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A THEOREM OF COBHAM FOR NON-PRIMITIVE
SUBSTITUTIONS

FABIEN DURAND

1. Introduction.

Given a subset E of N = {0, 1, 2, · · · } can we find an elementary algorithm
(i.e., a finite state automaton) which accepts the elements of E and rejects
those that do not belong to E? In 1969 A. Cobham showed that the ex-
istence of such an algorithm deeply depends on the numeration base. He
stated [Co1]: Let p and q be two multiplicatively independent integers (i.e.,
pk 6= ql for all integers k, l > 0) greater than or equal to 2. Let E ⊂ N. The
set E is both p-recognizable and q-recognizable if and only if E is a finite
union of arithmetic progressions. What is now called the theorem of Cob-
ham. We recall that a set E ⊂ N is p-recognizable for some integer p ≥ 2 if
the language consisting of the expansions in base p of the elements of E is
recognizable by a finite state automaton (see [Ei]).
In 1972 Cobham gave an other partial answer to this question showing
that not all sets are p-recognizable. He gave the following characterization:
The set E ⊂ N is p-recognizable for some integer p ≥ 2 if and only if the
characteristic sequence (xn;n ∈ N) of E (xn = 1 if n ∈ E and 0 otherwise)
is generated by a substitution of length p, where generated by a substitution
of length p means that it is the image by a letter to letter morphism of a
fixed point of a substitution of length p.
We remark that E is a finite union of arithmetic progressions if and only if
its characteristic sequence is ultimately periodic. Consequently the theorem
of Cobham can be formulated as follows (this is an equivalent statement):
Let p and q be two multiplicatively independent integers greater than or equal
to 2. Let A be a finite alphabet and x ∈ AN. The sequence x is generated by
both a substitution of length p and a substitution of length q if and only if x

is ultimately periodic.
To a substitution σ is associated an integer square matrix M 6= 0 which has
non-negative entries. It is known (see [LM] for instance) that such a matrix
has a real eigenvalue α which is greater than or equal to the modulus of all
others eigenvalues. It is usually called the dominant eigenvalue of M . Let S
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2 FABIEN DURAND

be a set of substitutions. If x is the image by a letter to letter morphism of a
fixed point of σ which belongs to S then we will say that x is α-substitutive in
S. If S is the set of all substitutions we will say that x is α-substitutive. An
easy computation shows that if σ is of length p then α = p. Furthermore if a
sequence is generated by a substitution of length p then it is p-substitutive.
Note that the converse is not true. This suggests the following conjecture
formulated by G. Hansel.

Conjecture. Let α and β be two multiplicatively independent Perron num-
bers. Let A be a finite alphabet. Let x be a sequence of ∈ AN, the following
are equivalent:

(1) x is both α-substitutive and β-substitutive;
(2) x is ultimately periodic.

In this paper we prove that 2) implies 1) and, what is the main result of
this paper, that this conjecture holds for a very large set of substitutions
containing all known cases, we call it Sgood. This set contains some non-
primitive substitutions of non-constant length. More precisely for some sets
S of substitutions, we prove

Theorem 1. Let α and β be two multiplicatively independent Perron num-
bers. Let A be a finite alphabet. A sequence x ∈ AN is α-substitutive in S
and β-substitutive in S if and only if it is ultimately periodic.

This result is true for Sconst, the family of substitutions with constant length
(this is the theorem of Cobham), and for Sprim, the family of primitive
substitutions [Du2]. In [Fa] and [Du3] this result was proved for families of
substitutions related to numeration systems. These families contain some
non-primitive substitutions of non-constant length.
Much more results have been proved concerning generalizations of Cobham’s
theorem to non-standard numeration systems [BHMV1, BHMV2].
Most of the proofs of Cobham’s type results are divided into two parts. In
the first part it is proven that the set E ⊂ N is syndetic (the difference
between two consecutive elements of E is bounded) which corresponds to
the fact that the letters of the characteristic sequence of E appear with
bounded gaps. In the second part the result is proven for such E. We will
do the same.
In Section 2 we recall some results concerning the length of the words σn(a)
where σ is a substitution on the alphabet A and a ∈ A. These results have
a key role in this paper. In Section 3 we prove that 2) implies 1). To prove
the syndeticity of E all proofs use the well-known fact that, if α and β
are multiplicatively independent numbers strictly greater than 1 then the
set {αn/βm;n,m ∈ Z} is dense in R+. Here we need more. We need the
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density in R+ of the set {ndαn/meβm;n,m ∈ Z}, where d and e are non-
negative integers. We prove this result in Section 4 because we did not find
it in the literature. We prove in Section 5 that the letters with infinitely
many occurrences in x ∈ AN appear with bounded gaps. This implies the
same result for words. In the last section we restrict ourself to Sgood, we
recall some results obtained in [Du3] and, using return words, we conclude
that x is ultimately periodic. More precisely we prove that the conjecture
is true for Sgood.

Words and sequences. An alphabet A is a finite set of elements called
letters. A word on A is an element of the free monoid generated by A,
denoted by A∗. Let x = x0x1 · · ·xn−1 (with xi ∈ A, 0 ≤ i ≤ n − 1) be a
word, its length is n and is denoted by |x|. The empty word is denoted by ǫ,
|ǫ| = 0. The set of non-empty words on A is denoted by A+. The elements
of AN are called sequences. If x = x0x1 · · · is a sequence (with xi ∈ A, i ∈ N),
and I = [k, l] an interval of N we set xI = xkxk+1 · · · xl and we say that xI is
a factor of x. If k = 0, we say that xI is a prefix of x. The set of factors of
length n of x is written Ln(x) and the set of factors of x, or language of x,
is noted L(x). The occurrences in x of a word u are the integers i such that
x[i,i+|u|−1] = u. When x is a word, we use the same terminology with similar
definitions.
The sequence x is ultimately periodic if there exist a word u and a non-
empty word v such that x = uvω, where vω = vvv · · · . Otherwise we say
that x is non-periodic. It is periodic if u is the empty word. A sequence
x is uniformly recurrent if for each factor u the greatest difference of two
successive occurrences of u is bounded.

