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Abstract We prove approximate controllability of the bilinear Schrödinger
equation in the case in which the uncontrolled Hamiltonian has discrete non-
resonant spectrum. The results that are obtained apply both to bounded or
unbounded domains and to the case in which the control potential is bounded
or unbounded. The method relies on finite-dimensional techniques applied to the
Galerkin approximations and permits, in addition, to get some controllability prop-
erties for the density matrix. Two examples are presented: the harmonic oscillator
and the 3D well of potential, both controlled by suitable potentials.

1 Introduction

In this paper we study the controllability of the bilinear Schrödinger equation. Its importance
is due to applications to modern technologies such as Nuclear Magnetic Resonance, laser
spectroscopy, and quantum information science (see for instance [22, 29, 31, 38]).

Many controllability results are available when the state space is finite dimensional, e.g.,
for spin systems or for molecular dynamics when one neglects interactions with highly excited

1



levels (see for instance [8, 19]). When the state space is infinite-dimensional the controllability
problem appears to be much more intricate. Some results are available when the control is
the value of the wave function on some portion of the boundary or in some internal region of
the domain (see [41] and references therein and the recent paper [39]).

However, from the point of view of applications the case in which the control appears
in the Hamiltonian as an external field is much more interesting, since the wave function is
not directly accessible in experiments and because of the postulate of collapse of the wave
function. For instance, in nuclear magnetic resonance the control is a magnetic field, in laser
spectroscopy and in many applications of photochemistry the control is a laser or a source of
light.

In this paper we consider the controllability problem for the following bilinear system
representing the Schrödinger equation driven by one external field

i
dψ

dt
(t) = (H0 + u(t)H1)ψ(t). (1.1)

Here the wave function ψ evolves in an infinite-dimensional Hilbert space, H0 is a self-adjoint
operator called drift Hamiltonian (i.e. the Hamiltonian responsible for the evolution when the
external field is not active), u(t) is a scalar control function, and H1 is a self-adjoint operator
describing the interrelation between the system and the external field.

The reference case is the one in which the Hilbert space is L2(Ω) where Ω is either Rd or
a bounded domain of Rd, and equation (1.1) reads

i
∂ψ

∂t
(t, x) = (−∆ + V (x) + u(t)W (x))ψ(t, x), (1.2)

where ∆ is the Laplacian (with Dirichlet boundary condition in the case in which Ω is bounded)
and V and W are suitably regular functions defined on Ω. However the setting of the paper
covers more general cases (for instance Ω can be a Riemannian manifold and ∆ the corre-
sponding Laplace-Beltrami operator).

Besides the fact that one cannot expect exact controllability on the whole Hilbert sphere
(see [10, 40]) and some negative result (in particular [28, 36]) only few approximate control-
lability results are available and concern mainly special situations. It should be mentioned,
however, that several results on efficient steering of the Schrödinger equation without any
controllability assumptions are available, e.g. [11, 14, 23]. (For optimal control results for
finite dimensional quantum systems see, for instance, [15, 16, 17, 26].)

In [12, 13] Beauchard and Coron study the controllability of a quantum particle in a
1D potential well with W (x) = x. Their results are highly nontrivial and are based on
Coron’s return method (see [18]) and Nash–Moser’s theorem. In particular, they prove that
the system is exactly controllable in the unit sphere of the Sobolev space H7 (implying in
particular approximate controllability in L2). One of the most interesting corollaries of this
result is exact controllability between eigenstates.

A different result is given in [1], where adiabatic methods are used to prove approximate
controllability for systems having conical eigenvalue crossings in the space of controls.

Another controllability result has been proved by Mirrahimi in [27] using Strichartz esti-
mates and concerns approximate controllability for a certain class of systems such that Ω = Rd

and whose drift Hamiltonian has mixed spectrum (discrete and continuous).
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The aim of the present paper is to prove a general approximate controllability result for
a large class of systems for which the drift Hamiltonian H0 has discrete spectrum. Our main
assumptions are that the spectrum of H0 satisfies a non-resonance condition and that H1

couples each pair of distinct eigenstates of H0. Such assumptions happen to be generic in a
suitable sense, as it will be discussed in a forthcoming paper.

We then apply the approximate controllability result to two classical examples, namely
the harmonic oscillator and the 3D potential well, for suitable controlled potentials.

Our method is new in the framework of quantum control and relies on finite-dimensional
techniques applied to the Galerkin approximations. A difficult point is to deduce properties
of the original infinite-dimensional system from its finite-dimensional approximations. For the
Navier–Stokes equations this program was successfully conducted by Agrachev and Sarychev
in the seminal paper [5] (see also [3, 35]).

A key ingredient of the proof is a time reparametrization that inverts the roles of H0

and H1 as drift and control operator. This operation is crucial since it permits to exploit
for the Galerkin approximation the techniques developed in [2] for finite-dimensional systems
on compact semisimple Lie groups. The passage from the controllability properties of the
Galerkin approximations to those of the infinite-dimensional system heavily relies on the fact
that the dynamics preserve the Hilbert sphere.

A feature of our method is that the infinite-dimensional system inherits, in a suitable sense,
controllability results for the group of unitary transformations from those of the Galerkin
approximations. This permits to extract controllability properties for the density matrix. Let
us stress that, as it happens in finite dimension, controllability properties for the density
matrix cannot in general be deduced from those of the wave function (see for instance [7]).

The paper is organized as follows. In Section 2 we present the general functional analysis
setting and we state our main result (Theorem 2.4) for the control system (1.1). In Section
3 we show how this result applies to the Schrödinger equation (1.2) when Ω is both bounded
or unbounded. Section 4 contains the proof of Theorem 2.4 and an estimate of the minimum
time for approximately steering the system between two given states, that holds even if the
system itself is not approximately controllable. In Section 5 we extend Theorem 2.4 to the
controlled evolution of the density matrix (Theorem 5.2). Finally in Section 6 we show how
Theorem 2.4 and Theorem 5.2 can be applied to specific cases. In particular, we show how to
get controllability results even in cases in which V does not satisfy the required non-resonance
hypothesis, using perturbation arguments.

2 Mathematical framework and statement of the main

result

Hereafter N denotes the set of strictly positive integers. Definition 2.1 below provides the
abstract mathematical framework that will be used to formulate and prove the controllability
results later applied to the Schrödinger equation (1.2). The fact that (1.2) fits the abstract
framework is discussed in Section 3.

Definition 2.1. Let H be a complex Hilbert space and U be a subset of R. Let A,B be
two, possibly unbounded, operators on H with values in H and denote by D(A) and D(B)
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their domains. The control system (A,B, U) is the formal controlled equation

dψ

dt
(t) = Aψ(t) + u(t)Bψ(t), u(t) ∈ U. (2.1)

We say that (A,B, U) is a skew-adjoint discrete-spectrum control system if the following
conditions are satisfied: (H1) A and B are skew-adjoint, (H2) there exists an orthonormal
basis (φn)n∈N of H made of eigenvectors of A, (H3) φn ∈ D(B) for every n ∈ N.

In order to give a meaning to the evolution equation (2.1), at least when u is constant, we
should ensure that the sum A+ uB is well defined. The standard notion of sum of operators
seen as quadratic forms (see [20]) is not always applicable under the sole hypotheses (H1),
(H2), (H3). An adapted definition of A+ uB can nevertheless be given as follows: hypothesis
(H3) guarantees that the sum A + uB is well defined on V = span{φn | n ∈ N}. Any skew-
Hermitian operator C : V → H admits a unique skew-adjoint extension E(C). We identify
A+ uB with E(A|V + uB|V ).

Let us notice that when A + uB is well defined as sum of quadratic forms and is skew-
adjoint then the two definitions of sum coincide. This happens in particular for the Schrödinger
equation (1.2) in most physically significant situations (see Section 3).

A crucial consequence of what precedes is that for every u ∈ U the skew-adjoint operator
A + uB generates a group of unitary transformations et(A+uB) : H → H . In particular, the
unit sphere S of H satisfies et(A+uB)(S) = S for every u ∈ U and every t ≥ 0.

Due to the dependence of the domain D(A + uB) on u, the solutions of (2.1) cannot in
general be defined in classical (strong, mild or weak) sense. Let us mention that, in some
relevant cases in which A has continuous spectrum the solution can be defined as in [30, 34]
by means of Strichartz estimates.

