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WORDS AND MORPHISMS WITH STURMIAN ERASURES

FABIEN DURAND, ADEL GUERZIZ, AND MICHEL KOSKAS

Abstract. We say x ∈ {0, 1, 2}N is a word with Sturmian erasures if for any
a ∈ {0, 1, 2} the word obtained erasing all a in x is a Sturmian word. A large
family of such words is given coding trajectories of balls in the game of billiards
in the cube. We prove that the monoid of morphisms mapping all words with
Sturmian erasures to words with Sturmian erasures is not finitely generated.

1. Introduction

In this paper we are interested in words x defined on the alphabet A3 = {0, 1, 2}
having the following property: For any letter a ∈ A3, the word obtained erasing
all a in x is a Sturmian word. We say x is a word with Sturmian erasures.
Sturmian words are well-known objects that can be defined in many ways. For
example, a word is Sturmian if and only if for all n ∈ N the number of distinct
finite words of length n appearing in x is n+ 1 (see [Lo] for complete references
about Sturmian words). Sturmian words can also be viewed as trajectories of
balls in the game of billiards in the square. We will see that a large family of
words with Sturmian erasures is the family of trajectories of balls in the game of
billiards in the cube.
Here we are interested in the morphisms f : A3 → A∗

3 (the free monoid gener-
ated by A3) that send all words with Sturmian erasures to words with Sturmian
erasures. We call such f the morphisms with Sturmian erasures and we denote
by MSE the set of all these morphisms. Our main result is the following:

Theorem 1. We have:

(1) The monoid MSE is not finitely generated;
(2) MSE is the union of MSEε and the set of permutation of A3.
(3) If f : A3 → A∗

3 is locally with Sturmian erasures such that f(i) is the
empty word for some i ∈ A3 then it is a morphism with Sturmian erasures;

Where MSEε is the set of morphisms with Sturmian erasures having the empty
word as an image of a letter and locally with Sturmian erasures means that there
exists a word with Sturmian erasures such that f(x) is a word with Sturmian
erasures.
We recall that F. Mignosi and P. Séébold proved in [MS] that the monoid of the
morphisms sending all Sturmian words to Sturmian words is finitely generated.
In the last section we give some other informations about the words with Stur-
mian erasures: symbolic complexity, link with the game of billiards in the cube,
balanced property and palyndroms.

1991 Mathematics Subject Classification. Primary: 68R15.
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2 FABIEN DURAND, ADEL GUERZIZ, AND MICHEL KOSKAS

2. Definitions, notations and background

2.1. Words, morphisms and matrices. We call alphabet a finite set of ele-
ments called letters. Let A be an alphabet and A∗ be the free monoid generated
by A. The elements of A∗ are called words. The neutral element of A∗, also called
the empty word, is denoted by ε. We set A+ = A∗ \ {ε}. Let u = u0u1 · · ·un−1

be a word of A∗, ui ∈ A, 0 ≤ i ≤ n − 1. Its length is n and is denoted by |u|.
In particular, |ε| = 0. If a ∈ A then |u|a denotes the number of occurrences of
the letter a in the word u. We call infinite words the elements of AN and we set
A∞ = AN ∪ A∗. Let x ∈ A∞ and y ∈ A∗. We say that y is a factor of x if there
exist u ∈ A∗ and v ∈ A∞ such that x = uyv. In particular if u = ε then y is a
prefix of x and if v = ε then y is a suffix of x. An infinite word x = (xn;n ∈ N)
of AN is called eventually periodic if there exist two words u ∈ A∗ and v ∈ A+

such that x = uvvv . . . .
The complexity function of an infinite word x is the function Px : N → N where
Px(n) is the number of factors of length n of x.
Let A, B and C be three alphabets. A morphism f is a map from A to B∗. It
induces by concatenation a map from A∗ to B∗. If f(A) is included in B+, it
induces a map from AN to BN. All these maps are also written f .
To a morphism f : A → B∗ is associated the matrix Mf = (mi,j)i∈B,j∈A where
mi,j is the number of occurrences of i in the word f(j). If g is a morphism from
B to C∗ then we can check we have Mg◦f = MgMf .

2.2. Sturmian words and Sturmian morphisms. Let A be a finite alphabet.
An infinite word x ∈ AN is Sturmian if for all n ∈ N, Px(n) = n + 1. Since
Px(1) = 2, we can suppose A = {0, 1} (see [Lo] for more informations about
these words).
A morphism f from A to A∗ is Sturmian if for all Sturmian word x the word f(x)
is Sturmian. A morphism f is locally Sturmian if there exists at least a Sturmian
word x such that f(x) is Sturmian. We call St the semigroup generated by the
morphisms E, ϕ, and ϕ̃ defined by

E : A∗ −→ A∗ ϕ : A∗ −→ A∗ ϕ̃ : A∗ −→ A∗

0 7−→ 1 0 7−→ 01 0 7−→ 10
1 7−→ 0 1 7−→ 0 1 7−→ 0

Theorem 2. [BS, MS] The following three conditions are equivalent

(1) f ∈ St;
(2) f locally Sturmian;
(3) f Sturmian.

