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We say x ∈ {0, 1, 2} N is a word with Sturmian erasures if for any a ∈ {0, 1, 2} the word obtained erasing all a in x is a Sturmian word. A large family of such words is given coding trajectories of balls in the game of billiards in the cube. We prove that the monoid of morphisms mapping all words with Sturmian erasures to words with Sturmian erasures is not finitely generated.

Introduction

In this paper we are interested in words x defined on the alphabet A 3 = {0, 1, 2} having the following property: For any letter a ∈ A 3 , the word obtained erasing all a in x is a Sturmian word. We say x is a word with Sturmian erasures. Sturmian words are well-known objects that can be defined in many ways. For example, a word is Sturmian if and only if for all n ∈ N the number of distinct finite words of length n appearing in x is n + 1 (see [Lo] for complete references about Sturmian words). Sturmian words can also be viewed as trajectories of balls in the game of billiards in the square. We will see that a large family of words with Sturmian erasures is the family of trajectories of balls in the game of billiards in the cube.

Here we are interested in the morphisms f : A 3 → A * 3 (the free monoid generated by A 3 ) that send all words with Sturmian erasures to words with Sturmian erasures. We call such f the morphisms with Sturmian erasures and we denote by MSE the set of all these morphisms. Our main result is the following:

Theorem 1. We have:

(1) The monoid MSE is not finitely generated;

(2) MSE is the union of MSE ε and the set of permutation of A 3 .

(3) If f : A 3 → A * 3 is locally with Sturmian erasures such that f (i) is the empty word for some i ∈ A 3 then it is a morphism with Sturmian erasures;

Where MSE ε is the set of morphisms with Sturmian erasures having the empty word as an image of a letter and locally with Sturmian erasures means that there exists a word with Sturmian erasures such that f (x) is a word with Sturmian erasures. We recall that F. Mignosi and P. Séébold proved in [MS] that the monoid of the morphisms sending all Sturmian words to Sturmian words is finitely generated. In the last section we give some other informations about the words with Sturmian erasures: symbolic complexity, link with the game of billiards in the cube, balanced property and palyndroms.

2. Definitions, notations and background 2.1. Words, morphisms and matrices. We call alphabet a finite set of elements called letters. Let A be an alphabet and A * be the free monoid generated by A. The elements of A * are called words. The neutral element of A * , also called the empty word, is denoted by ε. We set

A + = A * \ {ε}. Let u = u 0 u 1 • • • u n-1 be a word of A * , u i ∈ A, 0 ≤ i ≤ n -1. Its length is n and is denoted by |u|.
In particular, |ε| = 0. If a ∈ A then |u| a denotes the number of occurrences of the letter a in the word u. We call infinite words the elements of A N and we set A ∞ = A N ∪ A * . Let x ∈ A ∞ and y ∈ A * . We say that y is a factor of x if there exist u ∈ A * and v ∈ A ∞ such that x = uyv. In particular if u = ε then y is a prefix of x and if v = ε then y is a suffix of x. An infinite word x = (x n ; n ∈ N) of A N is called eventually periodic if there exist two words u ∈ A * and v ∈ A + such that x = uvvv . . . . The complexity function of an infinite word x is the function P x : N → N where P x (n) is the number of factors of length n of x. Let A, B and C be three alphabets. A morphism f is a map from A to B * . It induces by concatenation a map from A * to B * . If f (A) is included in B + , it induces a map from A N to B N . All these maps are also written f . To a morphism f : A → B * is associated the matrix M f = (m i,j ) i∈B,j∈A where m i,j is the number of occurrences of i in the word f (j). If g is a morphism from B to C * then we can check we have

M g•f = M g M f .
2.2. Sturmian words and Sturmian morphisms. Let A be a finite alphabet. [Lo] for more informations about these words). A morphism f from A to A * is Sturmian if for all Sturmian word x the word f (x) is Sturmian. A morphism f is locally Sturmian if there exists at least a Sturmian word x such that f (x) is Sturmian. We call St the semigroup generated by the morphisms E, ϕ, and ϕ defined by

An infinite word

x ∈ A N is Sturmian if for all n ∈ N, P x (n) = n + 1. Since P x (1) = 2, we can suppose A = {0, 1} (see
E : A * -→ A * ϕ : A * -→ A * ϕ : A * -→ A * 0 -→ 1 0 -→ 01 0 -→ 10 1 -→ 0 1 -→ 0 1 -→ 0
Theorem 2. [BS, MS] The following three conditions are equivalent (1) f ∈ St;

(2) f locally Sturmian;

(3) f Sturmian.