Here we say that the solution of (2.1) with initial condition ψ0 ∈ H and corresponding to
the piecewise constant control u : [0, T ] → U is the curve t 7→ ψ(t) defined by

ψ(t) = e(t−
Pj−1

l=1 tl)(A+ujB) ◦ etj−1(A+uj−1B) ◦ · · · ◦ et1(A+u1B)(ψ0), (2.2)

where
∑j−1

l=1 tl ≤ t <
∑j

l=1 tl and u(τ) = uj if
∑j−1

l=1 tl ≤ τ <
∑j

l=1 tl. Notice that such a ψ(·)
satisfies, for every n ∈ N and almost every t ∈ [0, T ] the differential equation

d

dt
〈ψ(t), φn〉 = −〈ψ(t), (A+ u(t)B)φn〉 . (2.3)

Remark 2.2. The notion of solution introduced above makes sense in very degenerate situations
and can be enhanced when B is bounded. Indeed, well-known results assert that in this case
if u ∈ L1([0, T ], U) then there exists a unique weak (and mild) solution ψ ∈ C([0, T ],H )
which coincides with the curve (2.2) when u is piecewise constant. Moreover, if ψ0 ∈ D(A)
and u ∈ C1([0, T ], U) then ψ is differentiable and it is a strong solution of (2.1) (see [10] and
references therein).

Definition 2.3. Let (A,B, U) be a skew-adjoint discrete-spectrum control system. We say
that (A,B, U) is approximately controllable if for every ψ0, ψ1 ∈ S and every ε > 0 there exist
k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk ∈ U such that

‖ψ1 − etk(A+ukB) ◦ · · · ◦ et1(A+u1B)(ψ0)‖ < ε.
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Let, for every n ∈ N, iλn denote the eigenvalue of A corresponding to φn (λn ∈ R). The
main result of the paper is the following.

Theorem 2.4. Let δ > 0 and (A,B, (0, δ)) be a skew-adjoint discrete-spectrum control system.
If the elements of the sequence (λn+1−λn)n∈N are Q-linearly independent and if 〈Bφj, φj+1〉 6=
0 for every j ∈ N, then (A,B, (0, δ)) is approximately controllable.

Recall that the elements of the sequence (λn+1 − λn)n∈N are said to be Q-linearly inde-
pendent if for every N ∈ N and (q1, . . . , qN) ∈ QN r {0} one has

∑N
n=1 qn(λn+1 − λn) 6= 0.

The condition 〈Bφj, φj+1〉 6= 0, preferred here for the easiness of its expression, can be
replaced by a weaker one (namely, (4.4)), as detailed in Remark 4.2.

3 Discrete-spectrum Schrödinger operators

The aim of this section is to recall some classical results on Schrödinger operators. In partic-
ular we list here, among the numerous situations studied in the literature, some well-known
sufficient conditions guaranteeing that the controlled Schrödinger equation (1.2) satisfies the
assumptions of Definition 2.1.

Theorem 3.1 ([21, Theorem 1.2.2]). Let Ω be an open and bounded subset of Rd and V ∈
L∞(Ω,R). Then −∆ + V , with Dirichlet boundary conditions, is a self-adjoint operator with
compact resolvent. In particular −∆ + V has a discrete spectrum and admits a family of
eigenfunctions in H2(Ω,R) ∩H1

0 (Ω,R) which forms an orthonormal basis of L2(Ω,C).

Theorem 3.2 ([32, Theorems XIII.69 and XIII.70]). Let Ω = Rd and V ∈ L1
loc(R

d,R) be
bounded from below and such that

lim
|x|→∞

V (x) = +∞.

Then −∆ + V , defined as a sum of quadratic forms, is a self-adjoint operator with compact
resolvent. In particular −∆ + V has a discrete spectrum and admits a family of eigenfunc-
tions in H2(Rd,R) which forms an orthonormal basis of L2(Rd,C). Moreover, for every
eigenfunction φ of −∆ + V and for every a > 0, x 7→ ea‖x‖φ(x) belongs to L2(Rd,C).

In the following, we call controlled Schrödinger equation the partial differential equation

i
∂ψ

∂t
(t, x) = (−∆ + V + uW )ψ(t, x)

where ψ : I × Ω → C, Ω is an open subset of Rd, I is a subinterval of R and, in the case in
which Ω is bounded, ψ|I×∂Ω = 0. The correct functional analysis framework for this equation
is specified below.

The following corollary, which is a straightforward consequence of the results recalled
above, states that the assumptions of Definition 2.1 are fulfilled by the operators appearing
in the controlled Schrödinger equation under natural hypotheses.
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Corollary 3.3. Let Ω be an open subset of Rd, V,W be two real-valued functions defined on Ω,
and U be a subset of R. Assume either that (i) Ω is bounded, V,W belong to L∞(Ω,R) or that
(ii) Ω = Rd, V,W belong to L1

loc(R
d,R), the growth of W at infinity is at most exponential

and, for every u ∈ U , lim‖x‖→+∞(V (x) + uW (x)) = +∞ and infx∈Rd(V (x) + uW (x)) > −∞.
Let H be equal to L2(Ω,C) and D(A) be equal to H2(Ω,C) ∩ H1

0 (Ω,C) in case (i) and to
H2(Ω,C) in case (ii). Let, moreover, A be the differential operator −i(−∆ + V ) and B be
the multiplication operator −iW . Then (A,B, U) is a skew-adjoint discrete-spectrum control
system, called the controlled Schrödinger equation associated with Ω, V, W and U .

Since the controlled Schrödinger equation is a skew-adjoint discrete-spectrum control sys-
tem, it makes sense to apply Theorem 2.4 to it. The result is the following theorem.

Theorem 3.4. Let Ω, V, W and U satisfy one of the hypotheses (i) or (ii) of Corollary 3.3.
Denote by (λk)k∈N the sequence of eigenvalues of −∆ + V and by (φk)k∈N an orthonormal
basis of L2(Ω,C) of corresponding real-valued eigenfunctions. Assume, in addition to (i) or
(ii), that U contains the interval (0, δ) for some δ > 0, that the elements of (λk+1−λk)k∈N are
Q-linearly independent, and that

∫
Ω
W (x)φkφk+1 dx 6= 0 for every k ∈ N. Then the controlled

Schrödinger equation associated with Ω, V, W and U is approximately controllable.

As stressed just after the statement of Theorem 2.4, the condition
∫

Ω
W (x)φkφk+1 dx 6= 0

could be replaced by a weaker one (see Remark 4.2).

4 Proof of Theorem 2.4

The proof of Theorem 2.4 is split in several steps. First, in Section 4.1 the controllability
problem is transformed, thanks to a time-reparameterization, into an equivalent one where A
and B play the role of controlled dynamics and drift, respectively. Then, in Section 4.2, we
prove a controllability result for the Galerkin approximations of this equivalent system. In
Section 4.3 we show how to lift the controllability properties from a Galerkin approximation
to an higher-dimensional one. Section 4.4 makes the link between finite-dimensional and
infinite-dimensional controllability properties and completes the proof.

Finally, in Section 4.5, as a byproduct of the arguments of the proof, we get a lower
estimate on the minimum steering time.

4.1 Time-reparameterization

First remark that, if u 6= 0, et(A+uB) = etu((1/u)A+B). Theorem 2.4 is therefore equivalent to the
following property: if the elements of the sequence (λn+1−λn)n∈N are Q-linearly independent
and if 〈Bφj, φj+1〉 6= 0 for every j ∈ N, then for every δ, ε > 0 and every ψ0, ψ1 ∈ S there
exist k ∈ N, t1, . . . , tk > 0 and u1, . . . , uk > δ such that

‖ψ1 − etk(ukA+B) ◦ · · · ◦ et1(u1A+B)(ψ0)‖ < ε. (4.1)

In other words, the system for which the roles of A and B as drift and controlled field are
inverted, namely,

dψ

dt
(t) = u(t)Aψ(t) +Bψ(t), u(t) ∈ U, (4.2)
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is approximately controllable provided that the control set U contains a half-line. The notion
of solution of (4.2) corresponding to a piecewise constant control function is defined as in
(2.2).

