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Abstract We prove approximate controllability of the bilinear Schrédinger
equation in the case in which the uncontrolled Hamiltonian has discrete non-
resonant spectrum. The results that are obtained apply both to bounded or
unbounded domains and to the case in which the control potential is bounded
or unbounded. The method relies on finite-dimensional techniques applied to the
Galerkin approximations and permits, in addition, to get some controllability prop-
erties for the density matrix. Two examples are presented: the harmonic oscillator
and the 3D well of potential controlled by suitable potentials.

1 Introduction

In this paper we study the controllability of the bilinear Schrodinger equation. The importance
of this property is motivated by applications to modern technologies such as Nuclear Magnetic
Resonance, laser spectroscopy, and quantum information science (see for instance [22, 27, 28,
33]).

Many controllability results are available when the state space is finite dimensional, e.g.,
for spin systems or for molecular dynamics when one neglects interactions with highly excited



levels (see for instance [8, 19]). When the state space is infinite-dimensional the controllability
problem appears to be much more intricate. Some results are available when the control is
the value of the wave function on some portion of the boundary or in some internal region of
the domain (see [36] and references therein and the recent paper [34]).

However, from the point of view of applications the case in which the control appears
in the Hamiltonian as an external field is much more interesting, since the wave function is
not directly accessible in experiments and because of the postulate of collapse of the wave
function. For instance, in nuclear magnetic resonance the control is a magnetic field, in laser
spectroscopy and in many applications of photochemistry the control is a laser or a source of
light.

In this paper we consider the controllability problem for the following bilinear system
representing the Schrodinger equation driven by one external field

v

i (t) = (Ho+ u(t) H) (). (1.1)

Here the wave function 1 evolves in an infinite-dimensional Hilbert space, Hj is a self-adjoint
operator called drift Hamiltonian (i.e. the Hamiltonian responsible for the evolution when the
external field is not active), u(¢) is a scalar control function, and H; is a self-adjoint operator
describing the interrelation between the system and the external field.

The reference case is the one in which the Hilbert space is L?(£2) where € is either R? or
a bounded domain of R¢, and equation (1.1) reads

9y

i (L) = (CA+ V(@) + W (@) (t,2), (1.2)

where A is the Laplacian (with Dirichlet boundary condition in the case in which € is bounded)
and V and W are suitably regular functions defined on 2. However the setting of the paper
covers more general cases (for instance the one in which 2 is a Riemannian manifold and A
is the Laplace-Beltrami operator).

Besides the fact that one cannot expect exact controllability on the whole Hilbert sphere
(see [10, 35]) and some negative result (in particular [26, 32]) only few approximate control-
lability results are available and concern mainly special situations.

In [12, 13] Beauchard and Coron study the controllability of a quantum particle in a
1D potential well with W (z) = x. Their results are highly nontrivial and are based on
Coron’s return method (see [18]) and Nash—Moser’s theorem. In particular, they prove that
the system is exactly controllable in the unit sphere of the Sobolev space H' (implying in
particular approximate controllability in L?). One of the most interesting corollaries of this
result is exact controllability between eigenstates, since the latter are analytic.

A different result is given in [1], where the authors use adiabatic methods to prove approx-
imate controllability for systems having conical eigenvalue crossings in the space of controls.

Another controllability result has been proved by Mirrahimi in [25] using Strichartz esti-
mates and concerns approximate controllability for a certain class of systems such that Q = R?
and whose drift Hamiltonian has mixed spectrum (discrete and continuous).

The aim of the present paper is to prove in a unified setting approximate controllability
for a large class of systems for which the drift Hamiltonian H, has discrete spectrum. Our
main assumptions are that the spectrum of Hj satisfies a non-resonance condition and that



W couples each pair of distinct eigenstates of Hy. Such assumptions happen to be generic, as
it will be discussed in a forthcoming paper.

We then apply the approximate controllability result to two classical examples, namely
the harmonic oscillator and the 3D potential well, for suitable controlled potentials.

Our method is new in the framework of quantum control and relies on finite-dimensional
techniques applied to the Galerkin approximations. A difficult point is to deduce properties
of the original infinite-dimensional system from its finite-dimensional approximations. For the
Navier—Stokes equations this program was successfully conducted by Agrachev and Sarychev
in the seminal paper [5] (see also [3, 31]).

A key ingredient of the proof is a time reparametrization that inverts the roles of H,
and H; as drift and control operator. This operation is crucial since it permits to exploit
for the Galerkin approximation the techniques developed in [2] for finite-dimensional systems
on compact semisimple Lie groups. The passage from the controllability properties of the
Galerkin approximations to those of the infinite-dimensional system heavily relies on the fact
that the dynamics preserve the Hilbert sphere.

A feature of our method is that the infinite-dimensional system inherits, in a suitable sense,
controllability results for the group of unitary transformations from those of the Galerkin
approximations. This permits to extract controllability properties for the density matriz. Let
us stress that, as it happens in finite dimension, controllability properties for the density
matrix cannot in general be deduced from those of the wave function (see for instance [7]).

Finally, let us mention that many efforts have been made to get efficient steering of the
Schrédinger equation by means of optimal control techniques (see for instance [15, 16, 17, 24]
for the finite-dimensional case and [11, 14, 23] for the infinite-dimensional one).

The paper is organized as follows. In Section 2 we present the general functional analysis
setting and we state our main result (Theorem 2.4) for the control system (1.1). In Section
3 we show how this result applies to the Schrodinger equation (1.2) when  is both bounded
or unbounded. Section 4 contains the proof of Theorem 2.4 and an estimate of the minimum
time for approximately steering the system between two given states, that holds even if the
system itself is not completely controllable. In Section 5 we extend the result to the controlled
evolution of the density matrix. Finally in Section 6 we show how Theorem 2.4 can be applied
to specific cases. In particular, we show how to get controllability results even in cases in
which V' and W do not satisfy the hypotheses of Theorem 2.4, using perturbation arguments.

2 Mathematical framework and statement of the main
result

Hereafter N denotes the set of strictly positive integers. Definition 2.1 below provides the
abstract mathematical framework that will be used to formulate and prove the controllability
results later applied to the Schrodinger equation (1.2). The fact that (1.2) fits the abstract
framework is discussed in Section 3.