Words with Sturmian erasures.

Let A 3 = {0, 1, 2} and let x be a infinite word of A N 3 . For i ∈ A 3 we denote π i : A 3 → A * 3 the morphism defined by π i (j) = j if j ∈ A 3 with j = i and π i (i) = ε. Definition 3. An infinite word x ∈ A N 3 is called word with Sturmian erasures if and only if the word π i (x) is a Sturmian word for all i ∈ A 3 . We say

f : A 3 -→ A *
3 is a morphism with Sturmian erasures if f (x) is a word with Sturmian erasures for all words x ∈ A N 3 with Sturmian erasures. We call WSE the set of words with Sturmian erasures and MSE the set of morphisms with Sturmian erasures. We remark MSE is a monoid for the composition law of morphism. The image of a Sturmian word by a morphism with Sturmian erasures is a word with Sturmian erasures. Hence WSE is not empty.

Example 1. Let g : A 3 → A * 3 be the morphism defined by : g(0) = 02, g(1) = 10 and g(2) = ε. Let F 0 = 0 and for n ≥ 0 F n+1 = ϕ(F n ). Let F ∈ {0, 1} N be the unique fixed point of ϕ in {0, 1} N (see [Qu]). Then for each n ≥ 0 F n is a prefix of F , and we have F = 0100101001001.... This word is called the Fibonacci word (remark that 

|F n+2 | = |F n+1 | + |F n |, n ≥ 0). It
• π 2 = g. Moreover π 2 • g |{0,1} is a Sturmian morphism. Hence π 2 • g(x) = π 2 • g • π 2 (x) = π 2 • g |{0,1} (π 2 (x)) = g |{0,1} (π 2 (x))
is a Sturmian word. We can also show that π 0 • g(x) and π 1 • g(x) are words with Sturmian erasures. Hence, g is a morphism with Sturmian erasures and MSE is not empty.

Proofs of points (2) et (3) of Theorem 1

We denote by MSE ε the set of morphisms of MSE such that there exists l ∈ A 3 with f (l) = ε. We will prove that MSE is the union of MSE ε with the set of permutations on A 3 . This last set is generated by

E 0 : A * 3 -→ A * 3 E 1 : A * 3 -→ A * 3 E 2 : A * 3 -→ A * 3 0 -→ 0 0 -→ 2 0 -→ 1 1 -→ 2 1 -→ 1 1 -→ 0 2 -→ 1 2 -→ 0 2 -→ 2 We denote by MSE i , i ∈ A 3 , the set of morphisms with Sturmian erasures such that f (i) = ε. We have MSE ε = MSE 0 ∪ MSE 1 ∪ MSE 2 .
3.1. Proof of the point (3) of Theorem 1. We start with the following proposition.

Proposition 4. If a morphism f : {0, 1} → A * 3 maps a Sturmian word defined on {0, 1} N into a word with Sturmian erasures then it maps any Sturmian word into a word with Sturmian erasures.

Proof. Let x ∈ {0, 1} N be a Sturmian word and f : {0, 1} → A * 3 be a morphism such that f (x) is a word with Sturmian erasures. Let i be a letter of A 3 and E :

A 3 → {0, 1} * be a morphism such that {0, 1} = {E(a); i = a, a ∈ A 3 }. Then E • π i • f (x) is Sturmian and E • π i • f : {0, 1} → {0, 1} * is a locally Sturmian morphism. Hence, from
Theorem 2 it is Sturmian. It follows that for every Sturmian word y, f (y) is a word with Sturmian erasures. This ends the proof.

Now we prove the point (3) of Theorem 1. Let

f : A 3 → A * 3 , such that f (i) = ε for some i ∈ A 3 , and x ∈ A N
3 be a word with Sturmian erasures such that f (x) is a word with Sturmian erasures. We remark that we have f • π i (x) = f (x) and that π i (x) is a Sturmian word.

