ D,

(c) |XN − X|Lr
T

P−→ 0 for some r ≥ 1,

then

∀ q >
p

θ
, ‖X − XN‖sup + ‖X − XN‖q,Hol

Lp

−→ 0

so that, in particular,

Varq,[0,T ](X − XN )
Lp

−→ 0

The proof of the theorem is a variant of the proof of the Kolmogorov criterion for

functional tightness of processes. It consists in a string of several lemmas. For the following

easy lemma, we refer to [10].

Lemma 2.1 Let x, y∈ C([0, T ], Rd) and let p > 0. Then

(a) ‖x − x(0)‖sup ≤ V arp,[0,T ](x).

(b) If p ≥ 1, V arp,[0,T ](x + y) ≤ V arp,[0,T ](x) + V arp,[0,T ](y) and if 0 ≤ p ≤ 1,

(V arp,[0,T ](x + y))p ≤ (V arp,[0,T ](x))p + (V arp,[0,T ](y))p

(c) For every p′ > p,
(
V arp′,[0,T ](x)

)p′ ≤ 2p′−p‖x‖p′−p
sup

(
V arp′,[0,T ](x)

)p
.

(d) Claims (a)-(b)-(c) remain true with the 1
p -Hölder semi-norm ‖ . ‖p,Hol instead of the

p-variation semi-norm.

Lemma 2.2 If X satisfies the Kolmogorov criterion (Kp,θ) and XN = E(X | GN ), N ≥ 1

then, the sequence (XN )N≥1 is C-tight and for every θ′ ∈ (0, θ), there exists a random

variable Z∈ Lθ′
R

(P) such that

P(dω)-a.s. ∀ s, t∈ [0, T ], |XN
t (ω) − XN

s (ω)|p = E(Zθ′ | GN )(ω)|t − s|θ′ . (2.2)

In particular

Var p
θ′

(XN ) ≤ ‖XN‖p,Hol ≤
(

E((TZ)θ
′ | GN )

) 1
p

.

Proof. Let s, t∈ [0, T ]. Let m, n ≥ 1 be two fixed integers.

sup
s,t∈[0,T ], t≤s≤t+ T

2n

|Xt − Xs|p ≤ 3p max
0≤k≤2n−1

sup
s∈[ kT

2n ,
(k+1)T

2n ]

|Xs − XkT
2n
|p

≤ 3p max
0≤k≤2n−1

sup
m≥0

2m∑

ℓ=1

|XkT
2n +ℓ T

2n+m
− XkT

2n +(ℓ−1) T
2n+m

|p

≤
2n−1∑

k=0

∑

m≥0

2m∑

ℓ=1

|XkT
2n +ℓ T

2n+m
− XkT

2n +(ℓ−1) T
2n+m

|p. (2.3)
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For every θ′∈ (0, θ), set

Z :=



∑

n≥0

2nθ′ sup
s,t∈[0,T ], t≤s≤t+ T

2n

|Xt − Xs|p



1
θ′

.

Taking expectation in (2.3) yields

E(Zθ′) ≤ C 3p
∑

n

2nθ′
2n−1∑

k=0

∑

m≥0

(
T

2n+m

)1+θ

≤ Cp,θ

∑

n

2−n(θ−θ′) < +∞.

On the other hand, for every δ∈ [0, T ], 2−(1+nδ) ≤ δ/T ≤ 2−nδ , so that

δ−θ′ sup
s,t∈[0,T ], t≤s≤t+δ

|Xt − Xs|p ≤ 2(1+nδ)θ′T−θ′ sup
s,t∈[0,T ], t≤s≤t+ T

2n

|Xt − Xs|p ≤
(

2

T

)θ′

Zθ′ .

Consequently, for every s, t∈ [0, T ], and every ω∈ Ω,

|Xt(ω) − Xs(ω)|p ≤ Zθ′(ω)|t − s|θ′ .