Definition 2.1. Let 4 be a complex Hilbert space and U be a subset of R. Let A, B be
two, possibly unbounded, operators on # with values in % and denote by D(A) and D(B)



their domains. The control system (A, B, U) is the formal controlled equation

d

d—:/:(t) = AY(t) + u(t) By(t), u(t) € U. (2.1)
We say that (A, B,U) is a skew-adjoint discrete-spectrum control system if the following
conditions are satisfied: (H1) A and B are skew-adjoint, (H2) there exists an orthonormal

basis (¢, )nen of 7 made of eigenvectors of A, (H3) ¢,, € D(B) for every n € N.

In order to give a meaning to the evolution equation (2.1), at least when w is constant, we
should ensure that the sum A + uB is well defined. The standard notion of sum of operators
seen as quadratic forms (see [20]) is not always applicable under the sole hypotheses (H1),
(H2), (H3). An adapted definition of A+ uB can nevertheless be given as follows: hypothesis
(H3) guarantees that the sum A + uB is well defined on V' = span{¢,, | n € N}. Any skew-
Hermitian operator C': V' — J# admits a unique skew-adjoint extension £(C). We identify
A+ uB with E(Aly + uBly).

Let us notice that when A + uB is well defined as sum of quadratic forms and is skew-
adjoint then the two definitions of sum coincide. This happens in particular for the Schrodinger
equation (1.2) in most physically significant situations (see Section 3).

A crucial consequence of what precedes is that for every u € U the skew-adjoint operator
A + uB generates a group of unitary transformations e/+5) . 7 — . In particular,
efA+uB)(S) = S for every u € U and every t > 0, where S is the unit sphere of J#.

Due to the dependence of the domain D(A + uB) on u, the solutions of (2.1) cannot
in general be defined in classical (strong, mild or weak) sense. We say that the solution
of (2.1) with initial condition ¢y € % and corresponding to the piecewise constant control
u:[0,7] — U is the curve t — 1(t) defined by

Y(t) = (=202 1) (A+u;B) o oti—1(Atuj1B) o | pt1i(AfuiB) (1ho), (2.2)
where 771t <t < 327t and u(r) = u; if Y7t <7 < 337_, ;. Notice that such a 1(-)
satisfies, for every n € N and almost every ¢ € [0, T] the differential equation

d

7 (W), 6n) = = ((t), (A + u(t) B)én) (2.3)

Remark 2.2. The notion of solution introduced above makes sense in very degenerate situations
(that interest us in the following) and can be enhanced when B is bounded. Indeed, well-
known results assert that in this case if v € L'([0,T],U) then there exists a unique weak
(and mild) solution ¢ € C([0,T], #¢) which coincides with the curve (2.2) when u is piecewise
constant. Moreover, if 1y € D(A) and u € C'([0,T],U) then ¢ is differentiable and it is a
strong solution of (2.1) (see [10] and references therein).

Definition 2.3. Let (A, B,U) be a skew-adjoint discrete-spectrum control system. We say
that (A, B, U) is approximately controllable if for every 1,17 € S and every € > 0 there exist
ke N,ty,...,t, >0 and uq,...,u, € U such that

[ = e o0 B () | < e.

Let, for every n € N, i)\, denote the eigenvalue of A corresponding to ¢, (A, € R). The
main result of the paper is the following.



Theorem 2.4. Let 6 > 0 and (A, B, (0,9)) be a skew-adjoint discrete-spectrum control system.
If the elements of the sequence (An+1—An)nen are Q-linearly independent and if (Boj, ¢j41) #
0 for every j € N, then (A, B, (0,9)) is approximately controllable.

Recall that the elements of the sequence (A,+1 — A\y)nen are said to be Q-linearly inde-
pendent if for every N € N and (g1, ...,qy) € QY ~\ {0} one has ZnN:1 n(Ans1 — An) # 0.

The condition (B¢;, ¢j+1) # 0, preferred here for the easiness of its expression, can be
replaced by a weaker one (namely, (4.3)), as detailed in Remark 4.2.

3 Discrete-spectrum Schrodinger operators

The aim of this section is to recall some classical results on Schrodinger operators. In partic-
ular we list here, among the numerous situations studied in the literature, some well-known
sufficient conditions guaranteeing that the controlled Schrédinger equation 1.2 satisfies the
assumptions of Definition 2.1.

Theorem 3.1 ([21, Theorem 1.2.2]). Let Q be an open and bounded subset of R and V €
L*(Q,R). Then —A +V, with Dirichlet boundary conditions, is a self-adjoint operator with

compact resolvent. In particular —A + 'V has a discrete spectrum and admits a family of
eigenfunctions in H*(Q, R) N HY (2, R) which forms an orthonormal basis of L*(Q, C).

Theorem 3.2 ([29, Theorems XII1.69 and XIIL.70]). Let Q@ = R? and V € LL _(R% R) be

bounded from below and such that

|l‘im V(x) = +o0.
Then —A + 'V, defined as a sum of quadratic forms, is a self-adjoint operator with compact
resolvent. In particular —A + V' has a discrete spectrum and admits a family of eigenfunc-
tions in H*(RY,R) which forms an orthonormal basis of L*(R¢,C). Moreover, for every
eigenfunction ¢ of —A +V and for every a > 0, x +— el?lg(x) belongs to L?>(RY, C).

In the following, we call controlled Schrodinger equation the partial differential equation

%%

ia(t, ) =(=A+V +uW)(t,x)

where ¥ : I x Q — C, Q is an open subset of R?, I is a subinterval of R and, in the case in
which Q is bounded, ¥|;x90 = 0. The correct functional analysis framework for this equation
is specified below.

The following corollary, which is a straightforward consequence of the results recalled
above, shows that the assumptions of Definition 2.1 are fulfilled by the operators appearing
in the controlled Schrodinger equation under natural hypotheses.

Corollary 3.3. Let € be an open subset of R, V, W be two real-valued functions defined on (2,
and U be a subset of R. Assume either that (i) Q) is bounded, V, W belong to L (€2, R) or that
(i) @ =R, V,W belong to Li, . (R*,R), and, for every u € U, lim||—+00(V (z) + ulW (2)) =

+00 and infyera(V(z) + ulW(z)) > —o0. Let H be equal to L*(Q,C) and D(A) be equal
to H*(Q,C) N H(Q, C) in case (i) and to H*(Q, C) in case (ii). Let, moreover, A be the
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differential operator —i(—A + V') and B be the multiplication operator —iW . Then (A, B,U)
15 a skew-adjoint discrete-spectrum control system, called the controlled Schrodinger equation

associated with 2, V, W and U.

Since the controlled Schrodinger equation is a skew-adjoint discrete-spectrum control sys-
tem, it makes sense to apply Theorem 2.4 to it. The result is the following theorem.