2.3. Words with Sturmian erasures. Let A3 = {0, 1, 2} and let x be a infinite
word of AN

3 . For i ∈ A3 we denote πi : A3 → A∗
3 the morphism defined by

πi(j) = j if j ∈ A3 with j 6= i and πi(i) = ε.

Definition 3. An infinite word x ∈ AN

3 is called word with Sturmian erasures
if and only if the word πi(x) is a Sturmian word for all i ∈ A3. We say
f : A3 −→ A∗

3 is a morphism with Sturmian erasures if f(x) is a word with
Sturmian erasures for all words x ∈ AN

3 with Sturmian erasures.

We call WSE the set of words with Sturmian erasures and MSE the set of mor-
phisms with Sturmian erasures. We remark MSE is a monoid for the composition
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law of morphism. The image of a Sturmian word by a morphism with Sturmian
erasures is a word with Sturmian erasures. Hence WSE is not empty.

Example 1. Let g : A3 → A∗
3 be the morphism defined by : g(0) = 02, g(1) = 10

and g(2) = ε. Let F0 = 0 and for n ≥ 0 Fn+1 = ϕ(Fn). Let F ∈ {0, 1}N be
the unique fixed point of ϕ in {0, 1}N (see [Qu]). Then for each n ≥ 0 Fn is a
prefix of F , and we have F = 0100101001001.... This word is called the Fibonacci
word (remark that |Fn+2| = |Fn+1| + |Fn|, n ≥ 0). It is a Sturmian word. From
Theorem 2 we deduce that

g(F ) = 0210020210021002021002021002100202100210 . . .

is a word with Sturmian erasures. Hence WSE is not empty.
Let x ∈ AN

3 be a word with Sturmian erasures. The word π2(x) is a Sturmian
word and g ◦ π2 = g. Moreover π2 ◦ g|{0,1} is a Sturmian morphism. Hence

π2 ◦ g(x) = π2 ◦ g ◦ π2(x) = π2 ◦ g|{0,1}(π2(x)) = g|{0,1}(π2(x))

is a Sturmian word. We can also show that π0 ◦g(x) and π1 ◦g(x) are words with
Sturmian erasures. Hence, g is a morphism with Sturmian erasures and MSE is
not empty.

3. Proofs of points (2) et (3) of Theorem 1

We denote by MSEε the set of morphisms of MSE such that there exists l ∈ A3

with f(l) = ε. We will prove that MSE is the union of MSEε with the set of
permutations on A3. This last set is generated by

E0 : A∗
3 −→ A∗

3 E1 : A∗
3 −→ A∗

3 E2 : A∗
3 −→ A∗

3

0 7−→ 0 0 7−→ 2 0 7−→ 1
1 7−→ 2 1 7−→ 1 1 7−→ 0
2 7−→ 1 2 7−→ 0 2 7−→ 2

We denote by MSEi, i ∈ A3, the set of morphisms with Sturmian erasures such
that f(i) = ε. We have MSEε = MSE0 ∪ MSE1 ∪ MSE2.

3.1. Proof of the point (3) of Theorem 1. We start with the following
proposition.

Proposition 4. If a morphism f : {0, 1} → A∗
3 maps a Sturmian word defined

on {0, 1}N into a word with Sturmian erasures then it maps any Sturmian word
into a word with Sturmian erasures.

Proof. Let x ∈ {0, 1}N be a Sturmian word and f : {0, 1} → A∗
3 be a morphism

such that f(x) is a word with Sturmian erasures.
Let i be a letter of A3 and E : A3 → {0, 1}∗ be a morphism such that
{0, 1} = {E(a); i 6= a, a ∈ A3}. Then E ◦ πi ◦ f(x) is Sturmian and
E ◦ πi ◦ f : {0, 1} → {0, 1}∗ is a locally Sturmian morphism. Hence, from
Theorem 2 it is Sturmian. It follows that for every Sturmian word y, f(y) is a
word with Sturmian erasures. This ends the proof. �

Now we prove the point (3) of Theorem 1. Let f : A3 → A∗
3, such that f(i) = ε

for some i ∈ A3, and x ∈ AN

3 be a word with Sturmian erasures such that f(x) is
a word with Sturmian erasures. We remark that we have f ◦ πi(x) = f(x) and
that πi(x) is a Sturmian word.
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We can suppose A3 \ {i} = {0, 1}. Hence the morphism f ◦ πi|{0,1} satisfy the
hypothesis of Proposition 4. Consequently if y is a word with Sturmian erasures
then f(y) = f ◦ πi(y) = f ◦ πi|{0,1}(πi(y)) is a word with Sturmian erasures. 2

Example 2. We can remark that there exist morphisms f : A3 → A∗
3 such that

for some word x ∈ WSE we have f(x) ∈ WSE but f is not a morphism with
Sturmian erasures.
For example let F be the Fibonacci word, f be defined by f(0) = 0, f(1) = 1
and f(2) = 012, g : A3 → A∗

3 be defined by g(0) = 01, g(1) = 02 and g(2) = ε,
and, h : A3 → A∗

3 be defined by h(0) = 02, h(1) = 10 and h(2) = ε.
As in Example 1 we can prove that g, h and f ◦ g are morphisms with Sturmian
erasures and consequently x = g(F ) and f(x) = f◦g(F ) are words with Sturmian
erasures.
But we remark that f ◦h(F ) is not a word with Sturmian erasures. Indeed 001210
is a prefix of f(y) and 00110 is a prefix of w = π2f(y). Consequently Pw(2) = 4
and w is not a Sturmian word.

