Dorin Bucur 
email: dorin.bucur@univ-savoie.fr
  
Giuseppe Buttazzo 
email: buttazzo@dm.unipi.it
  
Antoine Henrot 
email: henrot@iecn.u-nancy.fr
  
  
  
  
  
Minimization of λ 2 (Ω) with a perimeter constraint

Keywords: Dirichlet Laplacian, eigenvalues, perimeter constraint, isoperimetric problem AMS classification: 49Q10, 49J45, 49R50, 35P15, 47A75

We study the problem of minimizing the second Dirichlet eigenvalue for the Laplacian operator among sets of given perimeter. In two dimensions, we prove that the optimum exists, is convex, regular, and its boundary contains exactly two points where the curvature vanishes.

In N dimensions, we prove a more general existence theorem for a class of functionals which is decreasing with respect to set inclusion and γ lower semicontinuous.

Introduction

Let Ω be a bounded open set in R N and let us denote by 0 < λ 1 (Ω) ≤ λ 2 (Ω) ≤ λ 3 (Ω) . . . its eigenvalues for the Laplacian operator with homogeneous Dirichlet boundary condition. Problems linking the shape of a domain to the sequence of its eigenvalues, or to some function of them, are among the most fascinating of mathematical analysis or differential geometry. In particular, problems of minimization of eigenvalues, or combination of eigenvalues, brought about many deep works since the early part of the twentieth century. Actually, this question appears first in the famous book of Lord Rayleigh "The theory of sound". Thanks to some explicit computations and "physical evidence", Lord Rayleigh conjectured that the disk should minimize the first Dirichlet eigenvalue λ 1 of the Laplacian among plane open sets of given area. This result has been proved later by Faber and Krahn using a rearrangement technique. Then, many other similar "isoperimetric problems" have been considered. For a survey on these questions, we refer to the papers [START_REF] Ashbaugh | Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral Theory and Mathematical Physics: a Festschrift in honor of Barry Simon's 60th birthday[END_REF], [START_REF] Belhachmi | Shape optimization problems for eigenvalues of elliptic operators[END_REF], [START_REF] Payne | Isoperimetric inequalities and their applications[END_REF], [START_REF] Yau | Open problems in geometry. Differential geometry: partial differential equations on manifolds[END_REF] and to the recent books [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF], [START_REF] Kesavan | Symmetrization & applications[END_REF].

Usually, in these minimization problems, one works in the class of sets with a given measure. In this paper, on the contrary we choose to look at similar problems but with a constraint on the perimeter of the competing sets. Apart the mathematical own interest of this question, the reason which led us to consider this problem is the following. Studying the famous gap problem (originally considered in [START_REF] Van Den | On condensation in the free-boson gas and the spectrum of the Laplacian[END_REF], see Section 7 in [START_REF] Ashbaugh | Isoperimetric inequalities for eigenvalues of the Laplacian, Spectral Theory and Mathematical Physics: a Festschrift in honor of Barry Simon's 60th birthday[END_REF] for a comprehensive bibliography on this problem), we were interested in minimizing λ 2 (Ω)λ 1 (Ω), and more generally λ 2 (Ω) -kλ 1 (Ω), with 0 ≤ k ≤ 1, among (convex) open sets of given diameter. Looking at the limiting case k = 0, we realized that the optimal set (which does exist) is a body of constant width. Since all bodies of constant width have the same perimeter in dimension two, we were naturally led to consider the problem of minimizing λ 2 (Ω) among sets of given perimeter. In particular, if the solution was a ball (or more generally a body of constant width), it would give the answer to the previous problem. Unfortunately, as it is shown in Theorem 2.5, it is not the case! The minimizer that we are able to identify and characterize here (at least in two dimension) is a particular regular convex body, with two points on its boundary where the curvature vanishes. It is worth observing that the four following minimization problems for the second eigenvalue have different solutions: with a volume constraint: two identical disks (see [START_REF] Krahn | Über Minimaleigenschaften der Kugel in drei un mehr Dimensionen[END_REF] or [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF]), with a volume and a convexity constraint: a stadium-like set (see [START_REF] Henrot | Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions[END_REF]), with a perimeter constraint: the convex set described in this paper, with a diameter constraint: we conjecture that the solution is a disk.

Let us remark that the same problems for the first eigenvalue all have the disk as the solution thanks to Faber-Krahn inequality and the classical isoperimetric inequality.

This paper is organized as follows: section 2 is devoted to the complete study of the two-dimensional problem. We first prove the existence of a minimizer and its C ∞ regularity. Then, we give some other qualitative and geometric properties of the minimizer. For that purpose, we use boundary variation (the classical Hadamard's formulae) which leads to an overdetermined boundary value problem, with |gradu 2 | 2 proportional to the curvature of the boundary. We use this boundary condition to prove that the boundary of the optimal domain does not contain any arc of circle and segment and that the curvature of the boundary vanishes at exactly two points. In section 3, we consider the problem in higher dimension; this case is much more complicated since we cannot use the trick of convexification, and actually we conjecture that optimal domains are not convex (see section 4 on open problems). We first give some preliminaries on capacity and γ-convergence (we refer to the book [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF] for all details), then we consider a quite general minimization problem for a class of functionals decreasing with respect to set inclusion and which are γ lower semicontinuous. We work here with measurable sets with bounded perimeter which are included in some fixed bounded domain D. As Theorem 3.6 shows, this relaxed problem is equivalent to the initial problem. For the second eigenvalue of the Laplacian we moreover prove that we can get rid of the assumption that the sets lie in some bounded subset of R N .