Theorem 3.4. Let Q, V, W and U satisfy one of the hypotheses (i) or (ii) of Corollary 3.3.
Denote by (Ar)ren the sequence of eigenvalues of —A + V' and by (¢r)ren an orthonormal
basis of L*(Q, C) of corresponding real-valued eigenfunctions. Assume, in addition to (i) or
(ii), that U contains the interval (0,0) for some § > 0, that the elements of (Ar+1 — Ak )reN are
Q-linearly independent, and that fQ W(z)ppdr1 dx # 0 for every k € N. Then the controlled
Schrodinger equation associated with Q, V., W and U is approximately controllable.

As stressed just after the statement of Theorem 2.4, the condition [, W (x)drdrs1 dz # 0
could be replaced by a weaker one (see Remark 4.2).

4 Proof of Theorem 2.4

The proof of Theorem 2.4 is split in several steps. First, in Section 4.1 the controllability
problem is transformed, thanks to a time-reparameterization, into an equivalent one where A
and B play the role of controlled dynamics and drift, respectively. Then, in Section 4.2, we
prove a controllability result for the Galerkin approximations of this equivalent system. In
Section 4.3 we show how to lift the controllability properties from a Galerkin approximation
to an higher-dimensional one. Section 4.4 makes the link between finite-dimensional and
infinite-dimensional controllability properties and completes the proof.

Finally, in Section 4.5, as a byproduct of the arguments of the proof, we get a lower
estimate on the minimum steering time.

4.1 Time-reparameterization

First remark that, if u # 0, e!(ATuB) = u((1/w)A+B) " Theorem 2.4 is therefore equivalent to the
following property: if the elements of the sequence (A, 11— A\p)nen are Q-linearly independent
and if (B, ¢;+1) # 0 for every j € N, then for every d,¢ > 0 and every ¢, ¢y € S there
exist K € N, t1,...,tx > 0 and uy,...,u; > 0 such that

||¢1 — etk(urA+B) o ..o etl(u1A+B)(¢0)|| < €. (4.1)

In other words, the system for which the roles of A and B as drift and controlled field are
inverted, namely,
di

dt

is approximately controllable provided that the control set U contains a half-line. The notion
of solution of (4.2) corresponding to a piecewise constant control function is defined as in
(2.2).

(t) = u(®)Av(t) + Bo(t),  u(t) €U, (4.2)



4.2 Controllability of the Galerkin approximations

Let, for every j,k € N, bj, = (B¢, ¢x) and ajp = (A¢;, ¢r) = iX;j0j5. (Recall that \; € R
and {i)\; | j € N} is the spectrum of A.) Define, for every n € N, the two complex-valued
n x n matrices A™ = (a;1)1<jr<n and B™ = (bjz)1<jr<n- The Galerkyn approximation of
(4.2) at order n (with respect to the basis (¢ )ren) is the finite-dimensional control system

d
d—f =uA™g + BMy, r €Sy, u >0, (3n)
where S,, denotes the unit sphere of C”. Notice that the system is well defined since, by
construction, A™ and B™ are skew-Hermitian matrices.

We say the (X,,) is controllable if for every zg,z; € S, there exist k € N, ty,...,t > 0

and uq,...,u; > 0 such that

— etk(ukA(n>+B(">) o--. t1(ulA<">-‘rB<"))x0

1 oe

We recall that a n x n matrix C' = (¢;i)1<jk<n is said to be connected if for every pair
of indices j,k € {1,...,n} there exists a finite sequence rq,...,r; € {1,...,n} such that
Ciry Criry "+ Crp_yr Cre 7 0. (In the literature connected matrices are sometimes called einfach,
or irreducible, or inseparable.) The following claim is in the spirit of the controllability results
obtained in [2] and [35].

Claim 4.1. Let B™ be connected. For any x in S, the evaluation at x of the Lie algebra
generated by the vectors fields y — A™y and y — B™y is equal to the whole tangent space
to S, at x. In particular (3,) is controllable.

Proof. For every 1 <1i,j5 < n let e be the n x n matrix whose entries are all equal to zero
except the one at line j and column k£ which is equal to 1.

Define for every p € N the iterated matrices commutator M, = ad’,, (B (). (Recall the
usual notation adx(Y) = [X,Y] = XY — Y X for the adjoint operator associated with X.) A

simple induction on p shows that the matrix M, , has the expression

n

My = > (N = ) b€
I,m=1

Fix two indices j # k such that 1 < j, k < n and bj, # 0. Since, by hypothesis, (\;—A\;)? #
(A — Am)? as soon as {j,k} # {l,m}, there exists some polynomial Pj, with real coefficients
such that P ((A; — Ae)?) = 1 and Py, (A — A)?) = 0 for all {{,m} # {j,k}, 1 <l,m < n.

Let us define (ay);, as the coefficients of Py, i.e., Pj(X) = 3¢_, anX". Define moreover
the matrix Nj;, = Zi:()(_l)hahMZh,n- By construction Njj, = szzl blmelijk(()\l — )\m)Q) =
bjrejr — bjrexj. Therefore, the commutator [A™, Nj;] is equal to i(\; — A\g)(bjxejr + bjrer;)
and so the Lie algebra generated by A™ and B™ contains the two elementary anti-Hermitian
matrices Ej, = ejr — ey and Fj, = i(ejr + €xy)-

Notice now that, for every 1 < j,k,h,m <n, €jzenn = dxnejm and therefore

[Ejk, Ek;m] = Ejm + 5kmEkj + 5kjEmk7
(B, Fie] = 2i(ej; — exr).

7



It follows from the definition of connected matrix and the relation [A™, E;] = (A; — A\¢) Fjx
that the Lie algebra generated by A™ and B™ contains the matrices Eji, Fii, and i(ej; —epy)
for every j # k and therefore it must contain the Lie algebra su(n). Fix z € §,, and consider

the submersion P : SU(n) — S, defined by P(g) = ¢gZ. Since
Tp(g)(Sn) = Pu(T35U(n)) = Pu(su(n)g) = su(n)gz = su(n)P(g),

then the evaluation at = P(g) of the Lie algebra generated by A™ and B™ contains the
whole space T.,S,,. O

Remark 4.2. The condition b;;.; # 0 for every j € N appearing in Theorem 2.4 clearly
ensures that every matrix B™ is connected. In the following we can replace such assumption
with the weaker one that B™ is frequently connected, that is,

Vj € N,3k > j | B® is connected. (4.3)

Notice, as a partial counterpart, that if there exists a nonempty and proper subset = of
N such that for every j € = and k£ € N \ = the coefficient bj is equal to zero (i.e., the
infinite-dimensional matrix (by,)imen is non-connected) then the control system (2.1) is not
approximately controllable. Indeed, the subspace span{¢, | k € Z} is invariant for the
dynamics of A + uB for every u € U and has nontrivial (invariant) orthogonal.