We can suppose A 3 \ {i} = {0, 1}. Hence the morphism f • π i|{0,1} satisfy the hypothesis of Proposition 4. Consequently if y is a word with Sturmian erasures then f

(y) = f • π i (y) = f • π i|{0,1} (π i (y)) is a word with Sturmian erasures. 2
Example 2. We can remark that there exist morphisms f : A 3 → A * 3 such that for some word x ∈ WSE we have f (x) ∈ WSE but f is not a morphism with Sturmian erasures. For example let F be the Fibonacci word, f be defined by f (0) = 0, f (1) = 1 andf (2) = 012, g : A 3 → A * 3 be defined by g(0) = 01, g(1) = 02 and g(2) = ε, and, h : A 3 → A * 3 be defined by h(0) = 02, h(1) = 10 and h(2) = ε. As in Example 1 we can prove that g, h and f • g are morphisms with Sturmian erasures and consequently x = g(F ) and f (x) = f •g(F ) are words with Sturmian erasures. But we remark that f •h(F ) is not a word with Sturmian erasures. Indeed 001210 is a prefix of f (y) and 00110 is a prefix of w = π 2 f (y). Consequently P w (2) = 4 and w is not a Sturmian word.

3.2. Proof of the point (2) of Theorem 1. We need the following lemma that follows from Theorem 2 and the fact that the determinant of the matrices associated to ϕ, ϕ and E belong to {-1, 1}.

Lemma 5. Let M be the matrix associated to the Sturmian morphism f . Then det M = ±1.

Let us prove the point (2) of Theorem 1. This proof is due to D. Bernardi. Let f be a morphism of MSE. Let i ∈ A 3 and E :

A 3 \ {i} → {0, 1} * be a morphism such that {0, 1} = {E(a); a = i, a ∈ A 3 }. We set h = E • π i • f • g |{0,1}
where g : A 3 → A * 3 is the morphism defined by: g(0) = 02, g(1) = 12 and g(2) = ε. As the letter i does not appear in the images of π i • f , we consider π i • f as a morphism from A 3 to (A 3 \ {i}) * . We set M π i •f = (u, v, w) where u, v and w are column vectors belonging to R 2 . We recall g is a morphism with Sturmian erasures (see Example 1 of the subsection 2.3). Hence the morphism h is Sturmian and we have

M h = (u + w, v + w). From Lemma 5 det(u, v) + det(u, w) + det(w, v) = det(u + w, v + w) = ±1.
We do the same with g being one of the two following morphisms : (0 -→ 01, 1 -→ 12, 2 → ε) and (0 -→ 02, 1 -→ 01, 2 → ε). We obtain finally

(1) det(u, v) + det(u, w) + det(v, w) = ±1. (2) det(u, v) + det(w, u) + det(w, v) = ±1. (3) det(u, v) + det(u, w) + det(w, v) = ±1.
The combinations of the equations ( 1) and ( 2), ( 2) and (3), and, (3) and (1) imply respectively that det(u, v), det(w, u) and det(w, v) belong to {-1, 0, 1}. From (1), one of three determinants det(u, v), det(u, w) or det(v, w) is different from 0. We suppose det(u, v) = 0 (the other cases can be treated in the same way). The set {u, v} is a base of R 2 , hence there exist two real numbers a and b such that w = au + bv. We have a = det(w, v)/ det(u, v) and b = det(w, u)/ det(v, u). Moreover from (1) and ( 2) we see that det(u, w) + det(v, w) and -(det(u, w) + det(v, w)) = det(w, u) + det(w, v) belong to {det(v, u) -1, det(v, u) + 1} which is equal to {0, 2} or {-2, 0}. Consequently det(u, w) + det(v, w) = 0. Hence a = b and w = a(u + v). The vector w is the column of the matrix of a morphism therefore it has non-negative coordinates which implies that a is non-negative. Suppose a > 0. Then det(w, v) and det(u, v) are positive and have the same sign. Hence one of the equations (2) or ( 3) is equal to -3 or 3 which is not possible. Consequently a = 0 and w = 0. Therefore for all i ∈ A 3 the matrix M π i •f = (m i (c, d)) c∈A 3 \{i},d∈A 3 has a column (m i (c, d i )) c∈A 3 \{i} with entries equal to 0. Two cases occurs. 1-There exists i, j ∈ A 3 (i = j) such that d i = d j . In this case we easily check that f (d i ) = ε. Consequently f belongs to MSE ε . 2-The sets {d 0 , d 1 , d 2 } and A 3 are equal. In this case we can check that f is a permutation. 2