3.2. Proof of the point (2) of Theorem 1. We need the following lemma
that follows from Theorem 2 and the fact that the determinant of the matrices
associated to ϕ, ϕ̃ and E belong to {−1, 1}.
Lemma 5. Let M be the matrix associated to the Sturmian morphism f . Then
detM = ±1.

Let us prove the point (2) of Theorem 1. This proof is due to D. Bernardi.
Let f be a morphism of MSE. Let i ∈ A3 and E : A3 \ {i} → {0, 1}∗ be a
morphism such that {0, 1} = {E(a); a 6= i, a ∈ A3}. We set h = E ◦πi ◦f ◦g|{0,1}

where g : A3 → A∗
3 is the morphism defined by: g(0) = 02, g(1) = 12 and

g(2) = ε.
As the letter i does not appear in the images of πi ◦ f , we consider πi ◦ f as a
morphism from A3 to (A3 \ {i})∗. We set Mπi◦f = (u, v, w) where u, v and w
are column vectors belonging to R

2. We recall g is a morphism with Sturmian
erasures (see Example 1 of the subsection 2.3). Hence the morphism h is Sturmian
and we have Mh = (u+ w, v + w). From Lemma 5

det(u, v) + det(u, w) + det(w, v) = det(u+ w, v + w) = ±1.

We do the same with g being one of the two following morphisms : (0 7−→ 01,
1 7−→ 12, 2 7→ ε) and (0 7−→ 02, 1 7−→ 01, 2 7→ ε). We obtain finally

(1) det(u, v) + det(u, w) + det(v, w) = ±1.

(2) det(u, v) + det(w, u) + det(w, v) = ±1.

(3) det(u, v) + det(u, w) + det(w, v) = ±1.

The combinations of the equations (1) and (2), (2) and (3), and, (3) and (1)
imply respectively that det(u, v), det(w, u) and det(w, v) belong to {−1, 0, 1}.
From (1), one of three determinants det(u, v), det(u, w) or det(v, w) is different
from 0.
We suppose det(u, v) 6= 0 (the other cases can be treated in the same way). The
set {u, v} is a base of R

2, hence there exist two real numbers a and b such that
w = au + bv. We have a = det(w, v)/ det(u, v) and b = det(w, u)/ det(v, u).
Moreover from (1) and (2) we see that det(u, w) + det(v, w) and −(det(u, w) +
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det(v, w)) = det(w, u)+det(w, v) belong to {det(v, u)−1, det(v, u)+1} which is
equal to {0, 2} or {−2, 0}. Consequently det(u, w) + det(v, w) = 0. Hence a = b
and w = a(u + v). The vector w is the column of the matrix of a morphism
therefore it has non-negative coordinates which implies that a is non-negative.
Suppose a > 0. Then det(w, v) and det(u, v) are positive and have the same sign.
Hence one of the equations (2) or (3) is equal to -3 or 3 which is not possible.
Consequently a = 0 and w = 0.
Therefore for all i ∈ A3 the matrix Mπi◦f = (mi(c, d))c∈A3\{i},d∈A3

has a column
(mi(c, di))c∈A3\{i} with entries equal to 0.
Two cases occurs.
1- There exists i, j ∈ A3 (i 6= j) such that di = dj. In this case we easily check
that f(di) = ε. Consequently f belongs to MSEε.
2- The sets {d0, d1, d2} and A3 are equal. In this case we can check that f is a
permutation. 2

4. Prime morphisms

4.1. Some technical definitions. Let A be an alphabet and f : A → A∗ be
a morphism. A letter a is called f -nilpotent if there exists an integer n such
that fn(a) = ε (if it is not ambiguous we will say it is nilpotent). The set of
f -nilpotent letters is denoted by Nf . We call P ′

f the set of letters a such that
there exists an integer n satisfying πNf

(fn(a)) = a where πNf
(b) = ε if b ∈ N f

and b otherwise. The set of such letters is denoted by P ′

f .
We say the letter a is f -permuting if there exists an integer n such that
fn(a) ∈ (Nf ∪ P ′

f)
∗ \ Nf

∗. We denote by Pf the set of such letters. We re-

mark that P ′

f is included in Pf .
A letter a is called f -expansive, or expansive when the context is clear, if it is
neither nilpotent nor permuting. We remark the letter a ∈ A is f -expansive
if and only if limn→+∞ |fn(a)| = +∞ and it is f -permuting if and only if the
sequence (|fn(a)|;n ∈ N) is bounded and is never equal to 0.
The morphism f is nilpotent if f(A) is included in N ∗

f , i.e., if there exists an
integer n such that fn(a) = ε for all a ∈ A. A morphism f is called expansive if
there exists a f -expansive letter. A morphism f is a unit if it is neither nilpotent
nor expansive. In others words if f(A) is included in (Nf ∪ Pf )