4.3 Approximate controllability in higher-dimensional projections

Fix 0, > 0 and 9y, 9y € S. For every n € N, let I1,, : 7 — € be the orthogonal projection
on the space span(¢y, ..., ¢,) and II,, : 5# — C" be the map that associates to an element
of A the vector of its first n coordinates with respect to the basis (¢, )men. Choose n such
that ||¢; — IL,(¢;)|| < e for j =0, 1.

Thanks to (4.3) we can assume, without loss of generality, that (¥,) is controllable. Let
w : [0,T] — (6,00) be the piecewise constant control driving &y/[|&o]| to &1 /||| where &; =
I0,,(¢;) for j =0, 1.

Let 4 > 0 be a constant which will be chosen later small enough, depending on 7', n,
and . Notice that for every j € N the hypothesis that ¢; belongs to D(B) implies that the
sequence (bjx)ren is in {2, It is therefore possible to choose N > n such that >, v |bjx|> < p
for every j =1,...,n.

If t — X(t) is a solution of (Xy) corresponding to a control function U(-), then t —

e VOAY X (1) = Y (t), where V (t) = fot U(7)dr, is a solution of
Y(t) = e VOAD g VOANM y (4 (On)
Let us represent the matrix e=*®4™ BV v®MA™ “where 4(t) = fot u(7)dr, in block form

as follows . I
—’U(t)A(N) (N) ’U(t)A(N> _ M n,n t M n,N—n t
e B e < M(N—n,n) (t) M(N—H,N—n) (t) ) (44)

where the superscripts indicate the dimensions of each block.



Claim 4.3. There exists a sequence of piecewise constant control functions uy : [0, T] — (, 00)
such that the sequence of matriz-valued curves

t— Mk(t) = e—vk(t)A(N)B(N)evk(t)A(N)’

where vi(t) = f(f ug(7)dT, converges to

M(nﬂl) (t) OnX(an)
t— M(t) = ( 00— M(N’”’an)(t)

in the following integral sense

/0 t M, (r)dr — /0 tM(T)dT (4.5)

as k — oo uniformly with respect to t € [0,T].

Proof. We will prove the claim taking v(-) piecewise constant, since every piecewise affine
function can be approximated arbitrarily well in the L*° topology by piecewise constant func-
tions and because the map associating to v(-) the curve t — fot M (7)dr is continuous with
respect to the L* topology (taken both in its domain and its codomain).

Assume that v(-) is constantly equal to w € R on [t1,t5]. Since Adg — Ay, ..., Ay — Ay_1 are
Q-linearly independent, then for every sq € R the curve

(80,00) 28— (A1 — Aa)s, ..., (A1 — An)s)

projects onto a dense subset of the torus RY~1/27ZN~1. Thus, there exist two sequences
w™ ' 400 and 2™ " 400 such that

(A1 = A)w'™ (mod 27r) —  (A; — A\j)w (mod 27) for 2 <j <N,
(A1 = A)2™M (mod 27r) — (A — Aj)w (mod 27) for 2 <j <n,
(A1 = A)2™M (mod 27r) — (A — A\)w+ 7 (mod 27)  forn+1<j <N,

—wm AN B(N) um AN
—2m) AB) B(N) =™ AN

as m tends to infinity. In particular the sequence of matrices e
verges to e~ wAN) pN) qwA™ oo goes to infinity, while the sequence e
converges, following the notations introduced in (4.4), to

M(n,n) _M(n,N—n)
_M(N—n,n) M(N—n,N—n) ’

where we dropped the dependence on t of the different sub-matrices since v is constant on
[ty ta).

Fix 0 > §. Consider a sequence (U )gen in R (whose role will be clarified later) and define,
for every k € N, a finite increasing sequence (0F);—o . x with 65 = vy, , 91k+1 > 0F +6(ty —t1) /K>
for 0 <1 < k, and such that, for [ > 0, 6¥ belongs to (w™),,en if 1 is odd and to (2™),.en
if [ is even. Define, moreover,

— 1
Tj:t1+j

(tz - tl)v

forg=1,...,k+ 1.



Consider the continuous function v, uniquely defined on [ty, %] by the conditions

= U,

Uk(tl)

) = 9’“ fori=1,...,k,
) =
) =

Vg ( tz —t
(t
Bu(t

Define 7, as the piecewise constant function that coincides with ¥ on [7;, 7;11]. On each
interval [1; + (to — t1)/k?, 7i41] the difference between vy and ¥y is bounded in absolute value

by §(ty — t1)/k. Therefore,
to —t
|t€U |:+ k:2 7Ti+1:|}
goes to zero as k goes to infinity.
Since [|e™A™Y BMerA™ || is uniformly bounded with respect to v € R and the measure
of Uj[m, 7+ 5] goes to 0 as k goes to infinity, we have

5 lfteuz 1(7—1—’_%;;177—1'4-1)7
ift e Ur (1,7 + tZkQ“).

sup {He—ukmmm B oA _ 5 (A (V) (AN

t
/ (6_”’“(7)’4“\7)B(N)ef“’“(T)‘L‘(N> — e_f”“(T)A(N)B(N)eﬁ’“(T)Am))dT hop 0  uniformly on [ty, 5] .

t1

Moreover, by definition of the sequences #¥, w™), and 2™ one has
t
/ e~ MA® BIN) oA g kHoo/ M(r uniformly on [t1, ts]
t1

and therefore e~ ®A™ B cvrMA™ ¢onverges in integral sense to M(t) on [ty,ts].

Finally, construct ug as follows: for t; = 0 define uy on (t1,t2) as the derivative of vy
(defined almost everywhere), where the v;’s correspond to the sequence of initial conditions
Uy = 0 for every k € N. Then, on the second interval on which () is constant, use as a new
set of initial conditions for the approximation procedure the values vy = wy(t2) and define
again uy as the derivative of v,. Iterating the procedure on the finite set of intervals covering
[0,7] on which v(-) is constant we obtain the required approximating sequence of piecewise
constant control functions. 0

4.4 Approximate controllability for the infinite-dimensional system

Let u;, and My be defined as in Claim 4.3. The resolvent Ry (t,s) : CV¥ — C¥ of the linear
time-varying equation

Y = Mi(t)Y,
converges, uniformly with respect to (¢,s), to the resolvent R(t,s) : C¥ — CV of
Y = M(t)Y.