Morphisms and matrices. Let A and B be two alphabets. A morphism
τ is a map from A to B∗. Such a map induces by concatenation a morphism
from A∗ to B∗. If τ(A) is included in B+, it induces a map from AN to BN.
These two maps are also called τ .
To a morphism τ , from A to B∗, is naturally associated the matrix Mτ =
(mi,j)i∈B,j∈A where mi,j is the number of occurrences of i in the word τ(j).
Let M be a square matrix, we call dominant eigenvalue of M an eigenvalue r
such that the modulus of all the other eigenvalues do not exceed the modulus
of r. A square matrix is called primitive if it has a power with positive
coefficients. In this case the dominant eigenvalue is unique, positive and it
is a simple root of the characteristic polynomial. This is Perron’s Theorem.
A real number is a Perron number if it is an algebraic integer that strictly
dominates all its other albebraic conjugates. The following result is well-
known (see [LM] for instance).

Theorem 2. Let λ be a real number. Then
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(1) λ is a Perron number if and only if it is the dominant eigenvalue of
a primitive non-negative integral matrix.

(2) λ is the spectral radius of a non-negative integral matrix if and only
if λp is a Perron number for some positive integer p.

Substitutions and substitutive sequences. In this paper a substitu-
tion is a morphism τ : A → A∗ such that for all letters of A we have
limn→+∞ |τn(a)| = +∞. Whenever the matrix associated to τ is primitive
we say that τ is a primitive substitution.
A fixed point of τ is a sequence x = (xn;n ∈ N) such that τ(x) = x. We
say it is a proper fixed point if all letters of A have an occurrence in x. We
remark that all proper fixed points of τ have the same language.

Example. The substitution τ defined by τ(a) = aaab, τ(b) = bc and
τ(c) = b has two fixed points, one is starting with the letter a and is proper
and the other one is starting with the letter b and is not proper.

If τ is a primitive substitution then all its fixed points are proper and uni-
formly recurrent (for details see [Qu] for example).
Let B be another alphabet, we say that a morphism φ from A to B∗ is a
letter to letter morphism when φ(A) is a subset of B. Let S be a set of
substitutions and suppose that τ belongs to S. Then the sequence φ(x)
is called substitutive in S. We say φ(x) is substitutive (resp. primitive
substitutive) if S is the set all substitutions (resp. the set of primitive
substitutions). If x is a proper fixed point of τ and θ is the dominant
eigenvalue of τ ∈ S (i.e., the dominant eigenvalue of the matrix associated
to τ) then φ(x) is called θ-substitutive in S; and we say θ-substitutive (resp.
primitive substitutive) if S is the set all substitutions (resp. the set of
primitive substitutions).
We point out that in the last example the fixed point y of τ starting with
the letter b is also the fixed point of the substitution σ defined by σ(b) = bc
and σ(c) = b. Moreover the dominant eigenvalue of τ is 3 and the dominant
eigenvalue of σ is (1 +

√
5)/2. Hence in the definition of “θ-substitutive” it

is very important for x to be a proper fixed point, otherwise the conjecture
presented in the introduction would not be true.
Clearly, if φ(x) is θ-substitutive then it is θp-substitutive for all p ∈ N.
Consequently from Theorem 2 we can always suppose θ is a Perron number.
We define

L(τ) =
{

τn(a)[i,j]; i, j ∈ N, i ≤ j, n ∈ N, a ∈ A
}

.

Let x be a fixed point of τ . Then L(τ) = L(x) if and only if x is proper. If τ
is primitive then for all its fixed points x have the same language L = L(τ).
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2. Some preliminary lemmata.

This section and the first case of the proof of Proposition 13 is prompted
by the ideas in [Ha].
In this section σ will denote a substitution defined on the finite alphabet A,
x one of its fixed points and Θ its dominant eigenvalue.

Lemma 3. There exists a unique partition A1, · · · , Al of A such that for
all 1 ≤ i ≤ l and all a ∈ Ai

lim
n→+∞

|σn(a)|
c(a)nd(a)θ(a)n

= 1

where θ(a) is the dominant eigenvalue of M restricted to Ai, d(a) its Jordan
order and c(a) ∈ R.

Proof. See Theorem II.10.2 in [SS]. 2

For all a ∈ A we will call growth type of a the couple (d(a), θ(a)). If (d, α)
and (e, β) are two growth types we say that (d, α) is less than (e, β) (or
(d, α) < (e, β)) whenever α < β or α = β and d < e. Consequently if
the growth type of a ∈ A is less then the growth type of b ∈ A then
limn→+∞ |σn(a)|/|σn(b)| = 0.
If the growth type of a ∈ A is (i, θ) then there exists a letter b with growth
type (i, θ) having an occurrence in σ(a).
We have Θ = max{θ(a); a ∈ A}. We set D = max{d(a); θ(a) = Θ, a ∈ A}
and Amax = {a ∈ A; θ(a) = Θ, d(a) = D}. We will say that the letters of
Amax are of maximal growth and that (D,Θ) is the growth type of σ.
For all letters a ∈ A, as limn→+∞ |σn(a)| = +∞, it comes that θ(a) > 1,
or θ(a) = 1 and d(a) > 0. Hence Lemma 3 implies that there is no letter
with growth type (0, 1). An important consequence of the following lemma
is that in fact for all a ∈ A we have θ(a) > 1.