4. Prime morphisms 4.1. Some technical definitions. Let A be an alphabet and f : A → A * be a morphism. A letter a is called f -nilpotent if there exists an integer n such that f n (a) = ε (if it is not ambiguous we will say it is nilpotent). The set of f -nilpotent letters is denoted by N f . We call P ′ f the set of letters a such that there exists an integer n satisfying π

N f (f n (a)) = a where π N f (b) = ε if b ∈ N f and b otherwise.
The set of such letters is denoted by P ′ f . We say the letter a is f -permuting if there exists an integer n such that

f n (a) ∈ (N f ∪ P ′ f ) * \ N f * .
We denote by P f the set of such letters. We remark that P ′ f is included in P f . A letter a is called f -expansive, or expansive when the context is clear, if it is neither nilpotent nor permuting. We remark the letter a ∈ A is f -expansive if and only if lim n→+∞ |f n (a)| = +∞ and it is f -permuting if and only if the sequence (|f n (a)|; n ∈ N) is bounded and is never equal to 0. The morphism f is nilpotent if f (A) is included in N * f , i.e., if there exists an integer n such that f n (a) = ε for all a ∈ A. A morphism f is called expansive if there exists a f -expansive letter. A morphism f is a unit if it is neither nilpotent nor expansive. In others words if f (A) is included in (N f ∪ P f ) * . Let M be a monoid of morphisms. A morphism f ∈ M is said to be prime in M if for any morphisms g and h in M such that f = g • h, then g or h is a unit of M. We say that f is of degree n in M, n ∈ N, if any decomposition of f into a product of prime and unit morphisms of M contains at least n prime morphisms and there exists at least one decomposition of f into prime and unit morphisms of M containing exactly n prime morphisms. The set of prime morphisms in St is {f • g • h; f, h ∈ {Id, E}, g ∈ {ϕ, ϕ}}. 4.2. Some conditions to be a prime morphism. In the sequel we need the following morphisms which are extensions to the alphabet A 3 of the morphisms ϕ and ϕ: 

ϕ 1 : A * 3 -→ A * 3 , ϕ 1 : A * 3 -→ A * 3 0 -→ 01 0 -→ 10 1 -→ 0 1 -→ 0 2 -→ ε 2 -→ ε . |f ( 
|π 2 • g n (01)| ≥ n + 2, |π 2 • g n (0)| ≥ 1, and |π 2 • g n (1)| ≥ 1.
This is true for n = 0. We suppose it is true for n ∈ N. From Lemma 6 we have

|π 2 •g n+1 (01)| = |π 2 •g n (g(01))| ≥ |π 2 •g n (jjk)| = |π 2 •g n (01)|+|π 2 •g n (j)| ≥ n+3.
Moreover, from Lemma 6 in g(j) occurs a letter a ∈ {0, 1}. Consequently,

|π 2 • g n+1 (j)| = |π 2 • g n (g(j))| ≥ |π 2 • g n (a)| ≥ 1.
We proceed in the same way for the letter k. This concludes the induction. Therefore, it is clear g is expansive. This concludes the proof.

5. The monoid MSE is not finitely generated 5.1. Some preliminary results. To prove the point (1) of Theorem 1 we need the following subset of MSE. Let MSE ′ be the set of morphisms f ∈ MSE 2 such that for some n ∈ N

π 2 • f ∈ F n , π 1 • f ∈ G n and π 0 • f ∈ H n where F n = {ϕ 1 , ϕ 1 } n , G n = E 0 • {ϕ 1 , ϕ 1 } • E 2 • {ϕ 1 , ϕ 1 } n-1 and H n = E 2 • E 0 • {ϕ 1 , ϕ 1 } n-1 .
With the two following lemmata we prove that MSE ′ is not empty. Before we need a new definition and we make some remarks. Let u ∈ {0, 1} * , v ∈ {0, 2} * and w ∈ {1, 2} * be three words. We say that u, v and w intercalate between them if and only if there exists x ∈ A * 3 such that π 2 (x) = u, π 1 (x) = v and π 0 (x) = w. Let (u n ) n∈N be the Fibonacci word : u n+1 = u n + u n-1 for all n ≥ 1, u 0 = 0 and u 1 = 1. We can remark that for all n ≥ 1 we have