∗.
Let M be a monoid of morphisms. A morphism f ∈ M is said to be prime in
M if for any morphisms g and h in M such that f = g ◦ h, then g or h is a
unit of M. We say that f is of degree n in M, n ∈ N, if any decomposition of
f into a product of prime and unit morphisms of M contains at least n prime
morphisms and there exists at least one decomposition of f into prime and unit
morphisms of M containing exactly n prime morphisms.
The set of prime morphisms in St is {f ◦ g ◦ h; f, h ∈ {Id, E}, g ∈ {ϕ, ϕ̃}}.

4.2. Some conditions to be a prime morphism. In the sequel we need the
following morphisms which are extensions to the alphabet A3 of the morphisms
ϕ and ϕ̃:

ϕ1 : A∗
3 −→ A∗

3 , ϕ̃1 : A∗
3 −→ A∗

3

0 7−→ 01 0 7−→ 10
1 7−→ 0 1 7−→ 0
2 7−→ ε 2 7−→ ε .
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In the next proposition we need the following lemma.

Lemma 6. Let g ∈ MSE2. Then, |g(a)| ≥ 2, |g(a)|0 + |g(a)|1 ≥ 1 and
|g(01)|a ≥ 1 for all a ∈ {0, 1}.
Proof. Suppose for a ∈ {0, 1} we have |g(a)| = 1, for example g(a) = b. Then
πb ◦ g(x) is periodic for all x ∈ AN

3 . This contradicts the fact that g belongs to
MSE2. If |g(a)| = 0 we have the same conclusion. This proves the first part of
the lemma.
Suppose |g(a)|0 + |g(a)|1 = 0. Then π2 ◦ g(x) is periodic for all x ∈ AN

3 . This
proves the second inequality.
Suppose |g(01)|a = 0, then a does not appear in g(x). This contradicts the fact
that g belongs to MSE2. �

Proposition 7. Let i ∈ A3 and f ∈ MSEi. We set A3 = {i, j, k}.
1) If f(j) is neither a prefix nor a suffix of f(k) and that f(k) is neither a prefix
nor a suffix of f(j), then f is prime in MSEi.
2) Moreover, if f is prime in MSEi and if we have |f(012)|j > |f(012)|k ≥
|f(012)|i, then f(j) is neither a prefix nor a suffix of f(k) and f(k) is neither a
prefix nor a suffix of f(j).

Proof. We only make the proof in the case i = 2.
1) We suppose f(0) is neither prefix nor suffix of f(1) and that f(1) is neither
prefix nor suffix of f(0). We proceed by contradiction, i.e., we suppose there
exist g, h ∈ MSE2 which are not units such that f = g ◦ h.
Let h1 = π2 ◦ h. We have g ◦ h = g ◦ h1. We define h1 : {0, 1} → {0, 1}∗ by
h1(i) = h1(i) for all i ∈ {0, 1}. We remark that h1 is a Sturmian morphism hence
it is a product of ϕ, ϕ̃ and E (Theorem 2). Therefore h1 is a product of ϕ1, ϕ̃1

and π2 ◦ E2.
We consider two cases.
Suppose h1 6∈ {π2 ◦ E2, π2 ◦ E2 ◦ E2}. Then, for example, h1 is equal to h2 ◦ ϕ1

where h2 is a product of ϕ1, ϕ̃1 and π2 ◦ E2. The other cases (h1 = h2 ◦ ϕ̃1 or
h1 = h2 ◦ ϕ1 ◦ π2 ◦ E2 or h1 = h2 ◦ ϕ̃1 ◦ π2 ◦ E2) can be treated in the same way.
We have f(0) = g ◦ h2 ◦ ϕ1(0) = g ◦ h2(0)g ◦ h2(1) and f(1) = g ◦ h2(0). which
contradicts the hypothesis.
Suppose h1 ∈ {π2 ◦E2, π2 ◦E2 ◦E2}, then h1(0) = 1, h1(1) = 0 and h1(2) = ε or
h1(0) = 0, h1(1) = 1 and h1(2) = ε. In both case we easily check that h is a unit
of MSE2. This ends the first part of the proof.

2) We now suppose f is a prime morphism in MSE2 such that |f(01)|j >
|f(01)|k ≥ |f(01)|2, where A3 = {j, k, 2}.
We proceed by contradiction. We suppose f(1) is a prefix of f(0). The other case
can be treated in the same way. There exist u and v in A∗

3 such that f(0) = uv
and f(1) = u. We define g, h : A3 → A∗

3 by g(0) = u, g(1) = v, g(2) = ε,
h(0) = 01, h(1) = 02 and h(2) = ε. We remark that h is not a unit and f = g ◦h.
To end the proof it suffices to show that g is not a unit of MSE2. We start
proving g belongs to MSE2.
Let x ∈ WSE. As in Example 1 we can prove that h belongs to MSE2.
Consequently h(x) belongs to WSE. Moreover f(x) = g(h(x)) belongs to WSE.
From the point (3) of Theorem 1 it comes that g belongs to MSE2. From
Lemma 6 we have |f(01)| = |g(010)| ≥ 6. Consequently |f(01)|0 + |f(01)|1 +
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|f(01)|2 ≥ 6. From the hypothesis it comes that |g(010)|j = |f(01)|j ≥ 3. Hence
2|g(01)|j − |g(1)|j ≥ 3 and |g(01)|j ≥ 2.
Now we prove by induction that for all n ∈ N we have

|π2 ◦ gn(01)| ≥ n+ 2, |π2 ◦ gn(0)| ≥ 1, and |π2 ◦ gn(1)| ≥ 1.