(See, for instance, [4, Lemma 8.10].) Notice that R(t, s) preserves the norms of both the vector
formed by the first n coordinates and the one formed by the last N — n.

Let, for every k € N, ¥ be the solution of (4.2) corresponding to u; and define ¢*(t) =
e~ kMAYk($).  According to (2.3) (more precisely, its counterpart for equation (4.2)), the

10



components qf(t) = e~ (k(t), ;) of ¢"(t) with respect to the basis of eigenvectors of A
satisfy for almost every t € [0, T

= Z bﬂei(’\l_’\j)”’“(t)qf(t). (4.6)
=1

Therefore, the curves P*(t) = (¢f(t),...,¢E(t)" and Q*(t) = (¢% 1 (1), ..., gk (1)) satisty

PEE) Y\ P*(t) H*(t)
(et ) =0 (o) )+ () )
with ||H*|| < /o and || I*]| < C for C = C(N) large enough.

e ( gzgg ) — Ry(t, 0)TTw () + /0 " Ru(s. 1) ( [}[:((53)) ) ds.

Denote by ﬁnN the projection of CV on its first n coordinates and let

IF() = T < /0 Ru(s.1) ( [}[:(f)) ) ds) .

Since R;, converges uniformly to R and the latter preserves the norm of the first n components,
we know that, for k large, || L¥|| < 2T\/nji. Moreover, Ry (t,0)IIx (1)) converges uniformly to

R(t,0)IIx(tbo). In particular, according to the definition of R, ﬁnN(Rk(t, O)ﬁN(wQ) converges
uniformly to the solution of (6,,) corresponding to the control u and starting from II,,(¢g) = &.
Since u drives system (X,,) from &/||&o|| to &1/]|&1||, then it steers system (O,,) from & to

e MAe (|[&ll/:1)- Therefore,

PkT A(”) ||§O||
H @) =

if k is large enough. Let us fix p small enough in order to have

3T\/nu < e.

< 3T\/nu

Then,
||Hn(€_vk(T)Awk’(T)) —Hn(e—v(T)A¢1)|| < HH ( —op(T wk( )) n(e—v T)A¢ );EOH '
1
e
— Pk T A(") HgOH ‘
T
&l — l1€oll |

Hn —v(T)A | |

3T+ &l = lioll |

<
< 2e,
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provided that k is large enough. In particular, the moduli of the first n components of /*(T)
are close to those of the first n components of ;. The claim below will be used to show
that their phases can also be made as close as required by applying a suitable control on an
arbitrarily small time interval.

Claim 4.4. For every sy € R there ezist s, > s1 andw € R™ with ||w|| < € such that A\;sy = w;
mod 27 for every i = 1,...,n. Hence, for every v € R there exists 7 > 0 and a constant
control function @ : [0, 7] — (0, +00) such that every trajectory ¥ (-) of (4.2) corresponding to

() satisfies ||IL,($(7)) — (e 49 (0))| < e.

Proof. The first part of the statement is a simple application of the Poincaré recurrence
theorem. Indeed, since the dynamics s — zp + s(A1,...,A,) on the n-dimensional torus
preserve volumes and distances, then the constant vector field (Aq,...,\,) is recurrent at
every point of the torus, and in particular at the origin o = 0. Therefore any neighborhood
N of the origin is sent, after a suitably long time (which can be assumed to be larger than s;),
to another neighborhood of the origin isometric to N'. Taking A equal to the ball of radius ¢
centered at the origin, the first part of the claim is proven.

In order to conclude the proof, fix a piecewise constant control function @ : [0, 7] — (4, +00)
and a solution v of (4.2) corresponding to . Set

G(t) = e~ lo 1A (¢

and notice that, according to (2.3), |3;(t)] < |[(bj)iexlliz for every j € N. Therefore,
1L, (¢(7)) — I1,(¢(0))|| < Ct for some positive constant C' independent of @ and of 1. Then

ITL (7)) = Ma(e ()| = [[Ma(e™ 40 (7)) — IL(4(0))|

= ||TL, (U B0d=e) Ag )y T, (3(0)))
< I, (s M=) Agy) 11, (G(r)) | + O
Fix 7 < ¢/(2C) so that
I, (5 (7) = Mo PO))]| < (el O =)4G(r) — (@) + 5. (47)

Notice that
I, (el HOU ) g(r)) = diag (7O ) e U HO40) ) 11, (),

The first part of the claim ensures the existence of vy arbitrarily large such that if

/ A)dt — 1 = vy (4.8)
0
then the norm of the matrix

diag < 28 (fo t)dt— vl), .. (fo t)dt— v1)> — Idcn

is smaller than €/2. Take vy large enough to satisfy (v + va)/7 > 0. Then @ = (vy + v2)/7T
satisfies (4.8) and, because of (4.7),

ITL, (4 () — (e 49 (0))]| < e,

12



independently of ). OJ

To conclude the proof of Theorem 2.4 we extend the interval of definition of the control
function uy, introduced above by taking ug (T 4 t) = u(t) for ¢ € [0, 7] where @ is the control
corresponding to v; = v(T') — vi(T'), whose existence is guaranteed by the second part of
Claim 4.4. Then, for k large enough, the corresponding trajectory ¢ : [0, T + 7] — S satisfies
|9*(T + 7) — 41| < 3¢, as required. This concludes the proof of Theorem 2.4. 3

4.5 Lower bound on the steering time

Let (A, B,U) be a skew-adjoint discrete-spectrum control system. In the rest of this sec-
tion we do not assume that (A, B, U) satisfies the hypotheses of Theorem 2.4 nor any other
controllability assumption.

Fix an initial condition ¢ in S, a piecewise constant control u : [0, T,] — (0,0), and denote
by ¥* : [0,T,] — 4 the corresponding solution of the system (2.1) satisfying ¢*(0) = .
Write u as u(t) = Z?:o UjX[t;t540) (1) Where 0 =t <ty < -+ <ty =T, and uy, ..., uy,
belong to (0,0). In the spirit of Section 4.1, associate to u the piecewise constant control
v :[0,7,] — R given by v(t) = 37 VjX(r.r;y0) (t) With v; = 1/u; for all j =1,...,n and 7
defined by induction as 7 =0, 7j41 = 7; + (tj41 — t;)u; for j > 1.