2 The two-dimensional case

Existence, regularity

We want to solve the minimization problem

min{λ 2 (Ω), Ω ⊂ R 2 , P (Ω) ≤ c} (1) 
where λ 2 (Ω) is the second eigenvalue of the Laplacian with Dirichlet boundary condition on the bounded open set Ω and P (Ω) denotes the perimeter (in the sense of De Giorgi) of Ω. The monotonicity of the eigenvalues of the Dirichlet-Laplacian with respect to the inclusion has two easy consequences:

1. If Ω * denotes the convex hull of Ω, since in two dimensions and for a connected set, P (Ω * ) ≤ P (Ω), it is clear that we can restrict ourselves to look for minimizers in the class of convex sets with perimeter less or equal than c.

2. Obviously, it is equivalent to consider the constraint P (Ω) ≤ c or

P (Ω) = c.
Of course, point 1 above easily implies existence (see Theorem 2.2 below), but is no longer true in higher dimension which makes the existence proof much harder, see Theorem 3.8. For the regularity of optimal domains the following lemma will be used.

Lemma 2.1. If Ω is a minimizer of problem (1), then λ 2 (Ω) is simple.

Proof. The idea of the proof is to show that a double eigenvalue would split under boundary perturbation of the domain, with one of the eigenvalues going down. A very similar result is proved in [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF]Theorem 2.5.10]. The new difficulties here are the perimeter constraint (instead of the volume) and the fact that the domain Ω is convex, but not necessarily regular. Nevertheless, we know that any eigenfunction of a convex domain is in the Sobolev space H 2 (Ω), see [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]. Let us assume, for a contradiction, that λ 2 (Ω) is not simple, then it is double because Ω is a convex domain in the plane, see [START_REF] Lin | On the second eigenfunctions of the Laplacian in R 2[END_REF]. Let us recall the result of derivability of eigenvalues in the multiple case (see [START_REF] Cox | Extremal eigenvalue problems for the Laplacian, Recent advances in partial differential equations[END_REF] or [START_REF] Rousselet | Shape design sensitivity of a membrane[END_REF]). Assume that the domain Ω is modified by a regular vector field x → x + tV (x). We will denote by Ω t the image of Ω by this transformation. Of course, Ω t may be not convex but we have actually no convexity constraint (since convexity come for free) and this has no consequence on the differentiability of t → λ 2 (Ω t ). Let us denote by u 2 , u 3 two orthonormal eigenfunctions associated to λ 2 , λ 3 . Then, the first variation of λ 2 (Ω t ), λ 3 (Ω t ) are the repeated eigenvalues of the 2 × 2 matrix

M =    -∂Ω ∂u 2 ∂n 2 V.n dσ -∂Ω ∂u 2 ∂n ∂u 3 ∂n V.n dσ -∂Ω ∂u 2 ∂n ∂u 3 ∂n V.n dσ -∂Ω ∂u 3 ∂n 2 V.n dσ    . (2) 
Now, let us introduce the Lagrangian L(Ω) = λ 2 (Ω)+ µP (Ω). As we will see in the proof of Theorem 2.2, the perimeter is differentiable and the derivative is a linear form in V.n supported on ∂Ω (see e.g. [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]Corollary 5.4.16]). We will denote by dP ∂Ω , V.n this derivative. So the Lagrangian L(Ω t ) has a derivative which is the smallest eigenvalue of the matrix M + µ dP ∂Ω , V.n I where I is the identity matrix. Therefore, to reach a contradiction (with the optimality of Ω), it suffices to prove that one can always find a deformation field V such that the smallest eigenvalue of this matrix is negative. Let us consider two points A and B on ∂Ω and two small neighborhoods γ A and γ B of these two points of same length, say 2δ. Let us choose any regular function ϕ(s) defined on (-δ, +δ) (vanishing at the extremities of the interval) and a deformation field V such that

V.n = +ϕ on γ A , V.n = -ϕ on γ B , V.n = 0 elsewhere . Then, the matrix M + µ dP ∂Ω , V.n I splits into two matrices M A -M B
where M A is defined by (and a similar formula for M B ):

M A =    dP γ A , ϕ -γ A ∂u 2 ∂n 2 ϕ dσ -γ A ∂u 2 ∂n ∂u 3 ∂n ϕ dσ -γ A ∂u 2 ∂n ∂u 3 ∂n ϕ dσ dP γ A , ϕ -γ A ∂u 3 ∂n 2 ϕ dσ    . (3) 
In particular, it is clear that the exchange of A and B replaces the matrix M A -M B by its opposite. Therefore, the only case where one would be unable to choose two points A, B and a deformation ϕ such that the matrix has a negative eigenvalue is if M A -M B is identically zero for any ϕ. But this implies, in particular