This is true for n = 0. We suppose it is true for n ∈ N. From Lemma 6 we have

|π2◦gn+1(01)| = |π2◦gn(g(01))| ≥ |π2◦gn(jjk)| = |π2◦gn(01)|+|π2◦gn(j)| ≥ n+3.

Moreover, from Lemma 6 in g(j) occurs a letter a ∈ {0, 1}. Consequently,

|π2 ◦ gn+1(j)| = |π2 ◦ gn(g(j))| ≥ |π2 ◦ gn(a)| ≥ 1.

We proceed in the same way for the letter k. This concludes the induction.
Therefore, it is clear g is expansive. This concludes the proof. �

5. The monoid MSE is not finitely generated

5.1. Some preliminary results. To prove the point (1) of Theorem 1 we need

the following subset of MSE. Let MSE
′

be the set of morphisms f ∈ MSE2 such
that for some n ∈ N

π2 ◦ f ∈ Fn, π1 ◦ f ∈ Gn and π0 ◦ f ∈ Hn where Fn = {ϕ1, ϕ̃1}n,

Gn = E0 ◦ {ϕ1, ϕ̃1} ◦ E2 ◦ {ϕ1, ϕ̃1}n−1 and Hn = E2 ◦ E0 ◦ {ϕ1, ϕ̃1}n−1.

With the two following lemmata we prove that MSE
′

is not empty. Before we
need a new definition and we make some remarks.
Let u ∈ {0, 1}∗, v ∈ {0, 2}∗ and w ∈ {1, 2}∗ be three words. We say that u, v and
w intercalate between them if and only if there exists x ∈ A∗

3 such that π2(x) = u,
π1(x) = v and π0(x) = w.
Let (un)n∈N be the Fibonacci word : un+1 = un + un−1 for all n ≥ 1, u0 = 0 and
u1 = 1. We can remark that for all n ≥ 1 we have

Mϕn
1

= Mϕ̃n
1

= Mn
ϕ1

=



un+1 un 0
un un−1 0
0 0 0


 .

Lemma 8. Let n ≥ 2, f ∈ Fn, g ∈ Gn and h ∈ Hn. Then, for all a ∈ {0, 1} we
have |f(a)|0 = |g(a)|0, |f(a)|1 = |h(a)|1 and |g(a)|2 = |h(a)|2.
Proof. It suffices to remark that Mf = Mϕn

1
,

Mg =



un+1 un 0
0 0 0
un−1 un−2 0


 and Mh =




0 0 0
un un−1 0
un−1 un−2 0


 .

�

Lemma 9. Let f, g and h be three morphisms from A3 to A∗
3 such that f(a), g(a)

and h(a) are respectively words on the alphabets {0, 1}, {0, 2} and {1, 2} for all
a ∈ A3. Then, f(a), g(a) and h(a) intercalate between them for all a ∈ A3 if and
only if there exists a morphism ψ : A3 → A∗

3 such that π2 ◦ ψ = f , π1 ◦ ψ = g
and π0 ◦ ψ = h.

Proof. For all a ∈ A3 let ψ(a) be the word obtained intercalating f(a), g(a) and
h(a). This defines a morphism ψ : A3 → A∗

3. We can check it satisfies π2 ◦ψ = f ,
π1 ◦ ψ = g and π0 ◦ ψ = h. The reciprocal is left to the reader. �
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Lemma 10. For all n ∈ N
∗, ϕn

1 (1) is a prefix but not a suffix of ϕn
1 (0). And for

all n ∈ N
∗\{1} if g = E0 ◦ ϕ̃1 ◦ E2 ◦ ϕ̃1

n−1 then g(1) is a suffix but not a prefix
of g(0).

Proof. Let n ∈ N
∗. We have ϕn

1 (0) = ϕn−1

1 (01) = ϕn
1(1)ϕn−1

1 (1). Hence ϕn
1 (1) is

a prefix of ϕn
1 (0).