4.2 Controllability of the Galerkin approximations

Let, for every j, k ∈ N, bjk = 〈Bφj, φk〉 and ajk = 〈Aφj, φk〉 = iλjδjk. (Recall that λj ∈ R
and {iλj | j ∈ N} is the spectrum of A.) Define, for every n ∈ N, the two complex-valued
n × n matrices A(n) = (ajk)1≤j,k≤n and B(n) = (bjk)1≤j,k≤n. The Galerkyn approximation of
(4.2) at order n (with respect to the basis (φk)k∈N) is the finite-dimensional control system

dx

dt
= uA(n)x+B(n)x, x ∈ Sn, u > δ, (Σn)

where Sn denotes the unit sphere of Cn. Notice that the system is well defined since, by
construction, A(n) and B(n) are skew-Hermitian matrices.

We say the (Σn) is controllable if for every x0, x1 ∈ Sn there exist k ∈ N, t1, . . . , tk > 0
and u1, . . . , uk > δ such that

x1 = etk(ukA(n)+B(n)) ◦ · · · ◦ et1(u1A(n)+B(n))x0.

We recall that a n × n matrix C = (cjk)1≤j,k≤n is said to be connected if for every pair
of indices j, k ∈ {1, . . . , n} there exists a finite sequence r1, . . . , rl ∈ {1, . . . , n} such that
cjr1cr1r2 · · · crl−1rl

crlk 6= 0. (In the literature connected matrices are sometimes called einfach,
or irreducible, or inseparable.) The following claim is in the spirit of the controllability results
obtained in [2] and [40].

Claim 4.1. Let B(n) be connected. For any x in Sn the evaluation at x of the Lie algebra
generated by the vectors fields y 7→ A(n)y and y 7→ B(n)y is equal to the whole tangent space
to Sn at x. In particular (Σn) is controllable.

Proof. For every 1 ≤ i, j ≤ n let ejk be the n × n matrix whose entries are all equal to zero
except the one at line j and column k which is equal to 1.

Define for every p ∈ N the iterated matrices commutator Mp,n = adp

A(n)(B
(n)). (Recall the

usual notation adX(Y ) = [X, Y ] = XY − Y X for the adjoint operator associated with X.) A
simple induction on p shows that the matrix Mp,n has the expression

Mp,n =
n∑

l,m=1

ip(λl − λm)pblmelm.

Fix two indices j 6= k such that 1 ≤ j, k ≤ n and bjk 6= 0. Since, by hypothesis, (λj−λk)
2 6=

(λl − λm)2 as soon as {j, k} 6= {l,m}, there exists some polynomial Pjk with real coefficients
such that Pjk

(
(λj − λk)

2
)

= 1 and Pjk

(
(λl − λm)2

)
= 0 for all {l,m} 6= {j, k}, 1 ≤ l,m ≤ n.

Let us define (ah)h as the coefficients of Pjk, i.e., Pjk(X) =
∑d

h=0 ahX
h. Define moreover

the matrix Njk =
∑d

h=0(−1)hahM2h,n. By construction Njk =
∑n

l,m=1 blmelmPjk

(
(λl−λm)2

)
=

bjkejk − bjkekj. Therefore, the commutator [A(n), Njk] is equal to i(λj − λk)(bjkejk + bjkekj)
and so the Lie algebra generated by A(n) and B(n) contains the two elementary anti-Hermitian
matrices Ejk = ejk − ekj and Fjk = i(ejk + ekj).
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Notice now that, for every 1 ≤ j, k, h,m ≤ n, ejkehm = δkhejm and therefore

[Ejk, Ekm] = Ejm + δkmEkj + δkjEmk,

[Ejk, Fjk] = 2i(ejj − ekk).

It follows from the definition of connected matrix and the relation [A(n), Ejk] = (λj − λk)Fjk

that the Lie algebra generated by A(n) and B(n) contains the matrices Ejk, Fjk and i(ejj−ekk)
for every j 6= k and therefore

su(n) ⊆ Lie(A(n), B(n)). (4.3)

Fix x̄ ∈ Sn and consider the submersion P : SU(n) → Sn defined by P(g) = gx̄. Since

TP(g)(Sn) = P∗(TgSU(n)) = P∗(su(n)g) = su(n)gx̄ = su(n)P(g),

then the evaluation at x = P(g) of the Lie algebra generated by A(n) and B(n) contains the
whole space TxSn.

Remark 4.2. The condition bj,j+1 6= 0 for every j ∈ N appearing in Theorem 2.4 clearly
ensures that every matrix B(n) is connected. In the following we can replace such assumption
with the weaker one that B(n) is frequently connected, that is,

∀j ∈ N,∃k ≥ j | B(k) is connected. (4.4)

Notice, as a partial counterpart, that if there exists a nonempty and proper subset Ξ of
N such that for every j ∈ Ξ and k ∈ N r Ξ the coefficient bjk is equal to zero (i.e., the
infinite-dimensional matrix (blm)l,m∈N is non-connected) then the control system (2.1) is not
approximately controllable. Indeed, the subspace span{φk | k ∈ Ξ} is invariant for the
dynamics of A+ uB for every u ∈ U and has nontrivial (invariant) orthogonal.

4.3 Approximate controllability in higher-dimensional projections

Fix δ, ε > 0 and ψ0, ψ1 ∈ S. For every n ∈ N, let Πn : H → H be the orthogonal projection
on the space span(φ1, . . . , φn) and Πn : H → Cn be the map that associates to an element
of H the vector of its first n coordinates with respect to the basis (φm)m∈N. Choose n such
that ‖ψj − Πn(ψj)‖ < ε for j = 0, 1.

Thanks to (4.4) we can assume, without loss of generality, that (Σn) is controllable. Let
u : [0, T ] → (δ,∞) be the piecewise constant control driving ξ0/‖ξ0‖ to ξ1/‖ξ1‖ where ξj =
Πn(ψj) for j = 0, 1.

Let µ > 0 be a constant which will be chosen later small enough, depending on T , n,
and ε. Notice that for every j ∈ N the hypothesis that φj belongs to D(B) implies that the
sequence (bjk)k∈N is in l2. It is therefore possible to choose N ≥ n such that

∑
k>N |bjk|2 < µ

for every j = 1, . . . , n.
If t 7→ X(t) is a solution of (ΣN) corresponding to a control function U(·), then t 7→

e−V (t)A(N)
X(t) = Y (t), where V (t) =

∫ t

0
U(τ)dτ , is a solution of

Ẏ (t) = e−V (t)A(N)

B(N)eV (t)A(N)

Y (t). (ΘN)

8



Let us represent the matrix e−v(t)A(N)
B(N)ev(t)A(N)

, where v(t) =
∫ t

0
u(τ)dτ , in block form

as follows

e−v(t)A(N)

B(N)ev(t)A(N)

=

(
M (n,n)(t) M (n,N−n)(t)
M (N−n,n)(t) M (N−n,N−n)(t)

)
, (4.5)

where the superscripts indicate the dimensions of each block.

Claim 4.3. There exists a sequence of piecewise constant control functions uk : [0, T ] → (δ,∞)
such that the sequence of matrix-valued curves

t 7→Mk(t) = e−vk(t)A(N)

B(N)evk(t)A(N)

,

where vk(t) =
∫ t

0
uk(τ)dτ , converges to

t 7→M(t) =

(
M (n,n)(t) 0n×(N−n)

0(N−n)×n M (N−n,N−n)(t)

)
in the following integral sense ∫ t

0

Mk(τ)dτ →
∫ t

0

M(τ)dτ (4.6)

as k →∞ uniformly with respect to t ∈ [0, T ].