γ A ∂u 2 ∂n ∂u 3 ∂n ϕ dσ = γ B ∂u 2 ∂n ∂u 3 ∂n ϕ dσ (4) 
and

γ A ∂u 2 ∂n 2 - ∂u 3 ∂n 2 ϕ dσ = γ B ∂u 2 ∂n 2 - ∂u 3 ∂n 2 ϕ dσ (5) 
for any regular ϕ and any points A and B on ∂Ω. This implies that the has to be constant. Since the nodal line of the second eigenfunction touches the boundary in two points (see [START_REF] Melas | On the nodal line of the second eigenfunction of the Laplacian in R 2[END_REF] or [START_REF] Alessandrini | Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains[END_REF]), ∂u 2 ∂n has to change sign. So we get a function belonging to H 1/2 (∂Ω) taking values c and -c on sets of positive measure, which is absurd, unless c = 0. This last issue is impossible by the Holmgren uniqueness theorem.

We are now in a position to prove the existence and regularity of optimal domains for problem (1). Theorem 2.2. There exists a minimizer Ω for problem [START_REF] Adams | Function Spaces and Potential Theory[END_REF] and

Ω is of class C ∞ .
Proof. To show the existence of a solution we use the direct method of calculus of variations. Let Ω n be a minimizing sequence that, according to point 1 above, we can assume made by convex sets. Moreover, Ω n is a bounded sequence because of the perimeter constraint. Therefore, there exists a convex domain Ω and a subsequence still denoted by Ω n such that:

Ω n converges to Ω for the Hausdorff metric and for the L 1 convergence of characteristic functions (see e.g. [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]Theorem 2.4.10]); since Ω n and Ω are convex this implies that Ω n → Ω in the γ-convergence; P (Ω) ≤ c (because of the lower semicontinuity of the perimeter for the L 1 convergence of characteristic functions, see [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]Proposition 2.3.6]); λ 2 (Ω n ) → λ 2 (Ω) (continuity of the eigenvalues for the γ-convergence, see [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]Proposition 2.4.6] or [START_REF] Henrot | Extremum Problems for Eigenvalues of Elliptic Operators[END_REF]Theorem 2.3.17], see also Section 3.1 below).

Therefore, Ω is a solution of problem (1).

We notice that the limit Ω is a "true" domain (i.e. it is not the empty set); indeed any degenerating sequence, a sequence shrinking to a segment for instance, converges to the empty set, thus the second eigenvalue blows to infinity.

We go on with the proof of regularity, which is classical, see e.g. [START_REF] Chambolle | C ∞ regularity of the free boundary for a two-dimensional optimal compliance problem[END_REF]. We refer also to [START_REF] Brianc ¸on | Regularity of optimal shapes for the Dirichlet's energy with volume constraint[END_REF], [START_REF] Brianc ¸on | Lipschitz continuity of state functions in some optimal shaping[END_REF] and [START_REF] Brianc ¸on | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF] for similar results in a more complicated context. Let us consider (locally) the boundary of ∂Ω as the graph of a (concave) function h(x), with x ∈ (-a, a). We make a perturbation of ∂Ω using a regular function ψ compactly supported in (-a, a), i.e. we look at Ω t whose boundary is h(x)+ tψ(x). The function t → P (Ω t ) is differentiable at t = 0 (see [START_REF] Giusti | Minimal Surfaces and Functions of Bounded Variation[END_REF] or [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]) and its derivative dP (Ω, ψ) at t = 0 is given by:

dP (Ω, ψ) := +a -a h ′ (x)ψ ′ (x) dx 1 + h ′ (x) 2 . ( 6 
)
In the same way, thanks to Lemma 2. 

dλ 2 (Ω, ψ) := - +a -a |∇u 2 (x, h(x))| 2 ψ(x) dx. (7) 
The optimality of Ω implies that there exists a Lagrange multiplier µ such that, for any ψ ∈ C ∞ 0 (-a, a) µdλ 2 (Ω, ψ) + dP (Ω, ψ) = 0 which implies, thanks to ( 6) and [START_REF] Belhachmi | Shape optimization problems for eigenvalues of elliptic operators[END_REF], that h is a solution (in the sense of distributions) of the o.d.e.:

- h ′ (x) 1 + h ′ (x) 2 ′ = µ|∇u 2 (x, h(x))| 2 . ( 8 
)
Since u 2 ∈ H 2 (Ω), its first derivatives ∂u 2 ∂x and ∂u 2 ∂y have a trace on ∂Ω which belong to H 1/2 (∂Ω). Now, the Sobolev embedding in one dimension H 1/2 (∂Ω) ֒→ L p (∂Ω) for any p > 1 shows that x → |∇u 2 (x, h(x))| 2 is in L p (-a, a) for any p > 1. Therefore, according to (8), the function h ′ / 1 + h ′ 2 is in W 1,p (-a, a) for any p > 1 (recall that h ′ is bounded because Ω is convex), so it belongs to some Hölder space C 0,α ([-a, a]) (for any α < 1, according to Morrey-Sobolev embedding). Since h ′ is bounded, it follows immediately that h belongs to C 1,α ([-a, a]). Now, we come back to the partial differential equation and use an intermediate Schauder regularity result (see [START_REF] Gilbarg | Intermediate Schauder estimates[END_REF] or the remark after Lemma 6.18 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]) to claim that if ∂Ω is of class C 1,α , then the eigenfunction u 2 is C 1,α (Ω) and |∇u 2 | 2 is C 0,α . Then, looking again to the o.d.e. ( 8) and using the same kind of Schauder's regularity result yields that h ∈ C 2,α . We iterate the process, thanks to a classical bootstrap argument, to conclude that h is C ∞ . Remark 2.3. Working harder, it seems possible to prove analyticity of the boundary. It would also give another proof of points 1 and 2 of Theorem 2.5 below.

Qualitative properties

Since we know that the minimizers are of class C ∞ , we can now write rigorously the optimality condition. Under variations of the boundary (replace Ω by Ω t = (I + tV )(Ω)), the shape derivative of the perimeter is given by (see Section 2.1 and [22, Corollary 5.4.16])

dP (Ω; V ) = ∂Ω C V.n dσ
where C is the curvature of the boundary and n the exterior normal vector. Using the expression of the derivative of the eigenvalue given in [START_REF] Belhachmi | Shape optimization problems for eigenvalues of elliptic operators[END_REF] (see also [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]Theorem 5.7.1]), the proportionality of these two derivatives through some Lagrange multiplier yields the existence of a constant µ such that

|∇u 2 | 2 = µC on ∂Ω . (9) 
Setting X = (x 1 , x 2 ), multiplying the equality in (9) by X.n and integrating on ∂Ω yields, thanks to Gauss formulae ∂Ω C X.n dσ = P (Ω), and a classical application of the Rellich formulae ∂Ω |∇u 2 | 2 X.n dσ = 2λ 2 (Ω), the value of the Lagrange multiplier. So, we have proved:

Proposition 2.4. Any minimizer Ω satisfies

|∇u 2 (x)| 2 = 2λ 2 (Ω) P (Ω) C(x) , x ∈ ∂Ω ( 10 
)
where C(x) is the curvature at point x.

As a consequence, we can state some qualitative properties of the optimal domains. Theorem 2.5. An optimal domain satisfies:

1. Its boundary does not contain any segment.

Its boundary does not contain any arc of circle.

3. Its boundary contains exactly two points where the curvature vanishes.

Proof. An easy consequence of Hopf's lemma (applied to each nodal domain) is that the normal derivative of u 2 only vanishes on ∂Ω at points where the nodal line hits the boundary. Now, we know (see [START_REF] Melas | On the nodal line of the second eigenfunction of the Laplacian in R 2[END_REF] or [START_REF] Alessandrini | Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains[END_REF]) that there are exactly two such points. Then, the first and third items follow immediately from the "over-determined" condition [START_REF] Brianc ¸on | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF]. The second item has already been proved in a similar situation in [START_REF] Henrot | Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions[END_REF]. We repeat the proof here for the sake of completeness. Let us assume that ∂Ω contains a piece of circle γ. According to [START_REF] Brianc ¸on | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF], Ω satisfies the optimality condition

∂u 2 ∂n = c (constant) on γ . ( 11 
)
We put the origin at the center of the corresponding disk and we introduce the function w(x, y) = x ∂u 2 ∂y -y ∂u 2 ∂x .

Then, we easily verify that    -∆w = λ 2 w in Ω w = 0 on γ ∂w ∂n = 0 on γ. Now we conclude, using Holmgren uniqueness theorem, that w must vanish in a neighborhood of γ, so in the whole domain by analyticity. Now, it is classical that w = 0 imply that u 2 is radially symmetric in Ω. Indeed, in polar coordinates, w = 0 implies ∂u ∂θ = 0. Therefore Ω would be a disk which is impossible since it would contradict point 3.

3 The N -dimensional case

Preliminaries on capacity and related modes of convergence

We will use the notion of capacity of a subset E of R N , defined by

cap (E) = inf R N (|∇u| 2 + u 2 ) dx : u ∈ U E ,
where U E is the set of all functions u of the Sobolev space H 1 (R N ) such that u ≥ 1 almost everywhere in a neighbourhood of E. Below we summarize the main properties of the capacity and the related convergences. For further details we refer to [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF] or to [START_REF] Henrot | Variation et Optimisation de Formes[END_REF].

If a property P (x) holds for all x ∈ E except for the elements of a set Z ⊂ E with cap (Z) = 0, then we say that P (x) holds quasi-everywhere (shortly q.e.) on E. The expression almost everywhere (shortly a.e.) refers, as usual, to the Lebesgue measure.