Finally, it follows from Jensen Inequality that

P(dω)-a.s. ∀ s, t∈ [0, T ], |XN
t (ω) − XN

s (ω)|p = |E(Xt − Xs | GN )(ω)|p

≤ E(|Xt − Xs|p | GN )(ω)

≤ E(Zθ′ | GN )(ω)|t − s|θ′ . (2.4)

so that, on the one hand every XN , N ≥ 1 has a pathwise continuous version, and

P(dω)-a.s. Var p
θ′

,[0,T ](X
N ) ≤ ‖XN (ω)‖p,Hol ≤ T

θ′

p

(
E(Zθ′ | GN )(ω)

) 1
p

. ♦

Proof of Theorem 2.1. As concerns C-tightness (which is quite classical, see [1], since

it is the original aim of Kolmogorov’s criterion), first note that XN
0 = E(X0 | GN ), N ≥ 1,

is uniformly integrable hence tight. On the other hand it follows from (2.4) that the se-

quence of processes (XN −XN
0 )N≥1 is C-tight (this is but the original proof of Kolmogorov

criterion). The space (C([0, T ], Rd), ‖ . ‖sup) being a topological space, it is clear that the se-

quence (XN ,X)N≥1 is C-tight on (C([0, T ], R2d), ‖ . ‖sup). Let Q = w-limN P(XN′ ,X) denote

a weak functional limiting value of (XN ,X)N≥1. If Z = (Z1, Z2) denotes the canonical

process on (C([0, T ], R2d), ‖ . ‖sup), it is clear that QZ2 = P
X

.

� Convergence of the sup-norm. Assume that (c) holds: the functional x 7→ |x1(t)−x2(t)|Lr
T

is continuous on (C([0, T ], R2d), ‖ . ‖sup). Consequently |XN ′−X|Lr
T

L−→ |Z1−Z2|Lr
T
. Hence

Z1 = Z2 Q-a.s.. i.e. Q = PX,X) so that (XN ,X)
L(‖ . ‖sup)−→ (X,X) as N → ∞. This means

that ‖XN − X‖sup
P−→ 0. On the other hand,

‖XN‖p
sup ≤ Cp,T E(Zθ′ + |X0|p | GN )
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which implies that (‖XN − X‖p
sup)N≥1 is uniformly integrable and finally that

E(‖XN − X‖p
sup) −→ 0 as N → ∞.

Assume that (b) holds: It follows that for every t1, . . . , tk∈ D, (XN
t1 , . . . ,XN

tk
) −→ (Xt1 , . . . ,Xtk )

in distribution so that QZ1 and PX have the same marginals. Hence Z1 ∼ X in distribution

which means that ‖XN − X‖sup → 0 in probability. One concludes like in (c).

If (a) holds, for every t∈ [0, T ], XN
t → Xt P-a.s.. So that condition (b) is satisfied.

� Convergence of the Hölder semi-norm. As concerns the convergence of the 1
p -Hölder

semi-norm, one proceeds as follows. Let q′∈ (p
θ , q) and θ′ := p

q′ ∈ (0, θ). Assume e.g. that

q ≥ 1. It follows from Lemma 2.1(b)-(c)-(d) that

‖X − XN‖q,Hol ≤ 2
1− q′

q ‖X − XN‖1− q′

q
sup ×

(
‖X‖q,Hol + ‖XN‖q,Hol

) q′

q .

Consequently ‖X − XN‖q,Hol
P−→ 0. On the other hand

‖X − XN‖q,Hol ≤ ‖X‖q,Hol + ‖XN‖q,Hol ≤ ‖X‖q,Hol + (E(Zq | GN ))
1
p

so that uniform integrability implies ‖X − XN‖q,Hol
Lp

−→ 0. As concerns q-variation the

result follows from the inequality (2.1). ♦

Proposition 2.1 Let Y N : Ω × [0, T ] → Rd, N ∈ N ∪ {∞}, be a sequence of bi-measurable

processes. Assume Y N ∈ L2
T

for every N ∈ N ∪ {∞} and

Y N L2(P)−→ Y (i.e.

∫ T

0
E|Y N

t − Yt|2dt → 0).

Let X : Ω × [0, T ] → Rd be a (bi-measurable) process. Assume that X ∈ Lp
L2

T
(P) for some

p ≥ 1 and that X is bi-measurable with respect to the σ-field TY -measurable where TY

denotes the smallest σ-field on [0, T ] × Y that makes (ω, t) 7→ Yt(ω) measurable. Then,

XN := E(X |Y N )
Lp(P)−→ X.

Proof. To establish this result, one may assume without loss of generality that X is a real-

valued process. Then there exists a Borel function Φ : R → R such that Xt(ω) = Φ(Yt(ω)).

Set µ := (P ⊗ λ|[0,T ]) ◦ X−1. Let Φε : R → R Lipschitz continuous such that

∫

Ω

∫ T

0
|Φ(Xt) − Φε(Xt)|2dtdP =

∫

R

|Φ − Φε|2dµ ≤ ε2.