Proof. We will prove the claim taking v(·) piecewise constant, since every piecewise affine
function can be approximated arbitrarily well in the L∞ topology by piecewise constant func-
tions and because the map associating to v(·) the curve t 7→

∫ t

0
M(τ)dτ is continuous with

respect to the L∞ topology (taken both in its domain and its codomain).
Assume that v(·) is constantly equal to w ∈ R on [t1, t2]. Since λ2−λ1, . . . , λN −λN−1 are

Q-linearly independent, then for every s0 ∈ R the curve

(s0,∞) 3 s 7→ ((λ1 − λ2)s, . . . , (λ1 − λN)s)

projects onto a dense subset of the torus RN−1/2πZN−1. Thus, there exist two sequences
w(m) ↗ +∞ and z(m) ↗ +∞ such that

(λ1 − λj)w
(m) (mod 2π) −→ (λ1 − λj)w (mod 2π) for 2 ≤ j ≤ N,

(λ1 − λj)z
(m) (mod 2π) −→ (λ1 − λj)w (mod 2π) for 2 ≤ j ≤ n,

(λ1 − λj)z
(m) (mod 2π) −→ (λ1 − λj)w + π (mod 2π) for n+ 1 ≤ j ≤ N,

as m tends to infinity. In particular the sequence of matrices e−w(m)A(N)
B(N)ew(m)A(N)

con-
verges to e−wA(N)

B(N)ewA(N)
as m goes to infinity, while the sequence e−z(m)A(N)

B(N)ez(m)A(N)

converges, following the notations introduced in (4.5), to(
M (n,n) −M (n,N−n)

−M (N−n,n) M (N−n,N−n)

)
,

where we dropped the dependence on t of the different sub-matrices since v is constant on
[t1, t2].
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Fix δ̄ > δ. Consider a sequence (v̄k)k∈N in R+ (whose role will be clarified later) and define,
for every k ∈ N, a finite increasing sequence (θk

l )l=0,...,k with θk
0 = v̄k , θk

l+1 ≥ θk
l + δ̄(t2− t1)/k2

for 0 ≤ l < k, and such that, for l > 0, θk
l belongs to (w(m))m∈N if l is odd and to (z(m))m∈N

if l is even. Define, moreover,

τj = t1 +
j − 1

k
(t2 − t1),

for j = 1, . . . , k + 1.
Consider the continuous function vk uniquely defined on [t1, t2] by the conditions

vk(t1) = v̄k,
vk(τi + t2−t1

k2 ) = θk
i for i = 1, . . . , k,

v̇k(t) = δ̄ if t ∈ ∪k
i=1(τi + t2−t1

k2 , τi+1),
v̈k(t) = 0 if t ∈ ∪k

i=1(τi, τi + t2−t1
k2 ).

Define ṽk as the piecewise constant function that coincides with θk
i on [τi, τi+1]. On each

interval [τi + (t2 − t1)/k
2, τi+1] the difference between vk and ṽk is bounded in absolute value

by δ̄(t2 − t1)/k. Therefore,

sup

{∥∥∥e−vk(t)A(N)

B(N)evk(t)A(N) − e−ṽk(t)A(N)

B(N)eṽk(t)A(N)
∥∥∥ | t ∈ ∪k

i=1

[
τi +

t2 − t1
k2

, τi+1

]}
goes to zero as k goes to infinity.

Since ‖e−νA(N)
B(N)eνA(N)‖ is uniformly bounded with respect to ν ∈ R and the measure

of ∪i[τi, τi + T
k2 ] goes to 0 as k goes to infinity, we have∫ t

t1

(
e−vk(τ)A(N)

B(N)evk(τ)A(N) − e−ṽk(τ)A(N)

B(N)eṽk(τ)A(N))
dτ

k→∞−→ 0 uniformly on [t1, t2] .

Moreover, by definition of the sequences θk
i , w

(m), and z(m), one has∫ t

t1

e−ṽk(τ)A(N)

B(N)eṽk(τ)A(N)

dτ
k→∞−→

∫ t

t1

M(τ)dτ uniformly on [t1, t2] ,

and therefore e−vk(t)A(N)
B(N)evk(t)A(N)

converges in integral sense to M(t) on [t1, t2].
Finally, construct uk as follows: for t1 = 0 define uk on (t1, t2) as the derivative of vk

(defined almost everywhere), where the vk’s correspond to the sequence of initial conditions
v̄k = 0 for every k ∈ N. Then, on the second interval on which v(·) is constant, use as a new
set of initial conditions for the approximation procedure the values v̄k = vk(t2) and define
again uk as the derivative of vk. Iterating the procedure on the finite set of intervals covering
[0, T ] on which v(·) is constant we obtain the required approximating sequence of piecewise
constant control functions. �

4.4 Approximate controllability for the infinite-dimensional system

Let uk and Mk be defined as in Claim 4.3. The resolvent Rk(t, s) : CN → CN of the linear
time-varying equation

Ẏ = Mk(t)Y,
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converges, uniformly with respect to (t, s), to the resolvent R(t, s) : CN → CN of

Ẏ = M(t)Y.

(See, for instance, [4, Lemma 8.10].) Notice that R(t, s) preserves the norms of both the vector
formed by the first n coordinates and the one formed by the last N − n.

Let, for every k ∈ N, ψk be the solution of (4.2) corresponding to uk and define qk(t) =
e−ivk(t)A ψk(t). According to (2.3) (more precisely, its counterpart for equation (4.2)), the
components qk

j (t) = e−iλjvk(t)
〈
ψk(t), φj

〉
of qk(t) with respect to the basis of eigenvectors of A

satisfy for almost every t ∈ [0, T ]

q̇k
j (t) =

∞∑
l=1

bjle
i(λl−λj)vk(t)qk

l (t). (4.7)

Therefore, the curves P k(t) = (qk
1(t), . . . , q

k
n(t))T and Qk(t) = (qk

n+1(t), . . . , q
k
N(t))T satisfy(

Ṗ k(t)

Q̇k(t)

)
= Mk(t)

(
P k(t)
Qk(t)

)
+

(
Hk(t)
Ik(t)

)
with ‖Hk‖∞ <

√
nµ and ‖Ik‖∞ < C for C = C(N) large enough.

Hence (
P k(t)
Qk(t)

)
= Rk(t, 0)ΠN(ψ0) +

∫ t

0

Rk(s, t)

(
Hk(s)
Ik(s)

)
ds.

Denote by Π
N

n the projection of CN on its first n coordinates and let

Lk(t) = Π
N

n

(∫ t

0

Rk(s, t)

(
Hk(s)
Ik(s)

)
ds

)
.

Since Rk converges uniformly to R and the latter preserves the norm of the first n components,
we know that, for k large, ‖Lk‖∞ < 2T

√
nµ. Moreover, Rk(t, 0)ΠN(ψ0) converges uniformly to

R(t, 0)ΠN(ψ0). In particular, according to the definition of R, Π
N

n (Rk(t, 0)ΠN(ψ0)) converges
uniformly to the solution of (Θn) corresponding to the control u and starting from Πn(ψ0) = ξ0.

Since u drives system (Σn) from ξ0/‖ξ0‖ to ξ1/‖ξ1‖, then it steers system (Θn) from ξ0 to

e−v(T )A(n)
ξ1(‖ξ0‖/‖ξ1‖). Therefore,∥∥∥∥P k(T )− e−v(T )A(n)

ξ1
‖ξ0‖
‖ξ1‖

∥∥∥∥ < 3T
√
nµ,

if k is large enough. Let us fix µ small enough in order to have

3T
√
nµ < ε.

11



Then,

‖Πn(e−vk(T )Aψk(T ))− Πn(e−v(T )Aψ1)‖ ≤
∥∥∥∥Πn(e−vk(T )Aψk(T ))− Πn(e−v(T )Aψ1)

‖ξ0‖
‖ξ1‖

∥∥∥∥
+

∥∥∥∥Πn(e−v(T )Aψ1)
‖ξ0‖
‖ξ1‖

− Πn(e−v(T )Aψ1)

∥∥∥∥
=

∥∥∥∥P k(T )− e−v(T )A(n)

ξ1
‖ξ0‖
‖ξ1‖

∥∥∥∥
+‖Πn(e−v(T )Aψ1)‖

| ‖ξ1‖ − ‖ξ0‖ |
‖ξ1‖

≤ 3T
√
nµ+ | ‖ξ1‖ − ‖ξ0‖ |

≤ 2ε, (4.8)

provided that k is large enough. In particular, the moduli of the first n components of ψk(T )
are close to those of the first n components of ψ1. The claim below will be used to show
that their phases can also be made as close as required by applying a suitable control on an
arbitrarily small time interval.

Claim 4.4. For every s1 ∈ R there exist s2 > s1 and w ∈ Rn with ‖w‖ ≤ ε such that λis2 ≡ wi

mod 2π for every i = 1, . . . , n. Hence, for every v1 ∈ R there exists τ > 0 and a constant
control function ũ : [0, τ ] → (δ,+∞) such that every trajectory ψ̃(·) of (4.2) corresponding to
ũ(·) satisfies ‖Πn(ψ̃(τ))− Πn(ev1Aψ̃(0))‖ ≤ ε.