Lemma 4. If (d, θ) is the growth type of some letter then for all i belonging
to {0, · · · , d} there exists a letter of growth type (i, θ) which appears infinitely
often in x.

Proof. See Lemma III.7.10 in [SS]. 2

We define
λσ : A∗ → R

u0 · · ·un−1 7→ ∑n−1
i=0 c(ui)1Amax

(ui).

From Lemma 3 we deduce the following lemma.

Lemma 5. For all u ∈ A∗ we have limn→+∞ |σn(u)|/nDΘn = λσ(u).

We say that u ∈ A∗ is of maximal growth if λσ(u) 6= 0.
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Lemma 6. Let a ∈ A which has infinitely many occurrences in x. There
exist a positive integer p, a word u ∈ A∗ of maximal growth and v, w ∈ A∗

such that for all n ∈ N the word

σpn(u)σp(n−1)(v)σp(n−2)(v) · · ·σp(v)vwa
is a prefix of x. Moreover we have

lim
n→+∞

|σpn(u)σp(n−1)(v)σp(n−2)(v) · · ·σp(v)vwa|
λσ(u)(pn)DΘpn + λσ(v)

∑n−1
k=0(pk)

DΘpk
= 1.

Proof. Let a ∈ A be a letter that has infinitely many occurrences in x. We
set a0 = a. There exists a1 ∈ A which has infinitely many occurrences in x

and such that a0 has an occurrence in σ(a1). In this way we can construct a
sequence (ai; i ∈ N) such that a0 = a and ai occurs in σ(ai+1), for all i ∈ N.
There exist i, j with i < j such that ai = aj = b. It comes that a occurs
in σi(b) and b occurs in σj−i(b). Hence there exist u1, u2, v1, v2 ∈ A∗ such
that σi(b) = u1au2 and σj−i(b) = v1bv2. We set p = j − i, v = σi(v1) and
w = u1. There exists u

′
such that u

′
b is a prefix of x. We remark that for

all n ∈ N the word σn(u
′
b) is a prefix of x too. We set u = σi(u

′
). We have

σp(u
′
b) = σp(u

′
)v1bv2. Consequently for all n ∈ N

σpn(u
′

)σp(n−1)(v1)σ
p(n−2)(v1) · · ·σp(v1)v1b

is a prefix of σnp(u
′
b). Then

σpn(u)σp(n−1)(v)σp(n−2)(v) · · ·σp(v)vwa
is a prefix of σnp+i(u

′
b) and consequently of x, for all n ∈ N. The last part

of the lemma follows from Lemma 5. 2

3. Assertion 2) implies Assertion 1) in the conjecture.

In this section we prove the following proposition. It it is the “easy” part of
the conjecture, namely Assertion 2) implies Assertion 1). The first part of
the proof is an adaptation of the proof of Proposition 3.1 in [Du1] and the
second part is inspired by the substitutions introduced in Section V.4 and
Section V.5 of [Qu].

Proposition 7. Let x be a sequence on a finite alphabet and α a Perron
number. If x is periodic (resp. ultimately periodic) then it is α-substitutive
primitive (resp. α-substitutive).

Proof. Let x be a periodic sequence with period p. Hence we can suppose
that A = {1, · · · , p} and x = (1 · · · p)ω. Let M be a primitive matrix whose
dominant eigenvalue is α and σ : B → B∗ a primitive substitution whose
matrix is M . Let y be one of its fixed points. In the sequel we construct,
using σ, a new substitution τ with dominant eigenvalue α, together with a
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fixed point z = τ(z), and a letter to letter morphism φ such that φ(z) = x.
We define the alphabet

D = {(b, i) ; b ∈ B , 1 ≤ i ≤ p} ,
the morphism ψ : B → D∗ and the substitution τ : D → D∗ by

ψ(b) = (b, 1) · · · (b, p) and τ((b, i)) = (ψ(σ(b)))[(i−1)|σ(b)|,i|σ(b)|−1],

for all (b, i) ∈ D. The substitution τ is well defined because |ψ(σ(b))| =
p|σ(b)|. Moreover, these morphisms are such that τ ◦ ψ = ψ ◦ σ. Hence
the substitution τ is primitive. The sequence z = ψ(y) is a fixed point of τ
and (using Perron theorem and the fact that MτMψ = MψMσ) its dominant
eigenvalue is α.
Let φ : D → A be the letter to letter morphism defined by φ((b, i)) = i. It
is easy to see that φ(z) = x. It follows that x is α-substitutive.
Suppose now that x is ultimately periodic. Then there exist two non-empty
words u and v such that x = uvω. From what precedes we know that there
exist a substitution τ : D → D∗, a fixed point z = τ(z) and a letter to letter
morphism φ : D → A such that φ(z) = vω. Let E

′
= {a1, a2, · · · , a|u|} be

an alphabet, with |u| letters, disjoint from D and consider the sequence t =
a1a2 · · ·a|u|z ∈ (E

′ ∪D)N = FN. It suffices to prove that t is α-substitutive.
We extend τ to F setting τ(ai) = ai, 1 ≤ i ≤ |u|. Let G be the alphabet of
the words of length |u| + 1 of t, that is to say