Define 9" : [0,T,] — 2 as the solution of system (4.2) corresponding to v and satisfying
¥ (0) = 1bg. Define by my, = [(¥", ¢1.)| the modulus of the k™ coordinate of ¥”.

By definition my, is absolutely continuous and equation (4.6) implies that

o] o] 1/2
rie < [bjulm; < (Z|<B¢j,¢k>|2> = || Béx
j=1 =1

Applying the mean value theorem, one gets

[107(0), @] = [(W"(T2), dw)l| < T || Bexl- (4.9)
Notice that T, = > 7, (tj1 — tj)u; < (t, — t1)0 = T,,0, that is,
T, > %Tl,. (4.10)

For any € > 0, if 4y is a point of J# such that [ (T,) — 11| < €, then (4.9) implies

H<¢k7w0>’ B ’<¢k7¢1>" — €
1Bl '

Plugging this last inequality into (4.10), we find that the time 7T, needed to steer the system
(2.1) from %)y to an e-neighborhood of ¢4 using piecewise constant controls is such that

|[(Pr, o) | — [{dw, ¥1)|| — €
| Bk '

We insist on the fact that this result is valid whenever system (2.1) is or is not approxi-
mately controllable.

T, > supen

1
T, > 55UPkeN (4.11)
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Remark 4.5. When B is bounded, the same estimate as above is valid for other classes of
controls (not only piecewise constant functions but also measurable bounded or locally inte-
grable) as soon as we can define a unique solution of system (2.1) that satisfies (2.3). See
Remark 2.2.

Remark 4.6. Tt follows from (4.11) that, in general, approximate controllability does not imply
finite-time approximate controllability. Indeed, if B¢y tends to 0 as k goes to infinity, then
for every T > 0 the attainable set at time T from a given point 1)y is not dense in S since for
every € € (0,1), for k large enough, ¢y is not e-approximately attainable from v in time 7'

5 Controllability for density matrices

5.1 Physical motivations

A density matriz (sometimes called density operator) is a non-negative, self-adjoint operator
of trace class [29, Vol. I] on a Hilbert space. The trace of a density matrix is normalized to
one. As a consequence of the definition a density matrix is a compact operator (hence with
discrete spectrum) and can always be written as a weighted sum of projectors,

p= Zf)jnjv (51)
j=1

where P; € [0,1], > ;P =1, and II; is the orthogonal projector on the space spanned by
@j, L.e. II; = ;p5, where, by definition, ¢%(-) = (¢;,). Here {®;};en is a set of normalized
vectors not necessarily orthogonal.

The density matrix is used to describe the evolution of systems whose initial wave function
is not known precisely, but only with a certain probability, or when one is dealing with an
ensemble of identical systems that cannot be prepared precisely in the same state. More
precisely (5.1) describes a system whose state is known to be ¢, with probability P;, j € N.
Given an observable A (i.e. a self-adjoint operator, for instance the drift Hamiltonian) the
mean value of A is Tr(pA) = > 77| P; (p;, Ap;), where (p;, Ap;) represents the mean value of
the observable A in the state ¢,;. When for some k£ € N we have P, =1 and P; = 0 for every
j # k, one says that p describes a pure state, otherwise one says that p describes a mized
state. In the case of pure states, the physical description via the density matrix is equivalent
to the one via the wave function. Notice that for a pure state Tr(p®) = 1 while for a mixed
state one has Tr(p?) < 1.

Without loss of generality it is possible to require that {¢;}en is an orthonormal basis
(i.e. a basis of normalized eigenvectors of p). In this case {P;};en is the spectrum of p.

The time evolution of the density matrix is determined by the evolutions of the states ¢;,
namely

p(t) = U(1)p(0)U* (1) (5.2)

where U(t) is the operator of temporal evolution (the resolvent) and U*(¢) its adjoint. Notice
that the spectrum of p(t) is constant along the motion.
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5.2 Statement of the result

Fix § > 0 and let (A, B, (0,9)) be a skew-adjoint discrete-spectrum control system on a Hilbert
space ., (¢;)jen an orthonormal basis of .7 (not necessarily of eigenvectors of A), {P;}jen
a sequence of non-negative numbers such that Ej; P; = 1, and denote by p the density
matrix

p=7> Piips”
j=1

Definition 5.1. Two density matrices py and p; are said to be unitarily equivalent if there
exists a unitary transformation U of J# such that p; = UpyU*.

Obviously the controllability question for the evolution of the density matrix makes sense
only for pairs (pg, p1) of initial and final density matrices that are unitarily equivalent. Notice
that this is a quite strong assumption. For instance it implies that the eigenvalues of py and
p1 are the same and that there exists a unitary operator transforming an orthonormal basis
diagolanizing p, into an orthonormal basis diagonalizing p;. Controllability results in the case
of density matrices that are not unitarily equivalent have been obtained in the case of open
systems (i.e. systems evolving under a suitable nonunitary evolution) in the finite-dimensional
case. See for instance [9].

With similar techniques of those of Section 4, one gets

Theorem 5.2. Let pg and p; be two unitarily equivalent density matrices. Then, under the
hypotheses of Theorem 2.4, for every ¢ > 0 there exists a piecewise constant control steering

the density matriz from pg e-approximately to py i.e. there exist k € N, t1,...,t, > 0 and
u, ..., u € (0,0) such that setting U = ex(AtuBlo. . .oeht(A+uB) “one has || py —Up U*|| < e,
where || - || denotes the operator norm on F .

6 Examples

6.1 Perturbation of the spectrum

The scope of Section 6 is to show how the general controllability results obtained in the previ-
ous sections can be applied in specific cases. In particular, we want to show how the conditions
on the spectrum of the Schrodinger operator appearing in the hypotheses of Theorem 3.4 can
be checked in practice.

Let us adopt the notations of Section 3 for the domain €2, the wave function ¢, and the
uncontrolled and controlled potentials V' and W. Throughout this section we assume that
one of the hypotheses (i) or (ii) of Corollary 3.3 holds true. Thus, (A, B,U) is a well-defined
controlled Schrédinger equation, where A = —i(—A + V) and B = —ilV.

The study of the examples below is based on the simple idea that, even if the hypotheses
of Theorem 3.4 are not satisfied by the operators A and B, one can anyway ensure that they
hold true for A, = —i(—A +V + uW) and B, = —iW for some p in the interior of U. This
is enough to conclude that the system w = Ay +uBv, u € U, is approximately controllable,
since the replacement of (A, B) by (A,, B,) corresponds to a reparameterization of U that
sends u into a new control u —p € U —pand V into V' + uW. Although the spectrum of A, is
not in general explicitly computable, we can nevertheless deduce some crucial properties about
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it by applying standard perturbation arguments. Theorem 6.1 recalls, in a simplified version
suitable for our purposes, some classical perturbation results describing the dependence on u
of the spectrum of —A + V + pWV. (See [30] and [6].)