Proof. The first part of the statement is a simple application of the Poincaré recurrence
theorem. Indeed, since the dynamics s 7→ x0 + s(λ1, . . . , λn) on the n-dimensional torus
preserve volumes and distances, then the constant vector field (λ1, . . . , λn) is recurrent at
every point of the torus, and in particular at the origin x0 = 0. Therefore any neighborhood
N of the origin is sent, after a suitably long time (which can be assumed to be larger than s1),
to another neighborhood of the origin isometric to N . Taking N equal to the ball of radius ε
centered at the origin, the first part of the claim is proven.

In order to conclude the proof, fix a piecewise constant control function ũ : [0, τ ] → (δ,+∞)
and a solution ψ̃ of (4.2) corresponding to ũ. Set

q̃(t) = e−
R t
0 ũ(s)dsAψ̃(t)

and notice that, according to (2.3), | ˙̃qj(t)| ≤ ‖(bjl)l∈N‖l2 for every j ∈ N. Therefore,
‖Πn(q̃(τ))− Πn(q̃(0))‖ ≤ Cτ for some positive constant C independent of ũ and of ψ̃. Then

‖Πn(ψ̃(τ))− Πn(ev1Aψ̃(0))‖ = ‖Πn(e−v1Aψ̃(τ))− Πn(ψ̃(0))‖
= ‖Πn(e(

R τ
0 ũ(t)dt−v1)Aq̃(τ))− Πn(q̃(0))‖

≤ ‖Πn(e(
R τ
0 ũ(t)dt−v1)Aq̃(τ))− Πn(q̃(τ))‖+ Cτ.

Fix τ < ε/(2C) so that

‖Πn(ψ̃(τ))− Πn(ev1Aψ̃(0))‖ ≤ ‖Πn(e(
R τ
0 ũ(t)dt−v1)Aq̃(τ))− Πn(q̃(τ))‖+

ε

2
. (4.9)
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Notice that

Πn(e(
R τ
0 ũ(t)dt−v1)Aq̃(τ)) = diag

(
eiλ1(

R τ
0 ũ(t)dt−v1), . . . , eiλn(

R τ
0 ũ(t)dt−v1)

)
Πn(q̃(τ)).

The first part of the claim ensures the existence of v2 arbitrarily large such that if∫ τ

0

ũ(t)dt− v1 = v2 (4.10)

then the norm of the matrix

diag
(
eiλ1(

R τ
0 ũ(t)dt−v1), . . . , eiλn(

R τ
0 ũ(t)dt−v1)

)
− IdCn

is smaller than ε/2. Take v2 large enough to satisfy (v1 + v2)/τ > δ. Then ũ ≡ (v1 + v2)/τ
satisfies (4.10) and, because of (4.9),

‖Πn(ψ̃(τ))− Πn(ev1Aψ̃(0))‖ ≤ ε,

independently of ψ̃. �
To conclude the proof of Theorem 2.4 we extend the interval of definition of the control

function uk introduced above by taking uk(T + t) = ũ(t) for t ∈ [0, τ ] where ũ is the control
corresponding to v1 = v(T ) − vk(T ), whose existence is guaranteed by the second part of
Claim 4.4. Then, for k large enough, the corresponding trajectory ψk : [0, T + τ ] → S satisfies
‖ψk(T + τ)− ψ1‖ < 3ε, as required. This concludes the proof of Theorem 2.4. •

4.5 Lower bound on the steering time

Let (A,B, U) be a skew-adjoint discrete-spectrum control system. In the rest of this sec-
tion we do not assume that (A,B, U) satisfies the hypotheses of Theorem 2.4 nor any other
controllability assumption.

Fix an initial condition ψ0 in S, a piecewise constant control u : [0, Tu] → (0, δ), and denote
by ψu : [0, Tu] → H the corresponding solution of the system (2.1) satisfying ψu(0) = ψ0.
Write u as u(t) =

∑n
j=0 ujχ[tj ,tj+1)(t) where 0 = t1 < t2 < · · · < tn+1 = Tu and u1, . . . , un

belong to (0, δ). In the spirit of Section 4.1, associate to u the piecewise constant control
ν : [0, Tν ] → R given by ν(t) =

∑n
j=0 νjχ[τj ,τj+1)(t) with νj = 1/uj for all j = 1, . . . , n and τj

defined by induction as τ1 = 0, τj+1 = τj + (tj+1 − tj)uj for j ≥ 1.
Define ψν : [0, Tν ] → H as the solution of system (4.2) corresponding to ν and satisfying

ψν(0) = ψ0. Define by mk = |〈ψν , φk〉| the modulus of the kth coordinate of ψν .
By definition mk is absolutely continuous and equation (4.7) implies that

ṁk ≤
∞∑

j=1

|bjk|mj ≤

(
∞∑

j=1

|〈Bφj, φk〉|2
)1/2

= ‖Bφk‖.

Applying the mean value theorem, one gets∣∣|〈ψν(0), φk〉| − |〈ψν(Tν), φk〉|
∣∣ ≤ Tν‖Bφk‖. (4.11)
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Notice that Tν =
∑n

j=1(tj+1 − tj)uj ≤ (tn − t1)δ = Tuδ, that is,

Tu ≥
1

δ
Tν . (4.12)

For any ε > 0, if ψ1 is a point of H such that |ψν(Tν)− ψ1| < ε, then (4.11) implies

Tν ≥ supk∈N

∣∣|〈φk, ψ0〉| − |〈φk, ψ1〉|
∣∣− ε

‖Bφk‖
.

Plugging this last inequality into (4.12), we find that the time Tu needed to steer the system
(2.1) from ψ0 to an ε-neighborhood of ψ1 using piecewise constant controls is such that

Tu ≥
1

δ
supk∈N

∣∣|〈φk, ψ0〉| − |〈φk, ψ1〉|
∣∣− ε

‖Bφk‖
. (4.13)

We insist on the fact that this result is valid whenever system (2.1) is or is not approxi-
mately controllable.

Remark 4.5. When B is bounded, the same estimate as above is valid for other classes of
controls (not only piecewise constant functions but also measurable bounded or locally inte-
grable) as soon as we can define a unique solution of system (2.1) that satisfies (2.3). See
Remark 2.2.

Remark 4.6. It follows from (4.13) that, in general, approximate controllability does not imply
finite-time approximate controllability. Indeed, if Bφk tends to 0 as k goes to infinity, then
for every T > 0 the attainable set at time T from a given point ψ0 is not dense in S since for
every ε ∈ (0, 1), for k large enough, φk is not ε-approximately attainable from ψ0 in time T .

5 Controllability for density matrices

5.1 Physical motivations

A density matrix (sometimes called density operator) is a non-negative, self-adjoint operator
of trace class [32, Vol. I] on a Hilbert space. The trace of a density matrix is normalized to
one. As a consequence of the definition a density matrix is a compact operator (hence with
discrete spectrum) and can always be written as a weighted sum of projectors,

ρ =
∞∑

j=1

Pjϕjϕ
∗
j , (5.1)

where Pj ∈ [0, 1],
∑

j Pj = 1, and ϕjϕ
∗
j is the orthogonal projector on the space spanned by ϕj

with ϕ∗j(·) = 〈ϕj, ·〉. Here {ϕj}j∈N is a set of normalized vectors not necessarily orthogonal.
The density matrix is used to describe the evolution of systems whose initial wave function

is not known precisely, but only with a certain probability, or when one is dealing with an
ensemble of identical systems that cannot be prepared precisely in the same state. More
precisely (5.1) describes a system whose state is known to be ϕj with probability Pj, j ∈ N.
Given an observable A (i.e. a self-adjoint operator, for instance the drift Hamiltonian) the
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mean value of A is Tr(ρA) =
∑∞

j=1 Pj 〈ϕj, Aϕj〉, where 〈ϕj, Aϕj〉 represents the mean value of
the observable A in the state ϕj. When for some k ∈ N we have Pk = 1 and Pj = 0 for every
j 6= k, one says that ρ describes a pure state, otherwise one says that ρ describes a mixed
state. In the case of pure states, the physical description via the density matrix is equivalent
to the one via the wave function. Notice that for a pure state Tr(ρ2) = 1 while for a mixed
state one has Tr(ρ2) < 1.