G =
{

(tntn+1 · · · tn+|u|);n ∈ N
}

where t = t0t1 · · · .
The sequence t = (t0t1 · · · t|u|)(t1t2 · · · t|u|+1) · · · (tntn+1 · · · tn+|u|) · · · ∈ GN is
a fixed point of the substitution ζ : G → G∗ we define as follows. Let
(l0l1 · · · l|u|−1a) be an element of G. Let s0s1 · · · s|u|−1 be the suffix of length
|u| of the word τ(l0l1 · · · l|u|−1).
If |τ(a)| ≤ |u|, we set

ζ((l0l1 · · · l|u|−1a))

= (s[0,|u|−1]τ(a)0)(s[1,|u|−1]τ(a)[0,1]) · · · (s[|τ(a)|−1,|u|−1]τ(a)[0,|τ(a)|−1]),

otherwise
ζ((l0l1 · · · l|u|−1a))

= (s[0,|u|−1]τ(a)0) · · · (s|u|−1τ(a)[0,|u|−1])(τ(a)[0,|u|]) · · · (τ(a)[|τ(a)|−|u|−1,|τ(a)|−1]),

By induction we can prove that for all n ∈ N we have

ζn((t0t1 · · · t|u|))
= (t0t1 · · · t|u|)(t1t2 · · · t|u|+1) · · · (t|τn(t|u|)|−1 · · · t|τn(t|u|)|+|u|−1).

Consequently t is a fixed point of ζ and ρ(t) = t where ρ : G→ F is defined
by

ρ((r0r1 · · · r|u|)) = r0.
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Moreover we remark that for all n ∈ N we have

|ζn((r0r1 · · · r|u|))| = |τn(r|u|)|.
From this and Lemma 3 it comes that for all (r0r1 · · · r|u|) ∈ D we have

lim
n→+∞

|ζn+1((r0r1 · · · r|u|))|
|ζn((r0r1 · · · r|u|))|

= α.

Hence α is the dominant eigenvalue of ζ and t is α-substitutive. 2

Example. Let x = (12)ω and α = (1+
√

5)/2. It is the dominant eigenvalue
of the substitution σ : A = {a, b} → A∗ given by σ(a) = ab and σ(b) = a.
We have D = {(a, 1), (a, 2), (b, 1), (b, 2)} and the substitution τ : D → D∗

defined in the previous proof is given by

τ((a, 1)) = (a, 1)(a, 2), τ((a, 2)) = (b, 1)(b, 2),
τ((b, 1)) = (a, 1) and τ((b, 2)) = (a, 2).

Example. Let c be a letter and x = c(12)ω. We take the notations
of the previous example and for convenience we set A = (a, 1), B =
(a, 2), C = (b, 1) and D = (b, 2). The substitution ζ : G → G∗, where
G = {(cA), (AB), (BC), (CD), (DA), (BA)}, defined in the previous proof
is given by

ζ((cA)) = ((cA))((AB)), ζ((AB)) = ((BC))((CD)),
ζ((BC)) = ((DA)), ζ((CD)) = ((AB)),
ζ((DA)) = ((BA))((AB)), ζ((BA)) = ((DA))((AB)).

Let t be the fixed point of ζ whose first letter is (cA). Let φ : G→ {c, 1, 2}
be the letter to letter morphism given by

φ((cA)) = c, φ((AB)) = 1, φ((BC)) = 2,
φ((CD)) = 1, φ((DA)) = 2, φ((BA)) = 2.

We have φ(t) = c(12)ω = x.

Using Proposition 7 we obtain a slight improvement of the main results of
respectively [Du2] and [Du3]. More precisely:

Theorem 8. Let α and β be two multiplicatively independent Perron num-
bers. Let x be a sequence on a finite alphabet. The sequence x is both
α-substitutive primitive and β-substitutive primitive if and only if it is peri-
odic.

Theorem 9. Let U and V be two Bertrand numeration systems, α and β
be two multiplicatively independent β-numbers such that L(U) = L(α) and
L(V ) = L(β). Let E be a subset of N. The set E is both U-recognizable and
V -recognizable if and only if it is a finite union of arithmetic progressions.
(see [Du3] for the terminology)
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4. Multiplicative independence and density.

This section is devoted to the proof of the following proposition.

Proposition 10. Let α and γ be two rationally independent positive num-
bers (i.e., α/β 6∈ Q). Let d and e be two non-negative integers. Then the
set

{nα + d logn−mβ − e logm; n,m ∈ N}
is dense in R.

The following straightforward corollary will be essential in the next section.

Corollary 11. Let α and β be two multiplicatively independent positive real
numbers. Let d and e be two non-negative integers. Then the set

{

ndαn

meβm
;n,m ∈ N

}

is dense in R+.

These two results are well-known for d = e = 0 (see [HW] for example). We
need the following lemma to prove Proposition 10.

Lemma 12. Let β < α be two rationally independent numbers. Then for
all ǫ > 0 and all N ∈ N there exist m,n, with m ≥ n ≥ N , such that
0 < nα−mβ < ǫ.

Proof. The proof is left to the reader. 2

Proof of Proposition 10. Let l ∈ R and ǫ > 0, we have to find N,M ∈ N

such that |Nα+ d logN −Mβ − e logM − l| < ǫ. The proof is divided into
several cases.

First case: α > β, e = d and l ≥ d log(β
α
).

From Lemma 12 there exist two integers 0 < n < m such that 0 < nα−mβ <
ǫ
2

and d log(1 + ǫ
mβ

) ≤ ǫ
2
. Hence we have

(1) d log(
β

α
) < d log(n) − e log(m) < d log(

β

α
) + d log(1 +

ǫ

mβ
).

Then nα −mβ + d(logn − logm) < l + ǫ. We consider f : N → R defined
by

f(k) = k(nα−mβ) − d(log(km) − log(kn)).