We proceed by induction to prove that ϕn
1 (1) is not suffix of ϕn

1(0). For n = 1 is
it clear. Suppose it is true for n ∈ N

∗. We prove it is also true for n + 1.
We have ϕn+1

1 (0) = ϕn+1

1 (1)ϕn
1(1) and ϕn+1

1 (1) = ϕn
1 (0). Suppose ϕn+1

1 (1) is a
suffix of ϕn+1

1 (0). Looking at Mϕn
1

we remark that |ϕn
1(1)| < |ϕn

1(0)|, therefore
ϕn

1(1) is a suffix of ϕn
1 (0) which contradicts the hypothesis. This concludes the

first part of the proof. The other part can be achieved in the same way. �

Lemma 11. Let n ∈ N
∗, fn = ϕn

1 , gn = E0 ◦ ϕ̃1 ◦ E2 ◦ ϕ̃1
n−1 and hn = E2 ◦

E0 ◦ ϕ̃1
n−1. Then there exists a morphism ψn ∈ MSE2 such that π2 ◦ ψn = fn,

π1 ◦ ψn = gn and π0 ◦ ψn = hn.

Proof. We easily check that if ψ is a morphism such that π2 ◦ψ = fn, π1 ◦ψ = gn

and π0 ◦ ψ = hn, for some n ∈ N, then ψ belongs to MSE2.
We proceed by induction on n to prove what remains. For n = 1, we have

f1 : A∗
3 −→ A∗

3, g1 : A∗
3 −→ A∗

3, h1 : A∗
3 −→ A∗

3, ψ1 : A∗
3 −→ A∗

3

0 7−→ 01 0 7−→ 0 0 7−→ 1 0 7−→ 01
1 7−→ 0 1 7−→ 20 1 7−→ 2 1 7−→ 20
2 7−→ ε 2 7−→ ε 2 7−→ ε 2 7−→ ε.

The morphism ψ1 is such that π2 ◦ ψ1 = f1, π1 ◦ ψ1 = g1 and π0 ◦ ψ1 = h1, and
consequently ψ1 belongs to MSE2. For n = 2, we have

f2 : A∗
3 −→ A∗

3, g2 : A∗
3 −→ A∗

3, h2 : A∗
3 −→ A∗

3, ψ2 : A∗
3 −→ A∗

3

0 7−→ 010 0 7−→ 200 0 7−→ 21 0 7−→ 2010
1 7−→ 01 1 7−→ 0 1 7−→ 1 1 7−→ 01
2 7−→ ε 2 7−→ ε 2 7−→ ε 2 7−→ ε.

The morphism ψ2 is such that π2 ◦ ψ2 = f2, π1 ◦ ψ2 = g2 and π0 ◦ ψ2 = h2, and
consequently ψ2 belongs to MSE2. Now we suppose the result is true for n − 1
and n ≥ 2. We prove it is also true for n+ 1. We have

fn+1(0) = fn−1(0)fn−1(1)fn−1(0), fn+1(1) = fn(0), fn+1(2) = ε,
gn+1(0) = gn−1(0)gn−1(1)gn−1(0), gn+1(1) = gn(0), gn+1(2) = ε,
hn+1(0) = hn−1(0)hn−1(1)hn−1(0), hn+1(1) = hn(0) and hn+1(2) = ε.

From the induction hypothesis and Lemma 9 we know fi(a), gi(a), hi(a) in-
tercalate between them for all a ∈ A3 and all i ∈ {n − 1, n}. Consequently,
using Lemma 9, there is a morphism ψ : A3 → A∗

3 such that π2 ◦ ψn+1 = fn+1,
π1 ◦ ψn+1 = gn+1 and π0 ◦ ψn+1 = hn+1. �

Proposition 12. For all n ∈ N
∗, the morphism ψn defined in Lemma 11 is prime

in MSE2.

Proof. We keep the notations of Lemma 11. Let n ∈ N
∗. From Proposition 7 it

suffices to prove that ψn(1) is neither a prefix nor a suffix of ψn(0). We proceed
by contradiction: We suppose ψn(1) is a prefix or a suffix of ψn(0).
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Suppose that ψn(1) is a prefix of ψn(0). Then π1 ◦ ψn(1) is a prefix of π1 ◦ ψn(0)
and consequently gn(1) is a prefix of gn(0). This contradicts Lemma 10.
Suppose that ψn(1) is a suffix of ψn(0). Then π2◦ψn(1) is a suffix of π2◦ψn(0) and
consequently fn(1) is a suffix of fn(0). This contradicts Lemma 10 and proves
the lemma. �

Corollary 13. The set MSE2 contains infinitely many primes.

Proof. We left as an exercise to prove that for all n ∈ N
∗ we have ψn 6= ψn+1,

where ψn is defined in Lemma 11. Proposition 12 ends the proof. �

5.2. Proof of the point (1) of Theorem 1. We proceed by contradiction: We
suppose there exists F = {f1, . . . , fl} ⊂ MSE generating MSE, i.e., all g ∈ MSE
is a composition of elements belonging to F .

Let N = supa∈A3,1≤i≤l |fi(a)|, (ψn)n∈N be the morphisms defined in Lemma 11
and (un)n∈N be the Fibonacci word defined in the previous section. We remark

lim
n→+∞

max
a∈A3

|ψn(a)| ≥ lim
n→+∞

un+1 = +∞.