Without loss of generality it is possible to require that {ϕj}j∈N is an orthonormal basis
(i.e. a basis of normalized eigenvectors of ρ). In this case {Pj}j∈N is the spectrum of ρ.

The time evolution of the density matrix is determined by the evolutions of the states ϕj,
namely

ρ(t) = U(t)ρ(0)U∗(t) (5.2)

where U(t) is the operator of temporal evolution (the resolvent) and U∗(t) its adjoint. Notice
that the spectrum of ρ(t) is constant along the motion.

5.2 Statement of the result

Fix δ > 0 and let (A,B, (0, δ)) be a skew-adjoint discrete-spectrum control system on a Hilbert
space H , (ϕj)j∈N an orthonormal basis of H (not necessarily of eigenvectors of A), {Pj}j∈N

a sequence of non-negative numbers such that
∑∞

j=1 Pj = 1, and denote by ρ the density
matrix

ρ =
∞∑

j=1

Pjϕjϕj
∗.

Definition 5.1. Two density matrices ρ0 and ρ1 are said to be unitarily equivalent if there
exists a unitary transformation U of H such that ρ1 = Uρ0U

∗.

Obviously the controllability question for the evolution of the density matrix makes sense
only for pairs (ρ0, ρ1) of initial and final density matrices that are unitarily equivalent. Notice
that this is a quite strong assumption, since it implies that the eigenvalues of ρ0 and ρ1

are the same. Controllability results in the case of density matrices that are not unitarily
equivalent have been obtained in the case of open systems (i.e. systems evolving under a
suitable nonunitary evolution) in the finite-dimensional case. See for instance [9].

Next section is devoted to the proof of the following theorem.

Theorem 5.2. Let ρ0 and ρ1 be two unitarily equivalent density matrices. Then, under the
hypotheses of Theorem 2.4, for every ε > 0 there exists a piecewise constant control steering
the density matrix from ρ0 ε-approximately to ρ1 i.e. there exist k ∈ N, t1, . . . , tk > 0 and
u1, . . . , uk ∈ (0, δ) such that setting V = etk(A+ukB)◦· · ·◦et1(A+u1B), one has ‖ρ1−Vρ0V

∗‖ < ε,
where ‖ · ‖ denotes the operator norm on H .

Remark 5.3. As Theorem 3.4 is a particularization of Theorem 2.4 to the controlled Schrödinger
equation, the hypotheses of Theorem 3.4 imply ε-approximate controllability of the corre-
sponding density matrix.
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5.3 Proof of Theorem 5.2

The proof uses the notations of Section 4. As noticed in Section 4.1, the theorem can be
restated in terms of the evolution of the density matrix corresponding to the control system
ψ̇ = (uA+B)ψ, u ∈ (δ,+∞).

Fix ρ0 and ρ1 unitarily equivalent and let U be such that ρ1 = Uρ0U
∗. Write

ρ0 =
∞∑

j=1

Pjϕ0,jϕ0,j
∗,

with (Pj)j∈N a sequence of non-negative numbers whose sum is one, and (ϕ0,j)j∈N an or-
thonormal basis of H . Then

ρ1 =
∞∑

j=1

Pjϕ1,jϕ1,j
∗,

with ϕ1,j = Uϕ0,j for every j ∈ N.
Choose ε > 0. Let m ∈ N be such that∑

j>m

Pj < ε.

The idea is to follow the strategy applied in the proof of Theorem 2.4 in order to simultaneously
approximately steer m copies of system (A,B, (0, δ)) from ϕ0,j to ϕ1,j, j = 1, . . . ,m.

Let η > 0 be a small constant depending on m and ε, to be fixed later. There exists
n = n(η) > m such that, for every j = 1, . . . ,m and for k = 0, 1,

‖ϕk,j − Πnϕk,j‖ < η.

By construction, when η gets small, the two families (Πnϕk,j)
m
j=1, k = 0, 1, tend to two

orthonormal families. Hence, there exists a matrix M in SU(n) such that

‖M(Πnϕ0,j)− Πnϕ1,j‖ < ε (5.3)

for j = 1, . . . ,m provided that η is small enough (and, consequently, n is large enough).
Without loss of generality we may assume that B(n) is connected. Claim 4.1 can be

extended to the following result.

Claim 5.4. The control system

ġ = (uA(n) +B(n))g, g ∈ U(n), (5.4)

is controllable in the following sense: for any g0, g1 in U(n), there exists a unitary complex
number eiθ with 0 ≤ θ ≤ 2π/n, a time T > 0 and a piecewise constant function u : [0, T ] →
(δ,+∞) such that the solution gu : [0, T ] → U(n) of (5.4) with initial condition gu(0) = g0

satisfies eiθgu(T ) = g1.

Proof. Let us first assume that at least one among A(n) and B(n) has nonzero trace and hence
does not belong to su(n). In this case the inclusion (4.3) implies that Lie(A(n), B(n)) = u(n).
Classical controllability results for right invariant systems on compact Lie groups (see [24, 37])
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ensure that the attainable set from g0 of (5.4) coincides with U(n) so that the claim holds
with θ = 0.

It remains to consider the case in which the traces of A(n) and B(n) are zero, i.e. A(n) and
B(n) belong to su(n). In this case (4.3) implies that Lie(A(n), B(n)) = su(n), and therefore
the attainable set from g0 of (5.4) coincides with g0SU(n), the set of matrices of U(n) having
the same determinant as g0. Given a target g1 there exists ϑ ∈ [0, 2π] such that det(g0) =

e−iϑ det(g1) = det(e−i ϑ
n g1). Hence the claim holds true with θ = ϑ

n
.

Let T > 0, u : [0, T ] → (δ,+∞) and 0 ≤ θ ≤ 2π/n be such that the control u steers system
(5.4) from In to eiθM . Notice that, without loss of generality, 2π/n < ε.

Let µ > 0 be a small constant to be fixed later. Fix N ∈ N such that

‖(bjl)l>N‖l2 < µ

for every j = 1, . . . , n. Let us apply Claim 4.3 to the control function u and denote by (uk)k∈N

the sequence of piecewise constant control functions obtained in this way. For every k ∈ N
write uk as

uk(t) =

pk∑
j=1

wk
jχ[tkj ,tkj+1)(t), t ∈ [0, T ]

with 0 = tk1 ≤ · · · ≤ tkpk
= T and denote by Vk the unitary transformation

Vk = e(tkpk
−tkpk−1)(wk

pk−1A+B) ◦ · · · ◦ e(tk2−tk1)(wk
1A+B).

For every j = 1, . . . ,m,

‖Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)
− Πn (ϕ1,j) ‖ ≤ ‖Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)
− eiθM

(
Πnϕ0,j

)
‖

+‖eiθM
(
Πnϕ0,j

)
−M

(
Πnϕ0,j

)
‖

+‖M
(
Πnϕ0,j

)
− Πn (ϕ1,j) ‖.

The same computations as in Section 4.4 (cf. (4.8)) show that, for every j = 1, . . . ,m,

‖Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)
− eiθM

(
Πnϕ0,j

)
‖ ≤ 2ε

for µ small and k large enough. Since 0 ≤ θ ≤ 2π/n < ε, then, for every j = 1, . . . ,m,

‖eiθM
(
Πnϕ0,j

)
−M

(
Πnϕ0,j

)
‖ ≤ |eiθ − 1| < ε.

Hence, because of (5.3), for k large enough, for every j = 1, . . . ,m,

‖Πn

(
e(v(T )−vk(T ))AVkϕ0,j

)
− Πn (ϕ1,j) ‖ < 4ε.

Applying Claim 4.4 we can, up to the extension of uk to a piecewise constant control defined
on a larger interval, assume that

‖Πn (Vkϕ0,j)− Πn (ϕ1,j) ‖ < 5ε,
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for every j = 1, . . . ,m. Therefore,

‖Vkρ0V
∗
k − ρ1‖ = ‖

∞∑
j=1

Pj

(
(Vkϕ0,j)(Vkϕ0,j)

∗ − ϕ1,jϕ
∗
1,j

)
‖

≤ ‖
m∑

j=1

Pj

(
(Vkϕ0,j)(Vkϕ0,j)

∗ − ϕ1,jϕ
∗
1,j

)
‖+ 2ε

≤
m∑

j=1

Pj (‖Vkϕ0,j‖+ ‖ϕ1,j‖) ‖Vkϕ0,j − ϕ1,j‖+ 2ε

≤ 2(5ε) + 2ε = 12ε,

provided that k is large enough.