M ϕ n 1 = M ϕ n 1 = M n ϕ 1 =   u n+1 u n 0 u n u n-1 0 0 0 0   . Lemma 8. Let n ≥ 2, f ∈ F n , g ∈ G n and h ∈ H n . Then, for all a ∈ {0, 1} we have |f (a)| 0 = |g(a)| 0 , |f (a)| 1 = |h(a)| 1 and |g(a)| 2 = |h(a)| 2 . Proof. It suffices to remark that M f = M ϕ n 1 , M g =   u n+1 u n 0 0 0 0 u n-1 u n-2 0   and M h =   0 0 0 u n u n-1 0 u n-1 u n-2 0   .
Lemma 9. Let f, g and h be three morphisms from A 3 to A * 3 such that f (a), g(a) and h(a) are respectively words on the alphabets {0, 1}, {0, 2} and {1, 2} for all a ∈ A 3 . Then, f (a), g(a) and h(a) intercalate between them for all a ∈ A 3 if and only if there exists a morphism ψ :

A 3 → A * 3 such that π 2 • ψ = f , π 1 • ψ = g and π 0 • ψ = h.
Proof. For all a ∈ A 3 let ψ(a) be the word obtained intercalating f (a), g(a) and h(a). This defines a morphism ψ :

A 3 → A * 3 . We can check it satisfies π 2 • ψ = f , π 1 • ψ = g and π 0 • ψ = h. The reciprocal is left to the reader. Suppose that ψ n (1) is a prefix of ψ n (0). Then π 1 • ψ n (1) is a prefix of π 1 • ψ n (0)
and consequently g n (1) is a prefix of g n (0). This contradicts Lemma 10. Suppose that ψ n (1) is a suffix of ψ n (0). Then π 2 •ψ n (1) is a suffix of π 2 •ψ n (0) and consequently f n (1) is a suffix of f n (0). This contradicts Lemma 10 and proves the lemma.

Corollary 13. The set MSE 2 contains infinitely many primes.

Proof. We left as an exercise to prove that for all n ∈ N * we have ψ n = ψ n+1 , where ψ n is defined in Lemma 11. Proposition 12 ends the proof. 5.2. Proof of the point (1) of Theorem 1. We proceed by contradiction: We suppose there exists F = {f 1 , . . . , f l } ⊂ MSE generating MSE, i.e., all g ∈ MSE is a composition of elements belonging to F .

Let N = sup a∈A 3 ,1≤i≤l |f i (a)|, (ψ n ) n∈N be the morphisms defined in Lemma 11 and (u n ) n∈N be the Fibonacci word defined in the previous section. We remark

lim n→+∞ max a∈A 3 |ψ n (a)| ≥ lim n→+∞ u n+1 = +∞.
We fix n ∈ N such that max a∈A 3 |ψ n (a)| > N. By hypothesis there exist g 1 , . . . , g k in F such that

ψ n = g 1 •• • ••g k . We set h = g 2 •• • ••g k . The morphism ψ n belongs to MSE a for some a ∈ A 3 . It implies ψ n (2) = ψ n (a) = ε and consequently a = 2. There exists b ∈ A 3 such that g 1 ∈ MSE b . We remark ψ n = g 1 • h = g 1 • π b • h. Two cases occurs. First case: For all a ∈ {0, 1} we have |π b • h(a)| = 1.
The morphism h being a morphism with Sturmian erasures we cannot have

π b • h(0) = π b • h(1). Consequently ψ n = g 1 • E 2 or ψ n = g 1 . This implies there exists a ∈ A 3 such that |g 1 (a)| > N which is not possible. Second case: There exists a ∈ {0, 1} such that |π b • h(a)| > 1. We remark π b • h = π b • h • π 2 If b = 2 then π b • h |{0,1} : {0, 1} → {0, 1} * ⊂ A *
3 is a Sturmian morphism different from E and Id {0,1} . Hence from a remark we make in Subsection 3.2 there exist i and j in {0, 1}, i = j, such that the word