It follows from the contraction property of the conditional expectation in Lp
L2

T
that

‖X − XN‖Lp

L2
T

≤ ‖X − Φ(Y N )‖Lp

L2
T

+ ‖E(Φ(Y N ) − X |Y N )‖Lp

L2
T

≤ 2‖X − Φε(Y
N )‖Lp

L2
T

.
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Now

‖X − Φε(Y
N )‖Lp

L2
T

≤ ‖X − Φε(Y )‖Lp

L2
T

+ [Φε]Lip‖Y − Y N‖Lp

L2
T

Consequently, for every ε > 0,

lim sup
N

‖X − XN‖Lp

L2
T

≤ inf
ε>0

‖Φ(Y ) − Φε(Y )‖Lp

L2
T

= 0. ♦

3 Application to the convergence of quantized SDE’s

3.1 From Itô to Stratanovich

An SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0∈ Lp
Rd(P)

where b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → M(d × q) are smooth enough functions

(e.g. continuously differentiable with bounded differentials) and W = (Wt)t∈[0,T ] is a q-

dimensional Brownian motion. First note that without loss of generality one may assume

that q = d by increasing the dimension of W or adding some identically zero components

to X (no ellipticity like assumption is needed here). This SDE can be written in the

Stratanovich sense as follows

dXt = f(Xt) ◦ dWt, X0∈ Lp
Rd(P), (3.1)

where, for notational convenience W = (W 0,W 1, . . . ,W q) stands for (t,Wt), Xt = (X0
t ,X1

t , . . . ,Xd
t )

stands for (t,Xt) and f : R+×Rd → R+×Rd (with f0(t, x) = t) is a differentiable function

with bounded differentials.

Following rough paths theory developed by T. Lyons ([17]) and many co-authors (see [10]

for an introduction), one can also solve this equation in the sense of rough paths with finite

p-variation, p ≥ 2, since we know (e.g. from the former Kolmogorov criterion) that W a.s.

does have finite p-variation, for any p > 2. Namely this means solving an equation formally

reading

dxt = f(xt)dyt, x0∈ Rd. (3.2)

In this equation y does not represent the path (null at 0) (yt) associated to yt = Wt(ω) itself

but the so-called geometric multiplicative functional lying on y with controlled p-variation,

namely a couple y = ((y1
s,t)0≤s≤t≤T , (y2

s,t)0≤s≤t≤T ) where y1
s,t = yt − ys ∈ Rd+1, 0 ≤ s ≤

t ≤ T , can be identified with the path (yt) and (y2
s,t)0≤s≤t≤T satisfies, y2

s,t ∈ R(d+1)2 for

every 0 ≤ s ≤ u ≤ t ≤ T and the following tensor multiplicative property

y2
s,t = y2

s,u + y2
u,t + y1

s,u ⊗ y1
u,t.

Different choices for this functional are possible, leading to different solutions to the

above Equation (3.2). Thus, the choice that makes coincide a.s. the solution of (3.1) and

the pathwise solutions of (3.2) is given by

y2
s,t :=

(∫ t

s
(W i

u − W i
s) ◦ dW j

u

)

i,j=0,...,d

(ω) (3.3)
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so that

y1
s,u ⊗ y1

u,t =
(
y1,i

s,uy
1,j
s,u

)
i,j=0,...,d

.

When p∈ [2, 3), thep-variation distance between two such multiplicative functionals y, z is

defined by

δp(y, z) = V arp,[0,T ](y
1 − z1) + V arp/2,[0,T ](y

2 − z2)

where

V arq,[0,T ](y
2) := sup





(
k−1∑

ℓ=0

|y2
tℓ,tℓ+1

|q
) 1

q

, 0 ≤ t0 ≤ t1 ≤ . . . ≤ tk ≤ T, k ≥ 1



 .

Remark. Likewise one defines the Hölder distance by setting

ρp(y − x) = ‖y1 − x1‖p,Hol + ‖y2 − x2‖p/2,Hol

where

‖x2‖p/2,Hol := sup
s,t∈[0,T ]

|x2
t − x2

s|
|t − s|

2
p

The following theorem describes the continuity of the so-called Itô map y 7→ x for the

δp-convergence.