Theorem 6.1. Let U be an open interval containing zero. Assume either that (i) 2 is bounded,
V. W belong to L>®(Q) or that (ii) Q = R%, V belongs to L (RY), W belongs to L®(R?),
limyjz| =400 V(2) = 400 and inf,cga V(x) > —o0. In both cases (i) and (ii) assume that each
eigenvalue of the Schriodinger operator —A +V is simple. Denote by (Ax)ren the sequence of
eigenvalues of —A +V and by (¢r)ren the corresponding eigenfunctions. Then, for any k in
N, there exist two analytic curves Ay, : U — C and @, : U — L*(Q) such that:

o for any p in U, (Ap(u))ken is the family of eigenvalues of A —V 4+ uW counted ac-
cording to their multiplicities and (®r(p))ren s an orthonormal basis of corresponding
eigenfunctions;

We Check below that 1f the derivatives A;'(0) are Q-linearly independent then for almost
every i € U the eigenvalues of —A + V 4+ puW are Q-linearly independent. This fact is used
in the following to apply Theorem 3.4 to situations in which the uncontrolled Schrodinger
operator has a resonant spectrum.

Recall that, in the notations of Section 4, for any pair of integers j, k € N,

bjk:/W(x)qu(m)¢k(a:)dm. (6.1)

In particular, A,'(0) = [, W(x)|¢x(x)|*dz is equal to byy.

Proposition 6.2. Let U be an open interval containing zero and assume that 2, V' and W
satisfy one of the hypotheses (i) or (ii) of Theorem 6.1 and that the eigenvalues of —A+V are
simple. If the elements of the sequence (bgk)ren are Q-linearly independent, then for almost
every p in U the elements of (Ax())ren are Q-linearly independent.

Proof. Let | € N and z = (z1,...,2) € Q!. Denote by T, the subset of elements p in U
such that 22:1 zi\;(p) = 0. Since each g — Ay(p) is an analytic function, then 7, is either
equal to U or to a countable subset of U. Since by; = Aj(0),...,b; = Aj(0) are Q-linearly
independent, then T, = U if and only if z = 0. Hence, the union 7 = Ujen U,eq, 220 1 has
Lebesgue measure zero, since it is countable. By construction, if i does not belong to 7', the
elements of (Ay(u))ren are Q-linearly independent. O

The other crucial hypothesis of Theorem 3.4 is that b1 # 0 for every j € N (or
more generally, that B™ = (bj;,)" =1 is frequently connected, see Remark 4.2). By the same
analyticity argument as above one checks that either such hypothesis is always false or it is
true for almost every p € U.

Corollary 6.3. Let U be an open interval containing zero and assume that 2, V and W satisfy
one of the hypotheses (i) or (ii) of Theorem 6.1 and that the eigenvalues of —A+V are simple.
Assume m0reove7’ that the elements of the sequence (bgx)ren are Q-linearly independent and
that B™ s Jrequently connected. Then the controlled Schrodinger equation associated with €2,

vV, W cmd U is approzimately controllable for every U C U with nonempty interior.

16



6.2 1D harmonic oscillator

In this section we study the Schrodinger equation describing the evolution of the controlled
one-dimensional harmonic oscillator,

i—(t,x) = ———(t,z) + (" —u(t)W(x)) ¥(t, z), (6.2)

where 1 is the wave function depending on the time ¢ and on a space variable x € R = ().
Recall that u(-) is a piecewise-continuous function with values in a subset U of R. Notice
that the potential corresponding to the uncontrolled Schrodinger operator is V(z) = x2. The
control system (6.2) has been studied, among others, by Mirrahimi and Rouchon who proved
its non-controllability in the case where W is the identity function (see [26]).

As a consequence of Theorem 3.2, the spectrum of —A+V is discrete. Its explicit expression
is

{Me=2k+1|k>0},

and therefore A\ 1 — A\; are Q-linearly dependent. Each \; is a simple eigenvalue whose
corresponding eigenfunction is

or(z) = \/ﬁe_f]{k(x) (6.3)

where Hy(x) = (—1)"“(39‘32d@‘gc—kke_’”2 is the £ Hermite polynomial.
In order to apply Corollary 6.3 we would like first of all to ensure that the elements

k

L L
br, = B2k Jr RW(fIJ)Hk(JU)@@ dz, k=0, (6.4)

are Q-linearly independent. Notice that for W (z) = x (i.e., the non-controllable case pointed
out by Mirrahimi and Rouchon), since each function ¢7 is even, by, = [ W¢2 = 0.

The existence of controlled potentials W for which the elements of (bg)ren are Q-linearly
independent can be easily inferred from the linear independence of the functions ¢?. The
proposition below provides some explicit W with such a property (and such that the corre-
sponding Schrédinger equation is controllable). The potentials W will be chosen in L*(R)
and therefore, as already remarked in Section 3, the corresponding solutions in the sense (2.2)
coincide with mild or strong solutions, depending on the regularity of the initial condition.

Proposition 6.4. (1) If W is even, then system (6.2) is not approximately controllable. (2)
If W has the form W : x — e“z2+bx+c, with a,b,c € R such that a < 0 and the two numbers
V1 —a and b are algebraically independent, then system (6.2) is approzimately controllable,
provided that U has nonempty interior.

Proof. Since each function ¢, has the same parity as the integer k, then ¢;¢; has the same
parity as the integer j + k. If W is even, then (6.1) shows that for every (j, k) such that
Jj + k is odd, bj; = 0. Applying Remark 4.2, one sees that the spaces spanned by the sets
{¢k | k even} and {¢y, | k odd} are invariant by the dynamics of system (6.2). In particular,
there is no way to steer system (6.2) from ¢; to a point e-close to ¢ if € is smaller than V2.
This proves (1).
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In order to prove (2) let us apply Corollary 6.3 (with U playing the role of U and R the
role of U). Let W have the special form W : z — e’ thrte  Up to a multiplication of W by

b
the strictly positive real number e®«1 " °, we may assume without loss of generality that

b2

c:m.