π b • h |{0,1} (i) is a prefix or a suffix of π b • h |{0,1} (j). Hence ψ n (i) is a prefix or a suffix of ψ n (j). Proposition 7 implies ψ n is not prime in MSE 2 which contradicts Proposition 12. Let b = 2. We set {b, c} = {0, 1}. Then, E c • π b • h |{0,1} : {0, 1} → {0, 1} * ⊂ A * 3 is a Sturmian morphism different from E and Id {0,1}
. Hence from a remark we make in Subsection 3.2 there exist i and j in {0, 1}, i = j, such that the word

E c • π b • h |{0,1} (i) is a prefix or a suffix of E c • π b • h |{0,1} ( 
j). Hence ψ n (i) is a prefix or a suffix of ψ n (j). Proposition 7 implies ψ n is not prime in MSE 2 which contradicts Proposition 12. This concludes the proof. 6. Some further facts about words with Sturmian erasures 6.1. Geometrical remarks. We recall that a Sturmian word can be viewed as a coding of a straight half line in R 2 with direction (1, α) where α is a positive irrational number, or in other terms as a trajectory of a ball in the game of billiards in the square with elastic reflexion on the boundary. We do not give the details here, we refer the reader to [Lo].

Let us extend the construction given in [Lo] to obtain what is usually called billiard words in the unit cube [0, 1] 3 . Let d = (d 0 , d 1 , d 2 ) ∈ [0, +∞[ 3 and ρ = (ρ 0 , ρ 1 , ρ 2 ) ∈ [0, 1[ 3 . Let D be the half line with direction d and intercept ρ that is to say D = {td + ρ; t ≥ 0}. Consider the intersections of D with the planes x = a, y = a, z = a, a ∈ Z: We denote by I 0 , I 1 , . . . these consecutive intersection points . We say I n crosses the face F i , i ∈ {0, 1, 2}, if the i + 1-th coordinate of I n is an integer and the i + 1-th coordinate of I n+1 -I n is not equal to 0. We set Ω n = {i ∈ {0, 1, 2}; I n crosses F i }. Let x = u 0 u 1 . . . be a word such that

u n =    i if Ω n = {i}, ij if Ω n = {i, j} where i = j, ijk if Ω n = {i, j, k} = {0, 1, 2}.
We say x is a billiard word in the unit cube [0, 1] 3 (with direction d and intercept ρ). We can also say that x is a coding of D. Of course a half line can have several codings. One of the codings of a half line is periodic if and only if d ∈ γZ 3 for some γ ∈ R + . When one of the coordinates of the direction is equal to zero and the two others are rationally independent we can easily deduce from [Lo] (Chapter 2) that x is a Sturmian word. The reciprocal is also true: All Sturmian words can be obtained in this way (see [Lo]). We remark that if x is a non-periodic cubic billiard word then π 0 (x) is a Sturmian word with direction d = (0, d 1 , d 2 ) and intercept ρ = (0, ρ 1 , ρ 2 ) (i.e. the orthogonal projection of D onto {0} × [0, +∞[×[0, +∞[). We have the analogous remark for π 1 (x) and π 2 (x). It is easy to conclude that a cubic billiard word is a word with Sturmian erasures if and only if it is non periodic and d ∈]0, +∞[ 3 . There exist words with Sturmian erasures that are not cubic billiard words. For example, take the Fibonacci word x (Example 1) and the morphism ψ defined by ψ(0) = 0012 and ψ(1) = 01. It is easy to see that y = ψ(x) is a word with Sturmian erasures. Let us show that if y was a cubic billiard word then the word 102 should appear in x, which is not the case. We briefly sketch the proof. Suppose y is a cubic billiard word with direction d = (1, α, β) and intercept ρ, then the words π 0 (y) and π 2 (y) are Sturmian words with respective directions (0, α, β) and (1, α, 0). It can be shown that α = θ -1 and β = (θ -1) 2 where θ = ( √ 5 + 1)/2. But with such a direction d = (1, θ -1, (θ -1) 2 ) easy calculus show that the word 102 should appear in y.