Theorem 3.1 (see [10, 17]) Let f ∈ C2+α(R+×Rd, R+×Rd), α > 0, bounded with bounded

first13 two differentials, and let y be a multiplicative functional satisfying δp(y, 0) < +∞
for every p∈ (2, 2 + α). Then Equation (3.2) has a unique solution.

When y is given by (3.3), the solution a.s. coincides with that of the SDE in the

Stratanovich sense.

Furthermore, let (yN )N≥1 be a sequence of multiplicative functionals satisfying δp(y
N ,y) →

0 as N → ∞, for every p∈ (2, 2 + α). Then, the sequence (xN )N≥1 of (unique) solutions

to the differential equations dxN
t = f(xN

t ) dyN
t , xN

0 = x0, N ≥ 1, satisfy

∀ p∈ (2, 2 + α), V arp,[0,T ](x − xN )
N→∞−→ 0.

Remark. Following Theorem 4.1 in [5], one also has convergence result with respect to

the Hölder norm ρp. To be precise, if f is three times differentiable on Rd and globally

Lipschitz, then the above theorem remains true by replacing mutatis mutandis, δp by ρp.

3.2 Quantization of the SDE

Let (αN )N≥1 denote a sequence of quantizers of the Brownian motion. Each αN is made

up of N functions (or elementary quantizer) αN
n : [0, T ] → Rd, n = 1, . . . , N . For con-

venience component “0” will be added accordingly to each elementary quantizer αN
n by

setting αN,0
n (t) = t (which exactly quantizes the function W 0

t = t). We assume that every

elementary quantizer αN
n is a continuous function with finite variation over [0, T ].

From now on, our aim is to rely on this theorem to establish that the solutions of the

ODE’s

dx̃N
n (t) = f(x̃N

n (t))dαN
n (t), x̃N

n (0) = x0, n = 1, . . . , N,
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produce a sequence of (non Voronoi) converging quantization of the solution X of the

SDE (3.1) when N → ∞ by setting

X̃N =

N∑

n=1

x̃N
n 1{W∈Cn(αN )}

(keep in mind that {W ∈ Cn(αN )} = {Ŵ N = αN
n }, n = 1, . . . , N). At this stage, it is quite

classical background using the definition of the Stratanovich integral and the independence

of the components W i, to note that, for every i, j∈ {1, . . . , d},

∫ t

s
(W i

u −W i
s) ◦ dW j

u =





∫ t
0 W i

u dW j
u −

∫ s
0 W i

u dW j
u − W i

s(W
j
t − W j

s ), if i 6= j

∫ t
0 W i

u dW i
u −

∫ s
0 W i

u dW i
u + 1

2(t − s) − W i
s(W

i
t − W i

s), if i = j.

When i or j = 0, the computation is trivial. As concerns Ŵ N , which is made of finitely

many smooth paths α
(N)
n , the multiplicative functional ŷN is defined formally by replacing

the Stratanovich integral by a standard Stieltjes integral.

Then first classical step is to prove that δp-convergence of Ŵ N to W reduces to that

of approximate Lévy areas
∫ t
0 Ŵ N,i

s dŴ N,j
s toward the true ones

∫ t
0 W i

s dW j
s , i 6= j. This

follows from the following easy abstract lemma which proof, based on Lemma 2.1, is left to

the reader

Lemma 3.1 Let p ≥ 2. Let (W N )N≥1 be a sequence of Rd-valued processes such that

‖Varp,[0,T ](W
i − W N,i)‖p → 0 as N → ∞. Then (still using the convention W 0

t = W N,0
t =

t), for every i, j∈ {0, . . . , d}

‖Varp,[0,T ]((W
i
s(W

j
t − W j

s ) − W N,i
s (W N,j

t − W N,j
s ))‖p → 0 if i 6= j,

‖Varp,[0,T ]((W
i
s(W

i
t − W i

s) − W N,i
s (W N,i

t − W N,i
s ))‖

p/2
→ 0 if i = j.

It follows that, if the assumption of this lemma is satisfied by a sequence (W N )N≥1, the

δp-continuity of the Itô map for the p-variation reduces in this simple case to considering

the approximation in p-variation of the Lévy areas
∫ t
0 W i

s ◦ dW j
s =

∫ t
0 W i

s dW j
s , i 6= j, and∫ t

0 W i
s ◦ dW i

s =
∫ t
0 W i

s dW i
s + 1

2t by their counterpart defined using W N .

Remark. The same holds true with respect to the p-Hölder semi-norm.