We have f(1) < l + ǫ, limk→+∞ f(k) = +∞ and 0 < f(k + 1) − f(k) =
nα −mβ < ǫ. Hence there exists k0 ∈ N such that |f(k0) − l| < ǫ, that is
to say

|Nα + d logN −Mβ − e logM − l| < ǫ

where N = nk0 and M = mk0.
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Second case: α > β, e = d and l < d log(β
α
).

It suffices to take n,m with 0 < n < m such that − ǫ
2
< nα −mβ < 0 and

d log(1 + ǫ
mβ

) ≤ ǫ
2
, and the same method will give the result.

Third case: α > β and e > d.

Let k0 ∈ N be such that −ǫ < (d − e) log(1 + 1
k0

) < 0. If two integers n,m
with 0 < n < m are such that 0 < nα−mβ < ǫ then we have

(d− e) log(m) + d log(
β

α
) < d log(n) − e log(m)

< (d− e) log(m) + d log(
β

α
) + d log(1 +

ǫ

mβ
),

which is negative for m large enough. Hence from Lemma 12 it comes that
there exist two integers n,m with 0 < n < m such that 0 < nα −mβ < ǫ
and

(2) d log(n) − e log(m) ≤ l − (k0)ǫ− (d− e) log(k0).

We consider f : N → R defined by

f(k) = k(nα −mβ) + d log(kn) − e log(km).

We have

f(k0) ≤ k0ǫ+ (d− e) log(k0) + d log(n) − e log(m) ≤ l.

Moreover limk→+∞ f(k) = +∞ and for all k ≥ k0

−ǫ < f(k + 1) − f(k) = nα−mβ + (d− e) log(1 +
1

k
) < ǫ.

Hence there exists an integer k1 ≥ k0 such that |f(k1) − l| < ǫ, that is to
say

|Nα + d logN −Mβ − e logM − l| < ǫ

where N = nk1 and M = mk1.

Remaining cases: The same ideas achieve the proof. 2

5. The letters appear with bounded gaps.

Let α and β be two multiplicatively independent Perron numbers. Let σ
and τ be two substitutions on the alphabets A and B, with fixed points y

and z and with growth types (d, α) and (e, β) respectively. Let φ : A → C
and ψ : B → C be two letter to letter morphisms such that φ(y) = ψ(z) = x.
This section is devoted to the proof of the following proposition.

Proposition 13. The letters of C which have infinitely many occurrences
appear in x with bounded gaps in x.
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Proof: We prove this proposition considering two cases.

Let c ∈ C which has infinitely many occurrences. Let X = {n ∈ N; xn = c}
and A

′
= {a ∈ A;φ(a) = c}. Assume that the letter c does not appear with

bounded gaps. Then there exist a ∈ A with infinitely many occurrences in y

and a strictly increasing sequence (pn;n ∈ N) of positive integers such that
the letter c does not appear in φ(σpn(a)). Let A

′′
be the set of such letters.

We consider two cases.

First case: There exists a ∈ A
′′

of maximal growth.
Let u ∈ A∗ such that ua is a prefix of y. Of course we can suppose that u
is non-empty.
For all n ∈ N we call Ωn ⊂ A the set of letters appearing in σpn(a). There
exist two distinct integers n1 < n2 such that Ωn1 = Ωn2 . Let Ω be the set of
letters appearing in σpn2−pn1 (Ωn1). It is easy to show that Ω = Ωn1 = Ωn2 .
Consequently the set of letters appearing in σpn2−pn1 (Ω) is equal to Ω and
for all k ∈ N the set of letters appearing in σpn1+k(pn2−pn1 )(A) is equal to Ω.
We set p = pn1 and g = pn2 − pn1 . We remark that the letter c does not
appear in the word φ(σp+kg(a)) and that [|σp+kg(u)|, |σp+kg(ua)|[∩X = ∅,
for all k ∈ N.
There exists a letter a

′
of maximal growth having an occurrence in σp(a).

We set σp(a) = wa
′
w

′
. For all k ∈ N we have |σp+kg(ua)| ≥ |σkg(σp(u)wa′

)|
and

(3) [|σkg(v)|, |σkg(vwa′

)|[∩X = ∅
where v = σp(u). Because a

′
is of maximal growth we have λσ(v) <

λσ(vwa
′
). Consequently there exists an ǫ > 0 such that

λσ(v)(1 + ǫ) < λσ(vwa
′

)(1 − ǫ).

From Lemma 5 we obtain that there exists k0 such that for all k ≥ k0 we
have

(4)
|σkg(v)|
(kg)dαkg

< λσ(v)(1 + ǫ) < λσ(vwa
′

)(1 − ǫ) <
|σkg(vwa′

)|
(kg)dαkg

.

From Lemma 6 applied to τ we have that there exist s ∈ B∗ of maximal
growth, t, t

′ ∈ B∗ and h ∈ N∗ such that for all n ∈ N

ψ
(

y[τhn(s)τh(n−1)(t)···τh(t)tt′ ]

)

= c.

From the second part of Lemma 6 it comes that there exists γ ∈ R such
that

lim
n→+∞

|τhn(s)τh(n−1)(t) · · · τh(t)tt′ |
(nh)eβhn

= γ.
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From Corollary 11 it comes that there exist two strictly increasing sequences
of integers, (mi; i ∈ N) and (ni; i ∈ N), and l ∈ R such that

γ(mih)
eβmih

(nig)dαnig
−→i→+∞ l ∈ ]λσ(v)(1 + ǫ), λσ(vwa

′

)(1 − ǫ)[.