6.2. Balanced words. Let us recall a characterization of Sturmian words due to Hedlund and Morse [START_REF] Hedlund | Symbolic dynamics II. Sturmian trajectories[END_REF]. Let A be a finite alphabet. We say a word x ∈ A N is balanced if for all factors u and v of x having the same length we have ||u| a -|v| a | ≤ 1 for all a ∈ A. Suppose CardA = 2. A word x ∈ A N is Sturmian if and only if x is non eventually periodic and balanced. P. Hubert characterizes in [Hu] the words on a three letters alphabet that are balanced. This characterization shows that such words are not words with Sturmian erasures. Definition 14. Let A be a finite alphabet. We say x ∈ A N is n-balanced if n is the least integer such that: For all words u and v appearing in x and having the same length we have

|| u | a -| v | a |≤ n for all a ∈ A.
Clearly, Sturmian words are 1-balanced.

Proposition 15. If x ∈ A N
3 is a word with Sturmian erasures then x is non eventually periodic and 2-balanced.

Proof. It is clear x is non eventually periodic. From a previous remark we know that x is not 1-balanced. Suppose x is n-balanced with n ≥ 3: There exist e ∈ A 3 and two words u and v appearing in 6.3. Complexity. Let x be a word with Sturmian erasures and f be a morphism belonging to MSE i for some i ∈ A 3 . Then π i (x) is a Sturmian word and f (x) = f (π i (x)). Consequently from a result of Coven and Hedlund [CH] we deduce there exist two integers n 0 and k such that P x (n) = n + k for all n ≥ n 0 . For example, let F be the Fibonacci word and f : {0, 1, 2} → {0, 1, 2} * be the morphism defined by f (0) = 0102, f (1) = 01 and f (2) = ε. It is a morphism with Sturmian erasures and y = f (F ) is a word with Sturmian erasures. In fact it is a cubic billiard word with direction d = (1, θ -1, (θ -1) 2 ) and intercept ρ = (0, θ -1, (θ -1) 2 ), where θ is the golden mean ( √ 5 + 1)/2. This does not contradict the result in [AMST] saying that if 1, α and β are rationally independent then the complexity of the cubic billiard word with direction (1, α, β) and intercept ρ ∈]0, 1[ 3 is n 2 + n + 1, because -1 + (α -1) + (α -1) 2 = 0. 6.4. Conclusion. Many generalizations of the Sturmian words were tried (more letters, applications of Z 2 to {0, 1}, ...) but none appeared to be entirely suitable in the sense that it seems impossible to extend these properties to a more general domain astonishing varieties of the properties characterizing these words. The example which we chose for this paper, does not derogate from this rule. Nevertheless, the fact that MSE is not given by a finite generator shows a fundamental difference between the Sturmian words and any generalization with more than two letters because the definition adopted here was less "compromising" possible.

Furthermore, this definition gives a words of a complexity structurally similar to the one of the Sturmian words.

  x and having the same length such that ||u| e -|v| e | ≥ 3. For all a ∈ A 3 we set n(a) = ||u| a -|v| a |. Then we can set A 3 = {a, b, c} where n(a) ≥ 3 and n(a) ≥ n(b) ≥ n(c). Without loss of generality we suppose |u| a -|v| a = n(a). As |u| = |v| we have n(a) = (|v| b -|u| b ) + (|v| c -|u| c ). Consequently we necessarily have |v| b -|u| b ≥ 0 and |v| c -|u| c ≥ 0 because n(a) ≥ n(b) ≥ n(c). Thus n(b) = |v| b -|u| b , n(c) = |v| c -|u| c and n(a) = n(b) + n(c). We also see that n(b) ≥ 2 and n(c) ≥ 0. Suppose there exists a factor u ′ of the word u verifying |π c (u ′ )| = |π c (v)| and |π c (u ′ )| a -|π c (v)| a ≥ 2. Then this would say that π c (x) is not balanced and a fortiori not Sturmian which would end the proof. Let us find such a u ′ . We have |π c (u)| ≥ |π c (v)| ≥ |v| b ≥ 2. Hence there exists a non-empty word u ′ satisfying |π c (u ′ )| = |π c (v)| and having an occurrence in u.Moreover |π c (u ′ )| a + |π c (u ′ )| b = |π c (u ′ )| = |π c (v)| = |v| -|v| c = |u| -|v| c = |u| a + |u| b + |u| c -|v| c = |π c (u)| a + |π c (u)| bn(c). Hence |π c (u)| an(c) = |π c (u ′ )| a + |π c (u ′ )| b -|π c (u)| b ≤ |π c (u ′ )| a and then 2 ≤ n(b) = n(a)n(c) = |π c (u)| a -|π c (v)| an(c) ≤ |π c (u ′ )| a -|π c (v)| a ,which ends the proof.