A subset Ω of R N is said to be quasi-open if for every ε > 0 there exists an open subset Ω ε of R N , such that cap (Ω ε ∆Ω) < ε, where ∆ denotes the symmetric difference of sets. Equivalently, a quasi-open set Ω can be seen as the set {u > 0} for some function u belonging to the Sobolev space H 1 (R N ). Note that a Sobolev function is only defined quasi-everywhere, so that a quasi-open set Ω does not change if modified by a set of capacity zero.

In this section we fix a bounded open subset D of R N with a Lipschitz boundary, and we consider the class A(D) of all quasi-open subsets of D. For every Ω ∈ A(D) we denote by H 1 0 (Ω) the space of all functions u ∈ H 1 0 (D) such that u = 0 q.e. on D \ Ω, endowed with the Hilbert space structure inherited from H 1 0 (D). This way

H 1 0 (Ω) is a closed subspace of H 1 0 (D).
If Ω is open, then the definition above of H 1 0 (Ω) is equivalent to the usual one (see [START_REF] Adams | Function Spaces and Potential Theory[END_REF]). For Ω ∈ A(D) the linear operator -∆ on H 1 0 (Ω) has discrete spectrum, again denoted by

λ 1 (Ω) ≤ λ 2 (Ω) ≤ λ 3 (Ω) ≤ • • • .
For Ω ∈ A(D) we consider the unique weak solution w Ω ∈ H 1 0 (Ω) of the elliptic problem formally written as

-∆w = 1 in Ω w = 0 on ∂Ω. ( 12 
)
Its precise meaning is given via the weak formulation

D ∇w∇φ dx = D φ dx ∀φ ∈ H 1 0 (Ω).
Here, and in the sequel, for every quasi-open set of finite measure we denote by R ω : L 2 (R N ) -→ L 2 (R N ) the operator defined by R ω (f ) = u, where u solves equation ( 12) with the right-hand side f , so w = R ω (1). Now, we introduce two useful convergences for sequences of quasi-open sets.

Definition 3.1. A sequence (Ω n ) of quasi-open sets is said to γ-converge to a quasi-open set Ω if w Ωn → w Ω in L 2 (R N ).
The following facts about γ-convergence are known (see [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]).

(i) The class A(D), endowed with the γ-convergence, is a metrizable and separable space, but it is not compact.

(ii) The γ-compactification of A(D) can be fully characterized as the class of all capacitary measures on D, that are Borel nonnegative measures, possibly +∞ valued, that vanish on all sets of capacity zero.

(iii) For every integer k the map Ω → λ k (Ω) is a map which is continuous for the γ-convergence.

To overcome the lack of compactness of the γ-convergence, it is convenient to introduce a weaker convergence.

Definition 3.2. A sequence (Ω n ) of quasi-open sets is said to wγ-converge to a quasi-open set Ω if w Ωn → w in L 2 (R N ), and Ω = {w > 0}.
The main facts about wγ-convergence are the following (see [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]).

(i) The wγ-convergence is compact on the class A(D).

(ii) The wγ-convergence is weaker that the γ-convergence.

(iii) Every functional F (Ω) which is lower semicontinuous for γ-convergence, and decreasing for set inclusion, is lower semicontinuous for wγconvergence too. In particular, for every integer k, the mapping Ω → λ k (Ω) is wγ-lower semicontinuous.

(iv) The Lebesgue measure Ω → |Ω| is a wγ-lower semicontinuous map. This last property can be generalized by the following.

Proposition 3.3. Let f ∈ L 1 (D) be a nonnegative function. Then the mapping Ω → Ω f dx is wγ-lower semicontinuous on A(D).

Proof. Let (Ω n ) be a sequence in A(D) that wγ-converges to some Ω ∈ A(D); this means that w Ωn → w in L 2 (R N ) and that Ω = {w > 0}. Passing to a subsequence we may assume that w Ωn → w a.e. on D. Suppose x ∈ Ω is a point where w Ωn (x) → w(x). Then w(x) > 0, and for n large enough we have that w Ωn (x) > 0. Hence x ∈ Ω n . So we have shown that

1 Ω (x) ≤ lim inf n→+∞ 1 Ωn (x)
for a.e. x ∈ D.

Fatou's lemma now completes the proof.

The link between wγ-convergence and L 1 -convergence is given by the following.

Proposition 3.4. Let (A n ) be a sequence of quasi-open sets which wγconverges to a quasi-open set A, and assume that there exist measurable sets Ω n such that A n ⊂ Ω n , and that (Ω n ) converges in L 1 to a measurable set Ω. Then we have |A \ Ω| = 0.

Proof. By applying Proposition 3.3 with f = 1 D\Ω we obtain

|A \ Ω| ≤ lim inf n→∞ |A n \ Ω| = lim inf n→∞ |A n \ Ω n | = 0,
which concludes the proof.