Hence from Lemma 5 we also have

|τhmi(s)τh(mi−1)(t) · · · τh(t)tt′ |
(nig)dαnig

(5) =
|τhmi(s)τh(mi−1)(t) · · · τh(t)tt′ |

γ(mih)eβmih

γ(mih)
eβmih

(nig)dαnig
−→i→+∞ l.

From (4) and (5) there exists i ∈ N such that

|σnig(v)| < |τhmi(s)τh(mi−1)(t) · · · τh(t)tt′ | < |σnig(vwa
′

)|,

which means that |τhmi(s)τh(mi−1)(t) · · · τh(t)tt′ | belongs to X. This gives a
contradiction with (3).

Second case: No letter in A
′′

has maximal growth.
We define B

′′
as A

′′
but with respect to τ and B. We can suppose that no

letter of B
′′

has maximal growth.
There exists a letter a ∈ A

′′
(resp. b ∈ B

′′
) which has infinitely many

occurrences in y (resp. z) and with growth type (d
′
, α

′
) < (d, α) (resp.

(e
′
, β

′
) < (e, β)). We recall that α

′
and β

′
are greater than 1. Furthermore

we can suppose that (d
′
, α

′
) (resp. (e

′
, β

′
)) is maximal with respect to A

′′

(resp. B
′′
).

Let w = w0 · · ·wn be a word belonging to L(y) (resp. L(z)), we call gap(w)
the largest integer k such that there exists 0 ≤ i ≤ n− k + 1 for which the
letter c does not appear in φ(wi · · ·wi+k−1) (resp. in ψ(wi · · ·wi+k−1)).
There exist infinitely many prefixes of y (resp. z) of the type u1au2a

′ (resp.
v1bv2b

′) fulfilling the conditions ı) and ıı) below:

ı) The growth type of u1 ∈ A∗ and a′ ∈ A (resp. v1 ∈ B∗ and b′ ∈ B) is
maximal.
ıı) The words u2 and v2 do not contain a letter of maximal growth.

It is easy to prove that there exists a constant K
′
such that gap(τn(b′)) ≤

K
′
ne

′
β

′n
and gap(σn(a′)) ≤ K

′
nd

′
α

′n
for all n ∈ N. Due to Lemma 3,

limn→+∞ |σn(a)|/nd′α′n
and limn→+∞ |τn(b)|/ne′β ′n

exist and are finite, we
call them µ(a) and µ(b) respectively.
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Let u1au2a
′ be a prefix of y fulfilling the conditions ı) and ıı), then choose

v1bv2b
′ fulfilling the same conditions and so that

(6)
K ′

µ(a)

(

2λσ(u1)

2λτ (v1) + λτ (b′)

)
log α′

log α
(

log β

logα

)e
log(β′)
log(β)

−e′

≤ 1

3
.

From Corollary 11 there exist four strictly increasing sequences of integers
(mi; i ∈ N), (ni; i ∈ N), (pi; i ∈ N) and (qi; i ∈ N) such that

(7)

limi→+∞
nd

i α
ni

me
i
βmi

= 2λτ (v1)
2λσ(u1)+λσ(a′)

and

limi→+∞
pe

iβ
pi

qd
i α

qi
= 2λσ(u1)

2λτ (v1)+λτ (b′)
.

As a consequence of (7) we have

(8) lim
i→+∞

ni/mi = log(β)/ log(α) and lim
i→+∞

pi/qi = log(α)/ log(β),

and there exists i0 such that for all i ≥ i0 we have

|σni(u1au2)|
|τmi(v1)|

≤ 1 ≤ |σni(u1au2a
′)|

|τmi(v1b)|
and

|τpi(v1bv2)|
|σqi(u1)|

≤ 1 ≤ |τpi(v1bv2b
′)|

|σqi(u1a)|
.

It comes that ψ(τmi(b)) (resp. φ(σqi(a))) has an occurrence in φ(σni(a′))
(resp. ψ(τpi(b′))).

To obtain a contradiction it suffices to prove that there exists j ≥ i0 such
that

gap(σnj (a′))/|τmj (b)| ≤ 1

2
or gap(τpj (b′))/|σqj(a)| ≤ 1

2
.

We will consider several cases. Before we define K to be the maximum of
the set

{

K
′

, 2
log β

logα
, 2

logα

log β
,

4λτ (v1)

2λσ(u1) + λσ(a′)
,

4λσ(u1)

2λτ (v1) + λτ (b′)

}

.

We remark thatK ≥ 2. There exists j0 such that for all i ≥ j0 the quantities

ni
mi

,
pi
qi
,

ndiα
ni

me
iβ

mi
,
peiβ

pi

qdi α
qi
,
µ(a)qd

′

i α
′qi

|σqi(a)| ,
µ(b)me′

i β
′mi

|τmi(b)| and
gap(σni(a′))

nd
′

i α
′ni

are less than K. Let i ≥ j0. To find j we will consider five cases.



14 FABIEN DURAND

First case: log(α)
log(β)

< log(α
′
)

log(β
′
)
. As β

′
> 1 we have

gap(τpi(b′)/|σqi(a)| ≤ Kpe
′

i β
′pi

µ(a)qd
′

i α
′qi

µ(a)qd
′

i α
′qi

|σqi(a)|

≤ K2

µ(a)

pe
′

i

qd
′

i

exp

{(

pi
qi

− logα
′

log β ′

)

qi log β
′

}

,

which tends to 0 when i tends to ∞ (this comes from (8)).

Second case: log(α
′
)

log(β′ )
< log(α)

log(β)
. As in the first case we obtain

lim
i→+∞

gap(σni(a′))/|τmi(b)| = 0.