6 Examples

6.1 Perturbation of the spectrum

The scope of Section 6 is to show how the general controllability results obtained in the previ-
ous sections can be applied in specific cases. In particular, we want to show how the conditions
on the spectrum of the Schrödinger operator appearing in the hypotheses of Theorem 3.4 can
be checked in practice.

Let us adopt the notations of Section 3 for the domain Ω, the wave function ψ, and the
uncontrolled and controlled potentials V and W . Throughout this section we assume that
one of the hypotheses (i) or (ii) of Corollary 3.3 holds true. Thus, (A,B, U) is a well-defined
controlled Schrödinger equation, where A = −i(−∆ + V ) and B = −iW .

The study of the examples below is based on the simple idea that, even if the hypotheses
of Theorem 3.4 are not satisfied by the operators A and B, one can anyway ensure that they
hold true for Aµ = −i(−∆ + V + µW ) and Bµ = −iW for some µ in the interior of U . This
is enough to conclude that the system ψ̇ = Aψ + uBψ, u ∈ U , is approximately controllable,
since the replacement of (A,B) by (Aµ, Bµ) corresponds to a reparameterization of U that
sends u into a new control u−µ ∈ U−µ and V into V +µW . Although the spectrum of Aµ is
not in general explicitly computable, we can nevertheless deduce some crucial properties about
it by applying standard perturbation arguments. Theorem 6.1 recalls, in a simplified version
suitable for our purposes, some classical perturbation results describing the dependence on µ
of the spectrum of −∆+V +µW . (See [25, Chapter VII, Remark 4.22], [33, §II.10, Theorem 1]
and also [6].)

Theorem 6.1. Let U be an open interval containing zero. Assume either that (i) Ω is bounded,
V,W belong to L∞(Ω) or that (ii) Ω = Rd, V belongs to L1

loc(R
d), W belongs to L∞(Rd),

lim‖x‖→+∞ V (x) = +∞ and infx∈Rd V (x) > −∞. In both cases (i) and (ii) assume that each
eigenvalue of the Schrödinger operator −∆ + V is simple. Denote by (λk)k∈N the sequence of
eigenvalues of −∆ + V and by (φk)k∈N the corresponding eigenfunctions. Then, for any k in
N, there exist two analytic curves Λk : U → C and Φk : U → L2(Ω) such that:

• Λk(0) = λk and Φk(0) = φk;
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• for any µ in U , (Λk(µ))k∈N is the family of eigenvalues of ∆ − V + µW counted ac-
cording to their multiplicities and (Φk(µ))k∈N is an orthonormal basis of corresponding
eigenfunctions;

• Λk
′(0) =

∫
Ω
W (x)|φk(x)|2dx.

We check below that if the derivatives Λk
′(0) are Q-linearly independent then for almost

every µ ∈ U the eigenvalues of −∆ + V + µW are Q-linearly independent. This fact is used
in the following to apply Theorem 3.4 to situations in which the uncontrolled Schrödinger
operator has a resonant spectrum.

Recall that, in the notations of Section 4, for any pair of integers j, k ∈ N,

bjk =

∫
R

W (x)φj(x)φk(x)dx. (6.1)

In particular, Λk
′(0) =

∫
Ω
W (x)|φk(x)|2dx is equal to bkk.

Proposition 6.2. Let U be an open interval containing zero and assume that Ω, V and W
satisfy one of the hypotheses (i) or (ii) of Theorem 6.1 and that the eigenvalues of −∆+V are
simple. If the elements of the sequence (bkk)k∈N are Q-linearly independent, then for almost
every µ in U the elements of (Λk(µ))k∈N are Q-linearly independent.

Proof. Let l ∈ N and z = (z1, . . . , zl) ∈ Ql. Denote by Tz the subset of elements µ in U
such that

∑l
j=1 zjΛj(µ) = 0. Since each µ 7→ Λk(µ) is an analytic function, then Tz is either

equal to U or to a countable subset of U . Since b11 = Λ′
1(0), . . . , bll = Λ′

l(0) are Q-linearly
independent, then Tz = U if and only if z = 0. Hence, the union T = ∪l∈N ∪z∈Ql, z 6=0 Tz has
Lebesgue measure zero, since it is countable. By construction, if µ does not belong to T , the
elements of (Λk(µ))k∈N are Q-linearly independent.

The other crucial hypothesis of Theorem 3.4 is that bj,j+1 6= 0 for every j ∈ N (or,
more generally, that B(n) = (bjk)

n
j,k=1 is frequently connected, see Remark 4.2). By the same

analyticity argument as above one checks that either such hypothesis is always false or it is
true for almost every µ ∈ U .

Corollary 6.3. Let U be an open interval containing zero and assume that Ω, V and W satisfy
one of the hypotheses (i) or (ii) of Theorem 6.1 and that the eigenvalues of −∆+V are simple.
Assume moreover that the elements of the sequence (bkk)k∈N are Q-linearly independent and
that B(n) is frequently connected. Then the controlled Schrödinger equation associated with Ω,
V , W and Ũ is approximately controllable for every Ũ ⊂ U with nonempty interior.

6.2 1D harmonic oscillator

In this section we study the Schrödinger equation describing the evolution of the controlled
one-dimensional harmonic oscillator,

i
∂ψ

∂t
(t, x) = −∂

2ψ

∂x2
(t, x) +

(
x2 − u(t)W (x)

)
ψ(t, x), (6.2)

where ψ is the wave function depending on the time t and on a space variable x ∈ R = Ω.
Recall that u(·) is a piecewise-continuous function with values in a subset U of R. Notice
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that the potential corresponding to the uncontrolled Schrödinger operator is V (x) = x2. The
control system (6.2) has been studied, among others, by Mirrahimi and Rouchon who proved
its non-controllability in the case where W is the identity function (see [28]).

As a consequence of Theorem 3.2, the spectrum of−∆+V is discrete. Its explicit expression
is

{λk = 2k + 1 | k ≥ 0} ,
and therefore λk+1 − λk are Q-linearly dependent. Each λk is a simple eigenvalue whose
corresponding eigenfunction is

φk(x) =
1√

k!2k
√
π
e−

x2

2 Hk(x) (6.3)

where Hk(x) = (−1)kex2 dk

dxk e
−x2

is the kth Hermite polynomial.
In order to apply Corollary 6.3 we would like first of all to ensure that the elements

bkk =
(−1)k

k!2k
√
π

∫
R

W (x)Hk(x)
dk

dxk
e−x2

dx, k ≥ 0, (6.4)

are Q-linearly independent. Notice that for W (x) = x (i.e., the non-controllable case pointed
out by Mirrahimi and Rouchon), since each function φ2

k is even, bkk =
∫
Wφ2

k = 0.
The existence of controlled potentials W for which the elements of (bkk)k∈N are Q-linearly

independent can be easily inferred from the linear independence of the functions φ2
k. The

proposition below provides some explicit W with such a property (and such that the corre-
sponding Schrödinger equation is controllable). The potentials W will be chosen in L∞(R)
and therefore, as already remarked in Section 3, the corresponding solutions in the sense (2.2)
coincide with mild or strong solutions, depending on the regularity of the initial condition.

Proposition 6.4. (1) If W is even, then system (6.2) is not approximately controllable. (2)
If W has the form W : x 7→ eax2+bx+c, with a, b, c ∈ R such that a < 0 and the two numbers√

1− a and b are algebraically independent, then system (6.2) is approximately controllable,
provided that U has nonempty interior.

Proof. Since each function φk has the same parity as the integer k, then φkφj has the same
parity as the integer j + k. If W is even, then (6.1) shows that for every (j, k) such that
j + k is odd, bjk = 0. Applying Remark 4.2, one sees that the spaces spanned by the sets
{φk | k even} and {φk | k odd} are invariant by the dynamics of system (6.2). In particular,
there is no way to steer system (6.2) from φ1 to a point ε-close to φ2 if ε is smaller than

√
2.