3.3 Rate optimal quantizers

Proposition 3.1 Let (Ŵ N )N≥1 be a sequence of stationary rate optimal quadratic func-

tional quantizers of a standard d-dimensional Brownian motion W defined by (1.10) or (1.13).

Then

∀ q >
2p

p − 2
, Varq,[0,T ](W − Ŵ N )

Lp

−→ 0 as N → ∞.

Proof. This follows from Theorem 2.1(c) since W satisfies the Kolmogorov criterion

Kp,p/2−1 for every p > 2 and the stationarity property (1.15). ♦

Remark. Rate optimality of (Ŵ N )N≥1 is not necessary to derive this convergence.
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Lemma 3.2 If 1 ≤ i 6= j ≤ d, the Lévy area

(∫ t

0
W i

sdW j
s

)

t∈[0,T ]

satisfies the Kolmogorov

criterion (Kp,p/2−1) for every p > 2.

Proof. This is a classical result that derives from a simple application of B.D.G. Inequality

and Holder Inequality. ♦

Lemma 3.3 Let W be a (real-valued) standard Brownian motion.

(a) For every ϕ∈ L2
L2

T

(F0, P)

∫ t

0
ϕ(s, .)dWs =

√
2

T

∑

k≥1

ξk

∫ t

0
ϕ(s, .) cos(s/

√
λk)ds (3.4)

where ξk := (W |eW
k )2/

√
λk are independent, N (0; 1)-distributed (see (1.8) and (1.9)) and

independent of ϕ.

(b) For every ϕ∈ L2
L2

T

(F0, P)

∫ t

0
ϕ(s, .)dŴs =

√
2

T

∑

k≥1

(Ŵ |eW
k )2√

λk

∫ t

0
ϕ(s, .) cos(s/

√
λn)ds. (3.5)

Proof. (a) Set for every ϕ∈ L2
L2

T

(F0, P),

J
T
(ϕ) :=

√
2

T

∑

k≥1

ξk

√
λk

∫ T

0
ϕ(s, .)d sin(s/

√
λk) (3.6)

=

√
2

T

∑

k≥1

ξk

∫ T

0
ϕ(s, .) cos(s/

√
λk)ds.

This defines clearly an isometry from L2
L2

T

(F0, P) into the Gaussian space spanned by

(ξn)n≥1 since

E(JT (ϕ)2) =
2

T

∑

k≥1

E(ξ2
k) E

(∫ T

0
g(s)

1√
λk

cos(s/
√

λk)ds

)2

= E

∫ T

0
g2(t)dt.

The last equality uses that the sequence (
√

2
T cos(π(k− 1

2)t))k≥1 is an orthonormal basis of

L2
T
. Finally, note that for every t∈ [0, T ], JT (1[0,t]) =

√
2
T

∑
k≥1

√
λk ξk sin(t/

√
λk) = Wt.

This proves that J
T

= I
T

i.e. is but the (extended) Wiener integral with respect to W .

(b) This follows by taking the (functional) conditional expectation of (3.4). ♦

Let Cr
b ([0, T ] × Rd) r > 0, denote the set of ⌊r⌋-times differentiable bounded functions

f : [0, T ] × Rd → Rd with bounded partial derivatives up to order ⌊r⌋ and whose partial

derivatives of order ⌊r⌋ are (r − ⌊r⌋)-Hölder.
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Theorem 3.2 Let p ≥ 2. Let (Ŵ N )N≥1 be a sequence of stationary quadratic functional

quantizers of the Brownian motion converging to W in L2
L2

T

(P).

(a) For every p ≥ 2 and every q > 2p
p−2 ,

Varq,[0,T ]

(∫ .

0
W i

sdW j
s −

∫ .

0
Ŵ N,i

s dŴ N,j
s

)
Lp

−→ 0 as N → ∞

Varq,[0,T ]

(∫ .

0
W i

sd ◦ W i
s −

∫ .

0
Ŵ N,i

s dŴ N,i
s

)
Lp

−→ 0 as N → ∞.

(b) Let f : R+ × R+ × Rd → R be C2+α (α > 0). Consider for every N ≥ 1, the solutions

of the quantized ODE’s

dX̂N
t = f(X̂N

t ) dŴ N
t , N ≥ 1.

Then, for every q > 2,

Varq,[0,T ](X̂
N − X)

P−→ 0.

Remarks. • There is an abuse of notation in the above claim (b) since X̂N is not a Voronoi

quantizer of X: this quantization of X is defined on the Voronoi partition induced by the

quantization of the Brownian motion W .