Third case: log(α
′
)

log(α)
= log(β

′
)

log(β)
and (e

′ − d
′
) log β < (e− d) log β

′
. We have

gap(τpi(b′))/|σqi(a)| ≤ K2

µ(a)

pe
′

i

qd
′

i

β
′pi

α′qi =
K2

µ(a)

pe
′

i

qd
′

i

(

βpi

αqi

)
log β

′

log β

=
K2

µ(a)

pe
′

i

qd
′

i

(

qdi
pei

)

log β
′

log β
(

peiβ
pi

qdi α
qi

)
log β

′

log β

≤ K2

µ(a)

(

pi
qi

)e
′
−e log β

′

log β

K
log β

′

log β q
(e

′
−d

′
)−(e−d) log β

′

log β

i

≤ K2

µ(a)
Ke

′
+(1−e) log β

′

log β q
(e

′
−d

′
)−(e−d) log β

′

log β

i ,

which tends to 0 when i tends to ∞.

Fourth case: log(α
′
)

log(α)
= log(β

′
)

log(β)
and (e

′ − d
′
) log β > (e− d) logβ

′
. As in the

previous case we obtain

lim
i→+∞

gap(σni(a′))/|τmi(b)| = 0.

Fifth case: log(α
′
)

log(α)
= log(β

′
)

log(β)
and (e

′ − d
′
) log β = (e − d) log β

′
. From (6),

(7) and (8) we obtain for all large enough i

gap(τpi(b′))/|σqi(a)| ≤ K ′

µ(a)

pe
′

i β
′pi

qd
′

i α
′qi

µ(a)qd
′

i α
′qi

|σqi(a)|

≤ K ′

µ(a)

(

peiβ
pi

qdi α
qi

)
log α′

log α
(

qi
pi

)e
log β′

log β
−e′

µ(a)qd
′

i α
′qi

|σqi(a)| ≤ 1

2
.

This ends the proof. 2
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Corollary 14. The words having infinitely many occurrences in x appear
in x with bounded gaps.

Proof. Let u be a word having infinitely many occurrences in x. We set
|u| = n. To prove that u appears with bounded gaps in x it suffices to prove
that the letter 1 appears with bounded gaps in the sequence t ∈ {0, 1}N

defined by

ti = 1 if x[i,i+n−1] = u

and 0 otherwise. In the sequel we prove that t is α and β-substitutive.
The sequence y(n) = ((yi · · · yi+n−1); i ∈ N) is a fixed point of the substitution
σn : An → A∗

n where An is the alphabet An, defined for all (a1 · · ·an) in An
by

σn((a1 · · ·an)) = (b1 · · · bn)(b2 · · · bn+1) · · · (b|σ(a1)| · · · b|σ(a1)|+n−1)

where σ(a1 · · ·an) = b1 · · · bk (for more details see Section V.4 in [Qu] for
example).
Let ρ : An → A∗ be the letter to letter morphism defined by ρ((b1 · · · bn)) =
b1 for all (b1 · · · bn) ∈ An. We have ρ◦σn = σ◦ρ, and then MρMσn

= MσMρ.
Consequently the dominant eigenvalue of σn is α and y(n) is α-substitutive.
Let f : An → {0, 1} be the letter to letter morphism defined by

f((b1 · · · bn)) = 1 if b1 · · · bn = u and 0 otherwise.

It is easy to see that f(y(n)) = t hence t is α-substitutive.
In the same way we show that t is β-substitutive and Theorem 13 concludes
the proof. 2

6. Proof of Theorem 1.

6.1. Decomposition of a substitution into sub-substitutions. The
following proposition is a consequence of Paragraph 4.4 and Proposition
4.5.6 in [LM].

Proposition 15. Let M = (mi,j)i,j∈A be a matrix with non-negative coeffi-
cients and no column equal to 0. There exist three positive integers p 6= 0,
q, l, where q ≤ l − 1, and a partition {Ai; 1 ≤ i ≤ l} of A such that the
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matrix Mp is equal to

(9)



























A1 A2 · · · Aq Aq+1 Aq+2 · · · Al
A1 M1 0 · · · 0 0 0 · · · 0
A2 M1,2 M2 · · · 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
...

Aq M1,q M2,q · · · Mq 0 0 · · · 0
Aq+1 M1,q+1 M2,q+1 · · · Mq,q+1 Mq+1 0 · · · 0
Aq+2 M1,q+2 M2,q+2 · · · Mq,q+2 0 Mq+2 · · · 0
...

...
...

. . .
...

...
...

. . .
...

Al M1,l M2,l · · · Mq,l 0 0 · · · Ml



























,

where the matrices Mi, 1 ≤ i ≤ q (resp. q + 1 ≤ i ≤ l) , are primitive or
equal to zero (resp. primitive), and such that for all 1 ≤ i ≤ q there exists
i+ 1 ≤ j ≤ l such that the matrix Mi,j is different from 0.