A general existence result

In this section we consider general shape optimization problems of the form inf

F (Ω) : Ω ⊂ D, P (Ω) ≤ L , (13) 
where D is a given bounded open subset of R N with a Lipschitz boundary, and L is a given positive real number. Finally, the cost function F is a map defined on the class A(D) of admissible domains. We assume that:

F is γ-lower semicontinuous on A(D); F is decreasing with respect to set inclusion.

The functional F is then wγ-lower semicontinuous by Section 3.1. Some interesting examples of functionals F satisfying ( 14) are listed below. (i) F (Ω) = Φ λ(Ω) , where λ(Ω) denotes the spectrum of the Dirichlet Laplacian in Ω, that is the sequence λ k (Ω) of the Dirichlet eigenvalues, and the function Φ : R N → R is lower semicontinuous and nondecreasing, in the sense that

λ n k → λ k ∀k ∈ N ⇒ Φ(λ) ≤ lim inf n→∞ Φ(λ n ) λ k ≤ µ k ∀k ∈ N ⇒ Φ(λ) ≤ Φ(µ).
(ii) F (Ω) = cap (D \ Ω), where cap denotes the capacity defined in Section 3.1.

(iii) F (Ω) = D g x, u Ω (x) dx, where g(x, •) is lower semicontinuous and decreasing on R for a.e. x ∈ D, and u Ω denotes the solution of

-∆u = f in Ω u = 0 on ∂Ω with f ∈ H -1 (D) and f ≥ 0.
In order to treat the variational problem [START_REF] Chambolle | C ∞ regularity of the free boundary for a two-dimensional optimal compliance problem[END_REF] it is convenient to extend the definition of the functional F also for measurable sets, where the notion of perimeter has a natural extension. If M ⊂ R N is a measurable set of finite measure, we define

H 1 0 (M ) := {u ∈ H 1 (R N ) : u = 0 a.e. on R N \ M }. (15) 
For an arbitrary open set Ω, this definition does not coincide with the usual definition of H 1 0 (Ω). Nevertheless, we point out that it is not restrictive to consider this definition since, for every measurable set M ⊂ R N , there exists a uniquely defined quasi open set ω (see for instance [START_REF] Ashbaugh | On the isoperimetric inequality for the buckling of a clamped plate[END_REF]) such that

H 1 0 (ω) = H 1 0 (M ),
while for a smooth set Ω, (e.g. Lipschitz, see [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]Lemma 3.2.15]) the definition of the spaces H 1 0 (Ω) and H 1 0 (Ω) coincide. With this notion of generalized Sobolev space, one can define

F (M ) := F (ω).
For a nonsmooth open set Ω (say with a crack), we have that H 1 0 (Ω) strictly contains H 1 0 (Ω), which may lead to the idea that l m < l o , where

l m = inf F (M ) : M ⊂ D, P (M ) ≤ L l o = inf F (Ω) : Ω ⊂ D, P (Ω) ≤ L . (16) 
In practice, when solving (13), the minimizing sequence will not develop cracks, precisely because by erasing a crack the generalized perimeter is unchanged and the functional decreases as a consequence of its monotonicity (it may remain constant if the crack coincide with some part of the nodal line of lambda 2 ).

Let us notice that for every measurable set M

F (M ) = inf F (A) : A ⊂ M a.e., A ∈ A(D) . (17) 
Theorem 3.5. There exists a finite perimeter set M * which solves the variational problem

inf F (M ) : M ⊂ D, P (M ) ≤ L . (18) 
Proof. Let (M n ) be a minimizing sequence for problem [START_REF] Giusti | Minimal Surfaces and Functions of Bounded Variation[END_REF]. Since P (M n ) ≤ L we may extract a subsequence (still denoted by (M n )) that converges in L 1 to a set M * with P (M * ) ≤ L.

There are quasi-open sets ω n ⊂ M n a.e. such that

F (ω n ) = F (M n ).
By the compactness of wγ-convergence we may assume that (ω n ) is wγconverging to some quasi-open set ω, and by Proposition 3.4 we have |ω \ M * | = 0. Therefore, we have that

F (M * ) ≤ F (ω) ≤ lim inf n→∞ F (ω n ) = lim inf n→∞ F (M n ).
Hence M * solves the variational problem [START_REF] Giusti | Minimal Surfaces and Functions of Bounded Variation[END_REF].

The relaxed formulation we have chosen (i.e. to work with measurable sets instead of open sets or quasi-open sets) is not a restriction, provided F verifies the following mild γ-continuity property:

ω n ∈ A(D), ω n ⊂ ω, ω n γ → ω =⇒ F (ω n ) → F (ω). ( 19 
)
For instance, all spectral functionals F (Ω) = Φ λ(Ω) seen in (i) above fulfill property [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF] provided Φ is continuous; similarly, integral functionals F (Ω) = D g x, u Ω (x) dx seen in (iii) above fulfill property (19) provided g(x, •) is continuous and with quadratic growth.

Theorem 3.6. Assume that F satisfies [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]. Then, problems [START_REF] Chambolle | C ∞ regularity of the free boundary for a two-dimensional optimal compliance problem[END_REF] and [START_REF] Giusti | Minimal Surfaces and Functions of Bounded Variation[END_REF] are equivalent in the sense that l o = l m , where l 0 and l m are defined in [START_REF] Gilbarg | Intermediate Schauder estimates[END_REF].