(6.5)

Using the specific expression (6.3) of ¢y in the definition of b;;, we can write

b = (=1 os0 et hute (:E)d—je_”‘ﬂdx
ik Yk . k dxi ;

with oy = 1/4/112!y/7r, | = k, j. Notice that Hy is a polynomial with rational coefficients and
of degree k, whose leading coefficient is equal to 2¥. Integrating by parts j times, we get

bjk = 0,0} / €(a71)x2+bx+c,Pj7k($)dI'
R

where P, is a polynomial of degree j + k. Define (gink)] o through

m=0
j+k

Pip(z) =Y gifa™.
m=0

Each g/* can be seen as the evaluation at b of a polynomial G%* with coefficients in Q]a]
whose degree is less than or equal to j. If m € {k,k+1,... k + j} then GJ* has exactly
degree j + k — m and the coefficient corresponding to the monomial of order j + k — m is
2mgm=k, )
The renormalization of ¢ performed above is such that (a—1)2?+br+c = (a—1) <x + W%) :

Hence, the change of variables y = /1 —a (33 + 2\/%) yields
by = %% [ v p y___ b Ny
T T—alr M\Vi—a 2a-1))"7

Due to the remarks made above on the coefficients of P;;, we have

y b B Jjtk e b m
() - BT () rees

Lk 1 (_a )it
- 2 G ek g (6.6

where () ; is a polynomial with coefficients in Q(v/1 — a) (D Qla]) and of degree smaller than
j +k in its first variable. Notice that the coefficient multiplying »** in (6.6) is different from
Zero.

For every m > 0 the integral fR e‘yzymdy is equal to zero if m is odd and to I' (mTH) =
#!%)! 7 if m is even, where I is the Euler gamma function.
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Therefore, if 7 + k is even,
bjk = Msj,k(b)
Vi—a
where S; is a polynomial with coefficients in Q(v/1 — a) of degree exactly j + k.

Since b is transcendental over Q(+/1 —a) then b;; # 0 as soon as j and k have the
same parity. Moreover, the elements of the sequence (A}(0))k>0 = (brk)r>0 are Q-linearly
independent.

To conclude the proof let us check that each matrix (bj)%,_, is connected. Fix j, k €
{0,...,n}. We should prove the existence of a sequence r1,...,7; € {0,...,n} such that
bjr briry = br, by # 0. If 5 and k have the same parity then we are done since bj; # 0.
Otherwise, a simple computation and the normalization (6.5) show that

and we can conclude by taking {ry,r} = {0,1}. O
6.3 3D potential well
Consider the Schrodinger equation

O

za(t, x) = =AYt z) +u(t)W(x)(t, z), (6.7)

where the wave function ¢ depends on the time ¢ and on three space variables x1, o, x3
with (21,22, 23) € (0,11) x (0,12) x (0,l3) = © and satisfies the Dirichlet boundary condition
¥|aq = 0. Notice that the potential corresponding to the uncontrolled Schrodinger operator is
V(z) = 0. For every W measurable bounded, solutions in the sense (2.2) coincide with mild
or strong solutions, depending on the regularity of the initial condition.

The spectrum of the Schrodinger operator is

k,2 k’2 /{Z2
{)‘k’hkmks = 7T2 <l_%1 + l_g + Tg) ‘ kl>k2>k3 > 1} .

For the sake of simplicity, assume that (Iyl5)?, (I1l3)?, and (I3l3)* are Q-linearly independent,
so that all the eigenvalues are simple and the perturbation result appearing in Theorem 6.1
can be applied. (The case of multiple eigenvalues can be treated similarly, applying a refined
perturbation argument as the one used in [6].)

The normalized eigenfunction corresponding to A, , ks 1S given, up to sign, by

2% . kll’l’ﬂ' . I{ZQ.TQ?T . ngEgﬂ'
Ok ey ks (T1, T2, T3) = N sin 3 sin L sin L )

Proposition 6.5. Let ly,l5,l3 > 0 be Q-linearly independent and define W (xy,xs,x3) =
e Tt O2T2TesTs yyith o i, a3 € R. Assume that oy, as, as are nonzero and that (7/aqly)?,
(m/aala)?, (1 /asl3)? are algebraically independent. Then the control system (6.7) is approxi-
mately controllable.
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Before starting the proof of Proposition 6.5 let us show the following technical result.

Lemma 6.6. Let (31,...,0, be n real numbers (n > 1) such that (3, is transcendental over
the field Q(B1, ..., Bn_1). Then the elements of the family <ﬁ>k L are Q(b, ..., Pn)-
"/ ke

linearly independent.

Proof. Fix N € N and ¢1,...,qv € Q(f1,. .., B,—1) such that

al 1
> —0. (6.8)
—~ 1+ kB,
We have to prove that ¢, = ¢» = - -+ = gy = 0. Multiplying (6.8) by II"_, (1 + kf3,)) we get
N N-1
k=1 r=0

where s, =1 and, for r > 1,

Sk = > Jujz- e g

By hypothesis, all coefficients of the left-hand side of (6.9), seen as a polynomial in (3, are
equal to zero. Hence, (q1,...,qn)Sy = (0,...,0) where

$10 -0 S1,N-1
Sy =
SNOo ' SNN-1
A computation shows that det(Sy) = Ii1<j<x<n(k — j). Hence, Sy is invertible and therefore
Gh=q@=--=qv=0. O

Proof of Proposition 6.5. Theorem 6.1 and Fubini’s theorem imply that the eigenvalues
Agy ko es () of =A + pWW on Q for the Dirichlet boundary value problem satisfy

64(emh — 1)(e*2!2 — 1)(e*'s — 1)k1 ko k37"
arlyolyaslsz(4m2k? + a212)(4m2k3 + a3l3)(4m2k3 + a3l3)

1
- Ck%kgk% 472 1.2 472 1.2 472 1.2 .

At s (0)

where

64(60‘1[1 — 1)(60‘212 — 1)(60‘3l3 — 1)n®
(Oé1l1042l2043l3)3 '

C:

The Q-linear independence of the elements of (A, kyks (0))k) ks ksen 1S Obtained from the
expression above thanks to three nested applications of Lemma 6.6 with 3; = 47?/ (a?l]?),

j =1,2,3. In order to complete the proof, let us check that every matrix B™ is connected.
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(The conclusion then follows from Corollary 6.3.) A straightforward computation shows that
for every triples of positive integers (ki, ks, k3) and (hq, he, hs) the integral

/ 6a1x1+a2$2+a3$3¢k17k2,k3 (1’1, Ta, $3)¢h1,h2,h3 (:pl, T, m3)d$1d1‘2d£v3
Q

is different from zero, i.e., every element of B™ is nonzero. O
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