This proves (1).
In order to prove (2) let us apply Corollary 6.3 (with U playing the role of Ũ and R the

role of U). Let W have the special form W : x 7→ eax2+bx+c. Up to a multiplication of W by

the strictly positive real number e
b2

4(a−1)
−c, we may assume without loss of generality that

c =
b2

4(a− 1)
. (6.5)

Using the specific expression (6.3) of φk in the definition of bjk we can write

bjk = (−1)jσjσk

∫
R

eax2+bx+cHk(x)
dj

dxj
e−x2

dx,
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with σl = 1/
√
l!2l

√
π, l = k, j. Notice that Hk is a polynomial with rational coefficients and

of degree k, whose leading coefficient is equal to 2k. Integrating by parts j times, we get

bjk = σjσk

∫
R

e(a−1)x2+bx+cPj,k(x)dx

where Pj,k is a polynomial of degree j + k. Define (gj,k
m )j+k

m=0 through

Pj,k(x) =

j+k∑
m=0

gj,k
m xm.

Each gj,k
m can be seen as the evaluation at b of a polynomial Gj,k

m with coefficients in Q[a]
whose degree is less than or equal to j. If m ∈ {k, k + 1, . . . , k + j} then Gj,k

m has exactly
degree j + k − m and the coefficient corresponding to the monomial of order j + k − m is
2mam−k.

The renormalization of c performed above is such that (a−1)x2+bx+c = (a−1)
(
x+ b

2
√

1−a

)2

.

Hence, the change of variables y =
√

1− a
(
x+ b

2
√

1−a

)
yields

bjk =
σjσk√
1− a

∫
R

e−y2

Pj,k

(
y√

1− a
− b

2(a− 1)

)
dy.

Due to the remarks made above on the coefficients of Pj,k, we have

Pj,k

(
y√

1− a
− b

2(a− 1)

)
=

j+k∑
m=k

2mam−kbj+k−m

(
−b

2(a− 1)

)m

+Qj,k(b, y)

=
(−1)k

(a− 1)k

1−
(

a
a−1

)j+1

1− a
a−1

bj+k +Qj,k(b, y) (6.6)

where Qj,k is a polynomial with coefficients in Q(
√

1− a) (⊃ Q[a]) and of degree smaller than
j + k in its first variable. Notice that the coefficient multiplying bj+k in (6.6) is different from
zero.

For every m ≥ 0 the integral
∫
R
e−y2

ymdy is equal to zero if m is odd and to Γ
(

m+1
2

)
=

m!
2m(m

2
)!

√
π if m is even, where Γ is the Euler gamma function.

Therefore, if j + k is even,

bj,k =
σjσk

√
π√

1− a
Sj,k(b)

where Sj,k is a polynomial with coefficients in Q(
√

1− a) of degree exactly j + k.
Since b is transcendental over Q(

√
1− a) then bj,k 6= 0 as soon as j and k have the

same parity. Moreover, the elements of the sequence (Λ′
k(0))k≥0 = (bkk)k≥0 are Q-linearly

independent.
To conclude the proof let us check that each matrix (bjk)

n
j,k=0 is connected. Fix j, k ∈

{0, . . . , n}. We should prove the existence of a sequence r1, . . . , rl ∈ {0, . . . , n} such that
bjr1br1r2 · · · brl−1rl

brlk 6= 0. If j and k have the same parity then we are done since bjk 6= 0.
Otherwise, a simple computation and the normalization (6.5) show that

b01 =
b√

2(1− a)3/2
6= 0

and we can conclude by taking {r1, r2} = {0, 1}.
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6.3 3D potential well

Consider the Schrödinger equation

i
∂ψ

∂t
(t, x) = −∆ψ(t, x) + u(t)W (x)ψ(t, x), (6.7)

where the wave function ψ depends on the time t and on three space variables x1, x2, x3

with (x1, x2, x3) ∈ (0, l1)× (0, l2)× (0, l3) = Ω and satisfies the Dirichlet boundary condition
ψ|∂Ω = 0. Notice that the potential corresponding to the uncontrolled Schrödinger operator is
V (x) = 0. For every W measurable bounded, solutions in the sense (2.2) coincide with mild
or strong solutions, depending on the regularity of the initial condition.

The spectrum of the Schrödinger operator is{
λk1,k2,k3 = π2

(
k2

1

l21
+
k2

2

l22
+
k2

3

l23

)
| k1, k2, k3 ≥ 1

}
.

For the sake of simplicity, assume that (l1l2)
2, (l1l3)

2, and (l2l3)
2 are Q-linearly independent,

so that all the eigenvalues are simple and the perturbation result appearing in Theorem 6.1
can be applied. (The case of multiple eigenvalues can be treated similarly, applying a refined
perturbation argument as the one used in [6].)

The normalized eigenfunction corresponding to λk1,k2,k3 is given, up to sign, by

φk1,k2,k3(x1, x2, x3) =
2

3
2

√
l1l2l3

sin

(
k1x1π

l1

)
sin

(
k2x2π

l2

)
sin

(
k3x3π

l3

)
.

Proposition 6.5. Let (l1l2)
2, (l1l3)

2, and (l2l3)
2 be Q-linearly independent and define W (x1, x2, x3) =

eα1x1+α2x2+α3x3 with α1, α2, α3 ∈ R. Assume that α1, α2, α3 are nonzero and that (π/α1l1)
2,

(π/α2l2)
2, (π/α3l3)

2 are algebraically independent. Then the control system (6.7) is approxi-
mately controllable.

Before starting the proof of Proposition 6.5 let us show the following technical result.

Lemma 6.6. Let β1, . . . , βn be n real numbers (n ≥ 1) such that βn is transcendental over

the field Q(β1, . . . , βn−1). Then the elements of the family
(

1
1+kβn

)
k∈N

are Q(β1, . . . , βn−1)-

linearly independent.

Proof. Fix N ∈ N and q1, . . . , qN ∈ Q(β1, . . . , βn−1) such that

N∑
k=1

qk
1

1 + kβn

= 0. (6.8)

We have to prove that q1 = q2 = · · · = qN = 0. Multiplying (6.8) by ΠN
k=1(1 + kβn) we get

N∑
k=1

qk

(
N−1∑
r=0

sk,rβ
r
n

)
= 0 (6.9)

where sk,0 = 1 and, for r ≥ 1,

sk,r =
∑

1 ≤ j1 < j2 < · · · < jr ≤ N
j1, . . . , jr 6= k

j1j2 · · · jr.
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By hypothesis, all coefficients of the left-hand side of (6.9), seen as a polynomial in βn, are
equal to zero. Hence, (q1, . . . , qN)SN = (0, . . . , 0) where

SN =

 s1,0 · · · s1,N−1
...

...
sN,0 · · · sN,N−1

 .

A computation shows that det(SN) = Π1≤j<k≤N(k− j). Hence, SN is invertible and therefore
q1 = q2 = · · · = qN = 0.

Proof of Proposition 6.5. Theorem 6.1 and Fubini’s theorem imply that the eigenvalues
Λk1,k2,k3(µ) of −∆ + µW on Ω for the Dirichlet boundary value problem satisfy

Λ′
k1,k2,k3

(0) =
64(eα1l1 − 1)(eα2l2 − 1)(eα3l3 − 1)k1

2k2
2k3

2π6

α1l1α2l2α3l3(4π2k2
1 + α2

1l
2
1)(4π

2k2
2 + α2

2l
2
2)(4π

2k2
3 + α2

3l
2
3)

= Ck2
1k

2
2k

2
3

1(
4π2

α2
1l21
k2

1 + 1
)(

4π2

α2
2l22
k2

2 + 1
)(

4π2

α2
3l23
k2

3 + 1
) .

where

C =
64(eα1l1 − 1)(eα2l2 − 1)(eα3l3 − 1)π6

(α1l1α2l2α3l3)3
.

The Q-linear independence of the elements of (Λk1,k2,k3

′(0))k1,k2,k3∈N is obtained from the
expression above thanks to three nested applications of Lemma 6.6 with βj = 4π2/(α2

j l
2
j ),

j = 1, 2, 3. In order to complete the proof, let us check that every matrix B(n) is connected.
(The conclusion then follows from Corollary 6.3.) A straightforward computation shows that
for every triples of positive integers (k1, k2, k3) and (h1, h2, h3) the integral∫

Ω

eα1x1+α2x2+α3x3φk1,k2,k3(x1, x2, x3)φh1,h2,h3(x1, x2, x3)dx1dx2dx3

is different from zero, i.e., every element of B(n) is nonzero. �
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Birkhäuser Verlag, Basel, 2006.
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