In what follows we keep the notations of Proposition 15. We will say that
{Ai; 1 ≤ i ≤ l} is a primitive component partition of A (with respect to M).
If i belongs to {q + 1, · · · , l} we will say that Ai is a principal primitive
component of A (with respect to M).
Let τ : A → A∗ be a substitution and M = (mi,j)i,j∈A its matrix. Let
i ∈ {q+1, · · · , l}. We denote τi the restriction (τp)|Ai

: Ai → A∗ of τp to Ai.
Because τi(Ai) is included in A∗

i we can consider that τi is a morphism from
Ai to A∗

i whose matrix is Mi. Let i ∈ {1, · · · , q} such that Mi is not equal
to 0. Let ϕi be the morphism from A to A∗

i defined by ϕ(b) = b if b belongs
to Ai and the empty word otherwise. Let us consider the map τi : Ai → A∗

defined by τi(b) = ϕi(τ
p(b)) for all a ∈ Ai. We remark as previously that

τi(Ai) is included in A∗
i , consequently τi defines a morphism from Ai to A∗

i

whose matrix is Mi.
We will say that the substitution τ : A→ A∗ satisfies Condition (C) if:

C1. The matrix M , itself, is of the type (9) (i.e., p = 1);
C2. The matrices Mi are equal to 0 or with positive coefficients if 1 ≤

i ≤ q and with positive coefficients otherwise;
C3. For all matrices Mi different from 0, with i ∈ {1, · · · , l}, there exists

ai ∈ Ai such that τi(ai) = aiui where ui is a non-empty word of A∗

if Mi is different from the 1 × 1 matrix [1] and empty otherwise.

From Proposition 15 every substitution τ : A→ A∗ has a power τk satisfying
condition (C). The definition of substitutions implies that for all q + 1 ≤
i ≤ l we have Mi 6= [1].
Let τ : A → A∗ be a substitution satisfying condition (C) (we keep the
previous notations). For all 1 ≤ i ≤ l such that Mi is different from 0
and the 1 × 1 matrix [1], the map τi : Ai → A∗

i defines a substitution we
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will call main sub-substitution of τ if i ∈ {q + 1, · · · , l} and non-main sub-
substitution of τ otherwise. Moreover the matrix Mi has positive coefficients
which implies that the substitution τi is primitive. We remark that there
exists at least one main sub-substitution.
In [Du3] the following results were obtained and will be used in the sequel.

Lemma 16. Let x be a proper fixed point of the substitution σ. Let σ : A→
A

∗
be a main sub-substitution of σ. Then for all n ∈ N and all a ∈ A the

word σn(a) appears infinitely many times in x.

Proof. The proof is left to the reader. 2

In [Du3] the following result is obtained and will be used in the sequel.

Theorem 17. Let x and y be respectively a primitive α-substitutive sequence
and a primitive β-substitutive sequence such that L(x) = L(y). Suppose that
α and β are multiplicatively independent, then x and y are periodic.

6.2. The conjecture for “good” substitutions. We do not succeed yet
to prove the conjecture given in the introduction but we are able to prove it
for a very large family of substitutions. Until we prove the whole conjecture
we call them “good” substitutions. More precisely, let σ : A → A∗ be a
substitution whose dominant eigenvalue is α. The substitution σ is said
to be a “good” substitution if there exists a main sub-substitution whose
dominant eigenvalue is α.
For example primitive substitutions and substitutions of constant length are
“good” substitutions. Now consider the following substitution

σ : {a, 0, 1} → {a, 0, 1}∗
a 7→ aa0
0 7→ 01
1 7→ 0.

Its dominant eigenvalue is 2 and it has only one main sub-substitution (0 7→
01, 1 7→ 0) which dominant eigenvalue is (1+

√
5)/2, hence it is not a “good”

substitution.

Theorem 18. Suppose that we only consider “good” substitutions. Then
the conjecture is true.

Proof. We take the notations of the first lines of Section 5.
Let σ : A→ A

∗
be a main sub-substitution of σ. The words of x appearing

infinitely many times in x appear with bounded gaps (Corollary 14). Hence
using Lemma 16 we deduce that for all main sub-substitution σ of σ and τ
of τ we have φ(L(σ)) = ψ(L(τ )) = L. From Theorem 17 it comes that L
is periodic, i.e., there exists a word u such that L = L(uω) where |u| is the
least period. There exists an integer N such that all the words of length |u|
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appear infinitely many times in xNxN+1 · · · . We set t = xNxN+1 · · · and we
will prove that t is periodic and consequently x will be ultimately periodic.
The word u appears infinitely many times, consequently it appears with
bounded gaps. Let Ru be the set of return words to u (a word w is a
return word to u if wu ∈ L(x), u is a prefix of wu and u has exactly two
occurrences in wu). It is finite. There exists an integer N such that all the
words w ∈ Ru ∩ L(xNxN+1 · · · ) appear infinitely many times in x. Hence
these words appear with bounded gaps in x. We set t = xNxN+1 · · · and we
will prove that t is periodic and consequently x will be ultimately periodic.
We can suppose that u is a prefix of t. Then t is a concatenation of return
words to u. Let w be a return word to u. It appears with bounded gaps
hence it appears in some φ(σn(a)) and there exist two words, p and q, and
an integer i such that wu = puiq. As |u| is the least period of L it comes
that wu = ui. It follows that t = uω.

2

The case of fixed points.
This part is devoted to the proof of Theorem 1 restricted to fixed points.
More precisely we prove:

Corollary 19. Let x be a fixed point of the substitution σ : A → A∗ whose
dominant eigenvalue is α. Suppose that x is also a fixed point of the substi-
tution τ : A → A∗ whose dominant eigenvalue is β. Suppose that α and β
are multiplicatively independent. Then x is ultimately periodic.

Proof. The letters appearing infinitely often in x appear with bounded
gaps (Proposition 13). Let σ : A→ A be a main sub-substitution of σ. Let
a ∈ A. Suppose that there exists a letter b, appearing infinitely many times
in x, which does not belong to A. Then the word σn(a) does not contain b
and b could not appear with bounded gaps. Consequently there exists only
one main sub-substitution and the letters which appear with bounded gaps
belong to A. It comes that σ is a “good” substitution. In the same way τ
is a good substitution. Theorem 18 concludes the proof. 2
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