We fix n ∈ N such that maxa∈A3
|ψn(a)| > N . By hypothesis there exist g1, . . . , gk

in F such that ψn = g1◦· · ·◦gk. We set h = g2◦· · ·◦gk. The morphism ψn belongs
to MSEa for some a ∈ A3. It implies ψn(2) = ψn(a) = ε and consequently a = 2.
There exists b ∈ A3 such that g1 ∈ MSEb. We remark ψn = g1 ◦ h = g1 ◦ πb ◦ h.
Two cases occurs.

First case: For all a ∈ {0, 1} we have |πb ◦ h(a)| = 1.
The morphism h being a morphism with Sturmian erasures we cannot have
πb ◦ h(0) = πb ◦ h(1). Consequently ψn = g1 ◦ E2 or ψn = g1. This implies
there exists a ∈ A3 such that |g1(a)| > N which is not possible.

Second case: There exists a ∈ {0, 1} such that |πb ◦ h(a)| > 1.
We remark πb ◦ h = πb ◦ h ◦ π2

If b = 2 then πb ◦h|{0,1} : {0, 1} → {0, 1}∗ ⊂ A∗
3 is a Sturmian morphism different

from E and Id{0,1}. Hence from a remark we make in Subsection 3.2 there exist
i and j in {0, 1}, i 6= j, such that the word πb ◦ h|{0,1}(i) is a prefix or a suffix of
πb ◦ h|{0,1}(j). Hence ψn(i) is a prefix or a suffix of ψn(j). Proposition 7 implies
ψn is not prime in MSE2 which contradicts Proposition 12.
Let b 6= 2. We set {b, c} = {0, 1}. Then, Ec ◦ πb ◦ h|{0,1} : {0, 1} → {0, 1}∗ ⊂ A∗

3

is a Sturmian morphism different from E and Id{0,1}. Hence from a remark we
make in Subsection 3.2 there exist i and j in {0, 1}, i 6= j, such that the word
Ec ◦ πb ◦ h|{0,1}(i) is a prefix or a suffix of Ec ◦ πb ◦ h|{0,1}(j). Hence ψn(i) is a
prefix or a suffix of ψn(j). Proposition 7 implies ψn is not prime in MSE2 which
contradicts Proposition 12.
This concludes the proof.

6. Some further facts about words with Sturmian erasures

6.1. Geometrical remarks. We recall that a Sturmian word can be viewed as
a coding of a straight half line in R

2 with direction (1, α) where α is a positive
irrational number, or in other terms as a trajectory of a ball in the game of
billiards in the square with elastic reflexion on the boundary. We do not give the
details here, we refer the reader to [Lo].
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Let us extend the construction given in [Lo] to obtain what is usually called
billiard words in the unit cube [0, 1]3. Let d = (d0, d1, d2) ∈ [0,+∞[3 and
ρ = (ρ0, ρ1, ρ2) ∈ [0, 1[3. Let D be the half line with direction d and intercept
ρ that is to say D = {td + ρ; t ≥ 0}. Consider the intersections of D with the
planes x = a, y = a, z = a, a ∈ Z: We denote by I0, I1, . . . these consecutive
intersection points . We say In crosses the face Fi, i ∈ {0, 1, 2}, if the i + 1-th
coordinate of In is an integer and the i+1-th coordinate of In+1− In is not equal
to 0.
We set Ωn = {i ∈ {0, 1, 2}; In crosses Fi}. Let x = u0u1 . . . be a word such that

un =





i if Ωn = {i},
ij if Ωn = {i, j} where i 6= j,
ijk if Ωn = {i, j, k} = {0, 1, 2}.

We say x is a billiard word in the unit cube [0, 1]3 (with direction d and intercept
ρ). We can also say that x is a coding of D. Of course a half line can have several
codings. One of the codings of a half line is periodic if and only if d ∈ γZ

3 for
some γ ∈ R+.
When one of the coordinates of the direction is equal to zero and the two others
are rationally independent we can easily deduce from [Lo] (Chapter 2) that x is a
Sturmian word. The reciprocal is also true: All Sturmian words can be obtained
in this way (see [Lo]).
We remark that if x is a non-periodic cubic billiard word then π0(x) is a Stur-
mian word with direction d = (0, d1, d2) and intercept ρ = (0, ρ1, ρ2) (i.e. the
orthogonal projection of D onto {0}× [0,+∞[×[0,+∞[). We have the analogous
remark for π1(x) and π2(x). It is easy to conclude that a cubic billiard word is a
word with Sturmian erasures if and only if it is non periodic and d ∈]0,+∞[3.
There exist words with Sturmian erasures that are not cubic billiard words. For
example, take the Fibonacci word x (Example 1) and the morphism ψ defined
by ψ(0) = 0012 and ψ(1) = 01. It is easy to see that y = ψ(x) is a word with
Sturmian erasures. Let us show that if y was a cubic billiard word then the word
102 should appear in x, which is not the case.
We briefly sketch the proof. Suppose y is a cubic billiard word with direction
d = (1, α, β) and intercept ρ, then the words π0(y) and π2(y) are Sturmian
words with respective directions (0, α, β) and (1, α, 0). It can be shown that
α = θ − 1 and β = (θ − 1)2 where θ = (

√
5 + 1)/2. But with such a direction

d = (1, θ− 1, (θ− 1)2) easy calculus show that the word 102 should appear in y.