Proof. Clearly, l m ≤ l o , since for every quasi open set Ω we have H 1 0 (Ω) ⊂ H 1 0 (ω) where H 1 0 (ω) = H 1 0 (Ω). In order to prove the converse inequality, let M be measurable such that P (M ) ≤ L. There exists a quasi-open set ω ⊂ M a.e. with

H 1 0 (ω) = H 1 0 (M ).
We point out that the measure of M \ ω may be strictly positive, and that P (ω) may be strictly greater than L.

Following the density result of smooth sets into the family of measurable sets [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs[END_REF]Theorem 3.42], there exists a sequence of smooth sets Ω n , such that

1 Ωn → 1 M in L 1 (R N ) H N -1 (∂Ω n ) -→ P (M ).
Unfortunately, it is immediate to observe that this implies only

F (M ) ≤ lim inf n→∞ F (Ω n ),
while we are seeking precisely the opposite inequality.

We consider the function w = R ω (1), solution of the elliptic problem [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF] in ω, and a sequence (ρ k ) k of convolution kernels. As in the proof of [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs[END_REF]Theorem 3.42], by the definition of perimeter and the coarea formula we have

P (M ) = R N |∇1 M | = lim k→∞ R N |∇(1 M * ρ k )| dx = lim k→∞ 1 0 P ({1 M * ρ k > t}) dt ≥ 1 0 lim inf k→∞ P ({1 M * ρ k > t}) dt.
For every t ∈ (0, 1) we have

|{1 M * ρ k > t} \ M | ≤ 1 t R N |1 M * ρ k -1 M | dx |M \ {1 M * ρ k > t}| ≤ 1 1 -t R N |1 M * ρ k -1 M | dx, so that 1 {1 M * ρ k >t} converges in L 1 (R N ) to 1 M and lim inf k→∞ P ({1 M * ρ k > t}) ≥ P (M ).
The above inequalities imply that for almost every t ∈ (0, 1)

lim inf k→∞ P ({1 M * ρ k > t}) = P (M ).
For a subsequence (still denoted using the index k) we have

1 {1 M * ρ k >t} → 1 M in L 1 (R N ) P ({1 M * ρ k > t}) → P (M ).
We notice that up to a set of zero measure {w > 0} ⊂ M . We may assume that w ≤ 1 (otherwise we consider in the sequel w w ∞ ). Then we get w

* ρ k ≤ 1 M * ρ k so {w * ρ k > t} ⊂ {1 M * ρ k > t} and F ({1 M * ρ k > t}) ≤ F ({w * ρ k > t}).
Let us prove that lim sup k→∞

F ({w * ρ k > t}) ≤ F ({w > t}). (20) 
Thanks to [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF] and to the monotonicity property, it is enough to prove that {w * ρ k > t} ∩ {w > t} γ-converges to {w > t}, so to show (see for instance [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]Chapters 4,[START_REF] Ashbaugh | On the isoperimetric inequality for the buckling of a clamped plate[END_REF]) that for every ϕ ∈ H 1 0 ({w > t}) there exists a sequence

ϕ k ∈ H 1 0 ({w * ρ k > t}) such that ϕ k → ϕ strongly in H 1 0 .
Using the density result of [START_REF] Maso | Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators[END_REF], it is enough to choose ϕ ≥ 0 such that ϕ ≤ (w -t) + and take

ϕ k = min{ϕ, (w * ρ k ) -t + }.
Being (20) true for every t, from the convergence F ({w > t}) → F ({w > 0}) as t → 0, by a diagonal procedure we can choose t k → 0 such that lim sup k→∞

F ({w * ρ k > t k }) ≤ F ({w > 0}) = F (ω) = F (M ), and 
1 {1 M * ρ k >t k } → 1 M in L 1 (R N ) P ({1 M * ρ k > t k }) → P (M ).
This proves that l o ≤ l m .

The case of the second eigenvalue

As a corollary of Theorem 3.5, since any eigenvalue of the Laplace operator satisfies (14), we have: In this section, we will show that for the second eigenvalue, one can improve the previous Theorem. Actually, we will prove that minimizers exist if D is replaced by all of R N . The proof relies on a concentrationcompactness argument.

Theorem 3.8. Problem inf λ 2 (M ) : M measurable set in R N , P (M ) ≤ L := l m , (22) 
has a solution.

Proof. Let (M n ) be a minimizing sequence for problem [START_REF] Henrot | Variation et Optimisation de Formes[END_REF]. We shall use a concentration compactness argument for the resolvent operators (see [START_REF] Bucur | Uniform concentration-compactness for Sobolev spaces on variable domains[END_REF]Theorem 2.2]). Let ω n be the quasi-open sets such that ω n ⊂ M n a.e. and λ 2 (ω n ) = λ 2 (M n ). From the classical isoperimetric inequality, the measures of ω n are uniformly bounded. Consequently, for a subsequence (still denoted using the same index) two situations may occur: compactness and dichotomy.