  01)| 2 ≥ 6. From the hypothesis it comes that |g(010)| j = |f (01)| j ≥ 3. Hence 2|g(01)| j -|g(1)| j ≥ 3 and |g(01)| j ≥ 2. Now we prove by induction that for all n ∈ N we have

In the next proposition we need the following lemma. Proof. Suppose for a ∈ {0, 1} we have |g(a)| = 1, for example g(a) = b. Then π b • g(x) is periodic for all x ∈ A N 3 . This contradicts the fact that g belongs to MSE 2 . If |g(a)| = 0 we have the same conclusion. This proves the first part of the lemma. Suppose |g(a)| 0 + |g(a)| 1 = 0. Then π 2 • g(x) is periodic for all x ∈ A N 3 . This proves the second inequality. Suppose |g(01)| a = 0, then a does not appear in g(x). This contradicts the fact that g belongs to MSE 2 .

Proof. We only make the proof in the case i = 2. 1) We suppose f (0) is neither prefix nor suffix of f (1) and that f (1) is neither prefix nor suffix of f (0). We proceed by contradiction, i.e., we suppose there exist g, h ∈ MSE 2 which are not units such that f

In both case we easily check that h is a unit of MSE 2 . This ends the first part of the proof.

We proceed by contradiction. We suppose f (1) is a prefix of f (0). The other case can be treated in the same way. There exist u and v in A * 3 such that f (0) = uv and f (1) = u. We define g, h :

We remark that h is not a unit and f = g • h.

To end the proof it suffices to show that g is not a unit of MSE 2 . We start proving g belongs to MSE 2 . Let x ∈ WSE. As in Example 1 we can prove that h belongs to MSE 2 . Consequently h(x) belongs to WSE. Moreover f (x) = g(h(x)) belongs to WSE. From the point (3) of Theorem 1 it comes that g belongs to MSE 2 . From Lemma 6 we have |f (01

(1). Hence ϕ n 1 (1) is a prefix of ϕ n 1 (0). We proceed by induction to prove that ϕ n 1 (1) is not suffix of ϕ n 1 (0). For n = 1 is it clear. Suppose it is true for n ∈ N * . We prove it is also true for n + 1. We have ϕ n+1

1 (1) is a suffix of ϕ n 1 (0) which contradicts the hypothesis. This concludes the first part of the proof. The other part can be achieved in the same way.

We proceed by induction on n to prove what remains. For n = 1, we have

and consequently ψ 1 belongs to MSE 2 . For n = 2, we have

The morphism ψ 2 is such that π 2 • ψ 2 = f 2 , π 1 • ψ 2 = g 2 and π 0 • ψ 2 = h 2 , and consequently ψ 2 belongs to MSE 2 . Now we suppose the result is true for n -1 and n ≥ 2. We prove it is also true for n + 1. We have

From the induction hypothesis and Lemma 9 we know f i (a), g i (a), h i (a) intercalate between them for all a ∈ A 3 and all i ∈ {n -1, n}. Consequently, using Lemma 9, there is a morphism ψ : A 3 → A * 3 such that π 2 • ψ n+1 = f n+1 , π 1 • ψ n+1 = g n+1 and π 0 • ψ n+1 = h n+1 .

Proposition 12. For all n ∈ N * , the morphism ψ n defined in Lemma 11 is prime in MSE 2 .

Proof. We keep the notations of Lemma 11. Let n ∈ N * . From Proposition 7 it suffices to prove that ψ n (1) is neither a prefix nor a suffix of ψ n (0). We proceed by contradiction: We suppose ψ n (1) is a prefix or a suffix of ψ n (0).