6.2. Balanced words. Let us recall a characterization of Sturmian words due
to Hedlund and Morse [HM2]. Let A be a finite alphabet. We say a word
x ∈ AN is balanced if for all factors u and v of x having the same length we
have ||u|a − |v|a| ≤ 1 for all a ∈ A. Suppose CardA = 2. A word x ∈ AN

is Sturmian if and only if x is non eventually periodic and balanced. P. Hubert
characterizes in [Hu] the words on a three letters alphabet that are balanced. This
characterization shows that such words are not words with Sturmian erasures.

Definition 14. Let A be a finite alphabet. We say x ∈ AN is n-balanced if n is
the least integer such that: For all words u and v appearing in x and having the
same length we have || u |a − | v |a|≤ n for all a ∈ A.

Clearly, Sturmian words are 1-balanced.
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Proposition 15. If x ∈ AN

3 is a word with Sturmian erasures then x is non
eventually periodic and 2-balanced.

Proof. It is clear x is non eventually periodic. From a previous remark we know
that x is not 1-balanced.
Suppose x is n-balanced with n ≥ 3: There exist e ∈ A3 and two words u and v
appearing in x and having the same length such that ||u|e − |v|e| ≥ 3.
For all a ∈ A3 we set n(a) = ||u|a − |v|a|. Then we can set A3 = {a, b, c}
where n(a) ≥ 3 and n(a) ≥ n(b) ≥ n(c). Without loss of generality we sup-
pose |u|a − |v|a = n(a). As |u| = |v| we have n(a) = (|v|b − |u|b) + (|v|c −
|u|c). Consequently we necessarily have |v|b − |u|b ≥ 0 and |v|c − |u|c ≥ 0 be-
cause n(a) ≥ n(b) ≥ n(c). Thus n(b) = |v|b − |u|b, n(c) = |v|c − |u|c and
n(a) = n(b) + n(c). We also see that n(b) ≥ 2 and n(c) ≥ 0.
Suppose there exists a factor u′ of the word u verifying |πc(u

′)| = |πc(v)| and
|πc(u

′)|a − |πc(v)|a ≥ 2. Then this would say that πc(x) is not balanced and a
fortiori not Sturmian which would end the proof.
Let us find such a u′. We have |πc(u)| ≥ |πc(v)| ≥ |v|b ≥ 2. Hence there exists
a non-empty word u′ satisfying |πc(u

′)| = |πc(v)| and having an occurrence in u.
Moreover

|πc(u
′)|a + |πc(u

′)|b = |πc(u
′)| = |πc(v)| = |v| − |v|c

= |u| − |v|c = |u|a + |u|b + |u|c − |v|c = |πc(u)|a + |πc(u)|b − n(c).

Hence
|πc(u)|a − n(c) = |πc(u

′)|a + |πc(u
′)|b − |πc(u)|b ≤ |πc(u

′)|a
and then

2 ≤ n(b) = n(a) − n(c) = |πc(u)|a − |πc(v)|a − n(c) ≤ |πc(u
′)|a − |πc(v)|a,

which ends the proof. �

6.3. Complexity. Let x be a word with Sturmian erasures and f be a mor-
phism belonging to MSEi for some i ∈ A3. Then πi(x) is a Sturmian word and
f(x) = f(πi(x)). Consequently from a result of Coven and Hedlund [CH] we
deduce there exist two integers n0 and k such that Px(n) = n+ k for all n ≥ n0.
For example, let F be the Fibonacci word and f : {0, 1, 2} → {0, 1, 2}∗ be the
morphism defined by f(0) = 0102, f(1) = 01 and f(2) = ε. It is a morphism
with Sturmian erasures and y = f(F ) is a word with Sturmian erasures. In fact
it is a cubic billiard word with direction d = (1, θ − 1, (θ − 1)2) and intercept
ρ = (0, θ − 1, (θ − 1)2), where θ is the golden mean (

√
5 + 1)/2.

This does not contradict the result in [AMST] saying that if 1, α and β are ratio-
nally independent then the complexity of the cubic billiard word with direction
(1, α, β) and intercept ρ ∈]0, 1[3 is n2 +n+1, because −1+(α−1)+(α−1)2 = 0.

6.4. Conclusion. Many generalizations of the Sturmian words were tried (more
letters, applications of Z

2 to {0, 1}, ...) but none appeared to be entirely suitable
in the sense that it seems impossible to extend these properties to a more general
domain astonishing varieties of the properties characterizing these words. The
example which we chose for this paper, does not derogate from this rule. Never-
theless, the fact that MSE is not given by a finite generator shows a fundamental
difference between the Sturmian words and any generalization with more than
two letters because the definition adopted here was less “compromising” possible.
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Furthermore, this definition gives a words of a complexity structurally similar to
the one of the Sturmian words.
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UMR 6140, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens
Cedex 1, France.
E-mail address : fabien.durand@u-picardie.fr
E-mail address : adel.guerziz@u-picardie.fr
E-mail address : koskas@laria.u-picardie.fr