For a positive Borel measure µ, vanishing on sets with zero capacity, we define (see [START_REF] Bucur | Variational Methods in Shape Optimization Problems[END_REF]) by R µ (f ) the solution of the elliptic problem

-∆u + µu = f in R N , u ∈ H 1 (R N ) ∩ L 2 (µ).
If the compactness issue holds, there exists a measure µ and a sequence of vectors y n ∈ R N such that the resolvent operators R ωn+yn converge strongly in L(L 2 (R N )) to R µ . Since the perimeters of M n are uniformly bounded, we can define (up to subsequences) the sets M k as the limits of M n ∩ B(0, k), and M = ∪ k M k .

Since w ωn+yn converges strongly in L 2 (R N ) to w µ , we get that {w µ > 0} ⊂ M a.e. so that λ 2 (M ) ≤ λ 2 ({w µ > 0}) ≤ λ 2 (µ) = lim n→∞ λ 2 (ω n ).

On the other hand P (M ) = lim k→∞ P (M ∩ B(0, k)) ≤ lim inf k→∞ P (M k ), so that M is a solution to problem [START_REF] Henrot | Variation et Optimisation de Formes[END_REF].

Let us assume that we are in the dichotomy issue. There exists two sequences of quasi open sets such that according to the cylindrical symmetry, it is along a circle. Therefore, one of the curvatures has to be negative at that point.

       ω 1 n ∪ ω 2 n ⊂ ω n ω 1 n = ω n ∩ B(0, R 1 n ), ω 2 n = ω n ∩ (R N \ B(0, R 2 n )), R 2 n -R 1 n → +∞ lim inf n→∞ |ω i n | > 0, i = 1, 2 R ωn -R ω 1 n -R ω 2 n → 0 in L(L 2 (R N )).

Higher eigenvalues

The existence of an optimal domain for higher order eigenvalues under a perimeter constraint is only available when a geometric constraint Ω ⊂ D is imposed; we conjecture the existence of an optimal domain also when D is replaced by R N but, at present, a proof of this fact is still missing.

Connectedness

We believe that optimal domains for problem

inf λ k (Ω) : Ω open set in R N , H N -1 (∂Ω) ≤ L (23) 
are connected for every k and every dimension N . Actually, for k = 2, this result is proved in the forthcoming paper [START_REF] Iversen | On the minimization of Dirichlet eigenvalues of the Laplace operator[END_REF]. The idea of the proof consists, first, to show that in the disconnected case, the domain should be the union of two identical balls. Then, a perturbation argument is used: it is shown that the union of two slightly intersecting open balls gives a lower second eigenvalue (keeping the perimeter fixed by dilatation) than two disconnected balls.

product ∂u 2 ∂n ∂u 3 ∂n 2 and the difference ∂u 2 ∂n 2 -∂u 3 ∂n 2

 22232 should be constant a.e. on ∂Ω. As a consequence ∂u 2 ∂n 2
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 1 Figure 1: A possible minimizer obtained numerically (by courtesy of Edouard Oudet)
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Let us denote

Since the measures of M n are uniformly bounded, one can suitably increase R 1 n and decrease R 2 n such that lim sup

and all other properties of the dichotomy issue remain valid.

We have that

The first situation is to be excluded since this implies that M 1 n is a minimizing sequence with perimeter less than or equal to some constant α < L, which is absurd. The second situation leads to an optimum consisting on two disjoint balls (this is a consequence of the Faber-Krahn isoperimetric inequality for the first eigenvalue) which is impossible as mentioned in Section 4.4 below.

Further remarks and open questions 4.1 Regularity

We have proved, in any dimension, the existence of a relaxed solution, that is a measurable set with finite perimeter. A further step would consist in proving that this minimizer is regular (for example C ∞ as it happens in two dimensions). It seems to be a difficult issue, in particular because the eigenfunction is not positive, see for example [START_REF] Brianc ¸on | Regularity of optimal shapes for the Dirichlet's energy with volume constraint[END_REF], [START_REF] Brianc ¸on | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF]. Actually, apart the two-dimensional case, at present we do not even know if optimal domains are open sets.

For a similar problem with perimeter penalization the regularity of optimal domains has been proved in [START_REF] Athanasopoulos | An area-Dirichlet integral minimization problem[END_REF].

Symmetry

Numerical simulations, see Figure 1 show that minimizers in two dimensions should have two axes of symmetry (one of these containing the nodal line), but we were unable to prove it. If one can prove that there is a first axis of symmetry which contains the nodal line, the second axis of symmetry comes easily by Steiner symmetrization.

In higher dimensions, we suspect the minimizer to have a cylindrical symmetry and to be not convex. Indeed, assuming C 2 regularity, one can find the same kind of optimality condition as in [START_REF] Brianc ¸on | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF] with the mean curvature instead of the curvature. Since, the gradient of u 2 still vanishes where the nodal surface hits the boundary, the mean curvature has to vanish and,