• Using the same approach based on Theorem 2.1(c) one can retrieve the classical results

about “natural” rough paths of the Brownian motion defined as the linear interpolation of

the Brownian motion at times tk, k = 0, 1, . . . , n.

• Other extensions to the Brownian bridge or the Ornstein-Uhlenbeck processes and more

generally to Gaussian semi-martingales that satisfy the Kolmogorov criterion are possible

by this method.

Proof. (a) When i 6= j, this is a straightforward consequence of Theorem 2.1(c). When

i = j, ∫ t

0
Ŵ i

sdŴ i
s =

1

2
(Ŵ i

t )
2 and

∫ t

0
W i

s ◦ dW i
s =

1

2
(W i

t )
2

and

Varq,[0,T ]((W
i)2 − (Ŵ i)2) ≤

(
‖W i‖sup + ‖Ŵ i‖sup

)
Varq,[0,T ](W

i − Ŵ i)

≤
(
‖W i‖sup + E(‖W i‖sup | Ŵ i)

)
Varq,[0,T ](W

i − Ŵ i).

This finally implies that for every q > 2p
p−2

Varq,[0,T ]

(∫ .

0
W i

sd ◦ W i
s −

∫ .

0
Ŵ N,i

s dŴ N,i
s

)
Lp

−→ 0. ♦
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4 Toward some rate of convergence

We first consider two independent Brownian motions B and W . All the subsequent quan-

tizations are designed from some pathwise continuous stationary quantizers.

Let f : R → R an α-Holder function, α∈ (0, 1]. Then, for every p ≥ 1, it follows from

B.D.G. and Jensen Inequality that

E

(
sup

t∈[0,T ]
|
∫ t

0
(f(Ws) − f(Ŵs)dB̂s|p

)
≤ E

(
sup

t∈[0,T ]
|
∫ t

0
(f(Ws) − f(Ŵs))dBs|p

)

≤ Cp,T

∫ T

0
E|f(Ws) − f(Ŵs)|pds

≤ Cp,T [f ]pα

∫ T

0
E|Ws − Ŵs|pαds

so that ∥∥∥∥∥ sup
t∈[0,T ]

|
∫ t

0
(f(Ws) − f(Ŵs))dB̂s|

∥∥∥∥∥
p

≤ Cp,T‖ |W − Ŵ |αLpα
T
‖p. (4.1)

To obtain some global rates of convergence we focus on the second error term which

writes in full generality
∫ T

0
ϕ(s, .)d(Bs − B̂s) =

∑

n≥1

(B − B̂|eW
n )2

∫ T

0
ϕ(s, .)deW

n (s)

where ϕ(t, ω) = f(Wt(ω)).

From now on, we make the assumption that,

for every N ≥ 1, B̂N is an optimal product N -quantization of B

given by (1.10) where the sequence (Nn) of integral bit allocation satisfies (1.11).

Then, (B̂N |eW
n )2 is a quantization of (B|eW

n )2 . To be precise, if (ξn)n≥1 denotes the

N (0; 1)-distributed i.i.d. sequence in the Karhunen-Loève expansion of B,

(B − B̂N |eW
n )2 =

√
λn(ξn − ξ̂Nn

n )

where ξ̂Nn
n are optimal quantizations of ξn

E

(
|
∫ T

0
ϕ(s, ω)d(Bs − B̂s)|2 | FW

T

)
=

∑

n≥1

E(ξn − ξ̂Nn
n )2λn

(∫ T

0
ϕ(s, .)deW

n (s)

)2

so that, owing to Equation (1.2) (Zador’s Theorem),

E

(
|
∫ T

0
ϕ(s, ω)d(Bs − B̂N

s )|2
)

≤ C
∑

n≥1

1

n2N2
n

E

(∫ T

0
ϕ(s, .)deW

n (s)

)2

.

