Minimization of $\lambda_2(\Omega)$ with a perimeter constraint - Archive ouverte HAL
Article Dans Une Revue Indiana University Mathematics Journal Année : 2009

Minimization of $\lambda_2(\Omega)$ with a perimeter constraint

Dorin Bucur
Giuseppe Buttazzo
  • Fonction : Auteur
  • PersonId : 839235

Résumé

We study the problem of minimizing the second Dirichlet eigenvalue for the Laplacian operator among sets of given perimeter. In two dimensions, we prove that the optimum exists, is convex, regular, and its boundary contains exactly two points where the curvature vanishes. In $N$ dimensions, we prove a more general existence theorem for a class of functionals which is decreasing with respect to set inclusion and $\gamma$ lower semicontinuous.
Fichier principal
Vignette du fichier
newlambda2-10.pdf (268.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00201946 , version 1 (03-01-2008)
hal-00201946 , version 2 (14-04-2009)
hal-00201946 , version 3 (02-06-2009)

Identifiants

Citer

Dorin Bucur, Giuseppe Buttazzo, Antoine Henrot. Minimization of $\lambda_2(\Omega)$ with a perimeter constraint. Indiana University Mathematics Journal, 2009, 58 (6), pp.2709-2728. ⟨hal-00201946v3⟩
469 Consultations
430 Téléchargements

Altmetric

Partager

More