Assume now that f is C2. Then,
∫ T

0
f(Ws)deW

n (s) =

√
2

T

[
f(0) sin

(
T√
λn

)
+

∫ T

0

(
sin

(
T√
λn

)
− sin

(
s√
λn

))
f ′(Ws)dWs

+
1

2

∫ T

0

(
sin

(
T√
λn

)
− sin

(
s√
λn

))
f”(Ws)ds

]
.
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Then, if supt∈[0,T ] E(f ′(Wt))
2 + E(f”(Wt))

2 < +∞,

E

(∫ T

0
f(Ws)deW

n (s)

)2

= CT

(
f(0)2 + sup

t∈[0,T ]
E(f ′(Wt))

2 + E(f”(Wt))
2

)
< +∞

where C
T

denotes a positive real constant. Consequently

∥∥∥∥
∫ T

0
f(Ws)d(Bs − B̂N

s )

∥∥∥∥
2

2

≤ C
T

∑

n≥1

1

n2N2
n

. (4.2)

It follows from the optimal integral bit allocation (1.11) of the Nn’s that

∥∥∥∥
∫ T

0
f(Ws)d(Bs − B̂s)

∥∥∥∥
2

2

≤ C
T
‖B − B̂N‖2 ≤ C

T
(log N)−1. (4.3)

Combining this estimate with (4.1) yields the following proposition.

Proposition 4.1 Suppose f is C2 and f ′ is bounded and supt∈[0,T ] ‖f”(Wt)‖2 < +∞. Sup-

pose that Ŵ N , N ≥ 1, is a rate optimal sequence of N -quantizations of W and that B̂N ,

N ≥ 1, is a sequence of optimal N -product quantizations of B. Then

∥∥∥∥
∫ T

0
f(Ws)dBs −

∫ T

0
f(Ŵ N

s )dB̂N
s

∥∥∥∥
2

≤ C
T
(log N)−

1
2 . (4.4)

Application. The optimal product quantization of the Lévy area of (W 1,W 2) converges

in L2(P) toward the Lévy area at a O(log N)−
1
2 )-rate.

This result an be slightly improved since it is established in [9] that the sequence of

optimal N -product quantizers remains rate optimal in Lp(P) as long as 0 < p < 3. This

means that the above rate remains true in Lp(P), 0 < p < 3 at least if one considers a

sequence of optimal N -product quantizers for W as well.

A careful reading and understanding of the proof of Theorem 3.1 should probably lead to

some a priori error bounds in a much more general setting. A O((log N)−
1
2 )-rate should for a

wide class of multi-dimensional SDE (in the Stratanovich sense), extending the constructive

results obtained in [13].

Acknowledgement: The author thank A. Lejay for helpful discussions and comments
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Annex: Functional conditional expectation

Let (Xt)t∈[0,T ] be a bi-measurable process defined on a probability space (Ω,A, P) such that

∫ T

0

E(X2
t )dt < +∞.

One can consider X as a random variable X : (Ω,A, P) → L2
T

:= L2([0, T ], dt) and more precisely

as an element of the Hilbert space

L2
L2

T

(Ω,A, P) :=
{
Y : (Ω,A, P) → L2

T
, E |Y |2

L2
T

< +∞
}

where |f |2
L2

T

=
∫ T

0 f2(t)dt. For the sake of simplicity, one denotes ‖Y ‖2 :=
√

E |Y |2
L2

T

. If B denotes

a sub-σ-field of A (containing all P-negligible sets of A) then L2
L2

T

(Ω,B, P) is a closed sub-space of

L2
L2

T

(Ω,A, P) and one can define the functional conditional expectation of X by

E(X | B) := Proj⊥L2

L2
T

(Ω,B,P)(X).

Functional conditional expectation can be extended to bi-measurable processes X such that ‖X‖1 :=

E|X |L1
T

< +∞ following the approach used for Rd-valued random vectors. Then, E(X | B) is

characterized by: for every B([0, T ])⊗ B-bi-measurable process Z = (Zt)t∈[0,T ], bounded by 1,

E

∫ T

0

Zt Xt dt = E

∫ T

0

Zt E(X | B)t dt.

Furthermore, as soon as the process (E(Xt | B))t∈[0,T ] has a B([0, T ])⊗B bi-measurable version, one

straightforwardly checks that one may define a modification of the functional conditional expectation

by setting

E(X | B)t = E(Xt | B), t∈ [0, T ].

Examples: (a) Let B := σ(NA, Bi, i∈ I} where (Bi)i∈I is a finite measurable partition of Ω such

that P(Bi) > 0, i∈ I.

(b) Let X := (Wt)t∈[0,T ] a standard Brownian motion in Rd and let B := σ(Wt1 , . . . , Wtn
) where

0 = t0 < t1 < . . . < tn = T . Then

∀ t ∈ [tk, tk+1), E(W | B)t = Wtk
+

t − tk
tk+1 − tk

(Wtk+1
− Wtk

).
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